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Abstract—Low-rank representation has been successfully ap-
plied for moving object detection by assuming the background
images are linearly correlated while the moving foreground are s-
parse. Further, extensive works propose to incorporate the spatial
pairwise smoothness of pixels to improve the robustness. In this
paper, we investigate the long-range spatiotemporal relationships
among pixels, and propose a novel approach to pursue the high-
order consistency for moving object detection in the low-rank
and sparse separation framework. In particular, we integrate the
sparse unary penalty, the spatial pairwise smoothness, and the
supervoxel-based high-order consistency into a unified structural
constraints on the foreground. Moreover, we propose a single
optimization algorithm to learn the background model and the
foreground mask at a same time. Extensive experiments on
the benchmark datasets GTFD and CDnet suggest that our
approach achieves superior performance over several state-of-
the-art algorithms.

Index Terms—Moving object detection; Supervoxel; Low-Rank
and Sparse Separating; High-Order Structural Constraint

I. INTRODUCTION

Moving object detection, aiming to locate and segment the
moving objects in the video, plays a crucial role in computer
vision and pattern recognition, such as target recognition [20],
tracking [6], behavior analysis [4]. There are extensive studies
on moving object detection over the past decades.

Recently, the low-rank and sparse separation methods have
drawn much attention. The basic idea is to recover the low-
rank background and the sparse outliers as foreground objects.
The pioneer works include Robust Principal Component Anal-
ysis (RPCA) [2], [26] and its variants [7], [8], [15]. In order
to enforce the spatial structure of the foreground, DECOL-
OR [29] and later on methods [3], [10], [23], [28] introduce
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a contiguous prior of the neighborhood pixels. Furthermore,
besides the pixel-level spatial smoothness, BS-SMOD [13]
presents a online matrix decomposition via max-norm con-
straints on each superpixel segment. SLMS [14] constructs the
spatial and temporal graphs on the dense optical flow based
motion-compensation. However, it removes the frames with
less motion information, which may result in missing detection
of sudden pause of the moving objects. Importantly, the above
methods only construct the structural constraints of foreground
objects on the spatial pairwise smoothness of pixels, while
ignoring the long-range spatiotemporal relationships among
pixels, which are usually important to the robustness of
moving object detection.

In this paper, we investigate the long-range spatiotemporal
relationships among pixels, and propose a novel approach
of moving object detection to pursue high-order structural
consistency in the low-rank and sparse separation framework.
Given the accumulated sequential frames from the input video,
we first form a data matrix by stacking each frame as a vector,
and decompose it into the low-rank and sparse components,
corresponding to the background and foreground, respectively.
Second, we model the structural constraints of foreground ob-
jects by a Markov Random Filed (MRF) [17], which consists
of three potential terms: i) the sparse unary term, ii) the spatial
pairwise smoothness term, and iii) the high-order consistency
term. The first two terms have been extensively employed
in recent works [10], [23], [28], [29]. However, the long-
range consistency of pixels has not been well investigated in
background modeling and foreground detection, but plays a
critical role in the robustness for detecting moving objects,
as demonstrated in our experiments. To this end, we employ
the robust Pn [16] to model the supervoxel-based high-order
consistency, and integrate it into MRF to model the structural
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constraints of foreground objects. Finally, we design a single
unified optimization algorithm to learn the background model
and foreground mask simultaneously by iteratively employing
the SOFT-IMPUTE algorithm [21] and the graph cut algorith-
m [22].

II. RELATED WORK

Moving object detection via low-rank and sparse separation
boasts an extensive literature. The most representative prob-
lem formulation is the Robust Principal Component Analysis
(RPCA) [26] which decomposes a given matrix/frames into a
low-rank background matrix and sparse foreground matrix. [2]
proposed Principal Component Pursuit (PCP) to recover the
low-rank model form unknown corruption patterns. [30] ex-
tended PCP as Stable Principle Component Pursuit (SPCP),
to handle sparse gross errors and small entrywise noises. DE-
COLOR [29] introduced the contiguous prior on foreground
mask to preserve the spatial structure of the foreground.
CLASS [28] proposed a collaborative framework to leverage
the various size of the moving objects via introducing the
global appearance consistency. COROLA [23] presented an
online sequential framework via solving sequential low-rank
approximation and contiguous outlier representation problem.

In order to preserve the spatial compactness, BS-
SMOD [13] presented an online matrix decomposition using
max-norm constraint on each superpixel segment. TVRP-
CA [3], [10] introduced the 3-D total variance along the
temporal axis to separate the moving foreground and the even
sparser dynamic background. TLSFSD [11] further designed
saliently fused-sparse regularizer to the tensor total variation.
SLMS [14] proposed to construct the spatial and temporal
graphs based on the motion-compensated binary mask gener-
ated by the dense optical flow prior.

However, these methods only consider the structural con-
straints of foreground objects on the spatial pairwise smooth-
ness of pixels, while ignoring the long-range spatiotemporal
relationships among pixels, which are usually important to
the robustness of moving object detection. In this paper, we
investigate the long-range spatiotemporal relationships among
pixels and propose a novel approach to pursue the high-order
consistency among the supervoxels.

III. THE PROPOSED APPROACH

The key of our method is to introduce a supervoxel-
based high-order consistency into the low-rank and sparse
separation framework to consider long-range spatio-temporal
relationships among pixels. Given a video sequence D =[
I1, · · · , In

]
∈ Rm×n consists of n frames with m pixels

per frame, we employ the video segmentation method [5], [9]
to generate the supervoxel prior at the first place. We shall
elaborate the proposed approach followed by the optimization
in the following part of this section.

A. Problem Formulation

Given the video sequence D, our main task is to estimate
the background B ∈ Rm×n and the binary foreground support
S ∈ {0, 1}m×n with:

Sij =

{
0,

1,

if ij is background,

if ij is foreground.
(1)

We assume that the background frames are linearly corre-
lated while the foregrounds are sparse [2], [26]. Furthermore,
for the background region where Sij = 0, we assume that
Dij = Bij+ϵij , where ϵij denotes i.i.d. Gaussian noise. Based
on the above assumptions, the energy function can be written
as:

min
Bij ,Sij∈{0,1}

β ∥ vec(S) ∥0,

s.t. S⊥ ◦D = S⊥ ◦ (B+ ϵ), rank(B) ≤ r.
(2)

where β is the penalized factor, and ||X||0 indicates the l0
norm of a vector. vec (S) is a vectorized operator on matrix
S. The operator ”◦” denotes element-wise multiplication of
two matrices, S⊥ denotes the region of Sij = 0, and r is
a constant that suppresses the complexity of the background
model.

In order to enforce the spatial smoothness structure of the
foreground, a common strategy is to penalize the neighboring
pixels with diverse labels [23], [29]. Therefore the additional
pairwise potential is defined as:

∥A1vec (S)∥1 =
∑

(ij,kl)∈E1

|Sij − Skl| . (3)

here, A1 is the node-edge incidence matrix denoting the
connecting relationship among pixels. E1 is the edge set of
the connected pixel pairs.

However, despite of the spatial smoothness structure, the
foreground structure is also strongly related to the long-
range spatiotemporal relationships among pixels. Therefore,
we propose supervoxel-based high-order consistency into a
unified structural constraints on the foreground.
Supervoxel-Based High-Order Consistency: We observe
that, the structures of the moving objects are generally con-
sistent along the temporal shifting. Similar to superpixels on
2-dimensional spatial images, the supervoxel refers to the
high-order/3-dimensional voxels with both long-range spatial-
ly and temporally neighboring pixels of similar appearances.
To consider the long-range spatiotemporal relationship among
pixels, we enforce the pixels from the same supervoxel prior
generated via [12], [27] to have the same pattern which tends
to capture the global appearance compactness and temporal
consistency of the foreground strucutre. Specifically, we first
construct the graph between the pairs of pixels in the same
superpixel projected from the supervoxel prior and define the
smoothness as:

∥A2vec (S)∥1 =
∑

(ij,mn)∈E2

|Sij − Smn| . (4)

analogously, A2 denotes the connecting relationship among
pixels. E2 is the edge set of the pixel pairs within the



same superpixel projected by the supervoxel prior. Second, in
order to consider the relationship in the long-range temporal
domain, we further introduce a high-order consistency into
the detection model. As illustrated in Fig. 1, we enforce the
pixels inside the same supervoxel to possess the same pattern.
Inspired by the robust Pn [12], [16], we define the high-order
potential among the supervoxel as:

Φ(SV∈C) =

{
N (SV)

1
Qτmax (V) if N (SV) 6 Q,

τmax (V) otherwise.
(5)

where V is one of the supervoxel clique in the supervoxel
set C, |SV | denotes the number of nodes/pixels in supervoxel
clique V , N (SV) = min (|SV = 1| , |SV = 0|) denotes the
number of nodes with nondominant label in supervoxel V , and
Q is the truncation parameter controlling the rigidity within
the supervoxels. τmax = |SV | exp (−σV), σV is the total RGB
variance in supervoxel clique V .

Supervoxel 

   cliques

Fig. 1. Supervoxel clique in videos. The colorful circles indicate the
superpixels on each frame which projected from the supervoxel prior while
the circles with the same color are derived from the same supervoxel.

Based on above discussion, we can summarize the energy
function as:

min
Bij ,Sij∈{0,1}

β ∥ vec(S) ∥0 + γ||A1 vec(S)||1

+ η||A2 vec(S)||1 + λΦ (SV) ,

s.t. S⊥ ◦D = S⊥ ◦ (B+ ϵ), rank(B) ≤ r.

(6)

where γ, η and λ are the balance parameters to leverage the
smoothness between the pixel pairs in the adjacent neighbor-
hood, superpixels and the high-order supervoxels.

B. Model Optimization

To make Eq. (6) tractable, the common strategy is to
relax the rank constraint by nuclear norm. Therefore, the
formulation can be rewritten as:

min
Bij ,Sij∈{0,1}

1

2
∥S⊥ ◦ (D−B)∥2F + α ∥B∥∗ + β ∥ vec(S) ∥0

+ γ ∥A1 vec (S)∥1 + η ∥A2 vec (S)∥1 + λΦ(SV) .
(7)

where α is the balance parameter to control the complexity of
the background. ∥X∥∗ and ∥X∥F indicate the nuclear norm
and the Frobenius norm of a matrix respectively.

The objective function Eq. (7) is non-convex and not trivial
to be solved due to both continuous and discrete variables.

Therefore, we design a two step alternating algorithm by
separating the energy minimization over B and S.
Solving-B: In order to estimate B with the currently given Ŝ,
Eq. (7) turns to be the minimization problem:

min
B

1

2
∥S⊥ ◦ (D−B)∥2F + α ∥B∥∗ . (8)

Eq. (8) can be solved by SOFT-IMPUTE [21] algorithm
with the updating prorogation:

B̂ ← Θα

(
Ŝ⊥ ◦D+ Ŝ⊥ ◦B

)
. (9)

where Θα(Z) = UΣαV
T means the singular value thresh-

olding, Σα = diag[(d1−α)+, · · · , (dk−α)+], αΣαV
T is the

SVD of Z, Σ = diag[d1, · · · , dk] and t+ = max(t, 0).
Solving-S: Given the estimated low-rank background B̂, E-
q. (7) can be rewritten as:∑

ij

(
β − 1

2

(
Dij − B̂ij

)2
)
Sij + γ ∥A1 vec (S)∥1 + λΦ (SV)

+ η ∥A2 vec (S)∥1 +
1

2

∑
ij

(Dij −Bij)
2
.

(10)
where (Dij − Bij)

2 and Sij are constants with fixed B̂.
Above energy function is a standard first-order MRFs [17]
with unary term, pairwise term and high-order term, which
can be optimized through the graph cut [22] algorithm.

IV. EXPERIMENT

We evaluate our method on the benchmark datasets
GTFD [18] and CDnet14 [25] comparing with six state-of-
the-art moving object detection algorithms including PCP [2],
VIBE [1], GMM [24], TTD [19], DECOLOR [29] and CORO-
LA [23]. We choose the default parameters of these methods.

A. Datasets

GTFD [18] consists of 25 video sequences which con-
tains various challenges such as intermittent motion, low
illumination, bad weather, intense shadow, dynamic scene
and background clutter. It consists of both visible video and
infrared video for each scene. We only evaluate the visible
videos in our experiments.

CDnet14 [25] is a large scale dataset which includes 11
different categories and contains 55 video sequences. To
better present our algorithm have good spatial smoothness
and robustness, we evaluate our method on 10 videos from 5
challenging categories including DynamicBackground (Boat-
s, Fountain02), IntermittentObjectMotion (WinterDriveway,
StreetLight), PTZ (TwoPositionPTZCam (PTZCam)), Zoom-
InZoomOut (ZoomInOut)), Shadow (Cubicle, CopyMachine)
and Thermal (Corridor, Park).

B. Evaluation Settings

Parameters. There are six parameters in our method, we
adjust one parameter while fixing other parameters and then
obtain better performance for our approach. α is first roughly
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Fig. 2. Comparison results of a certain frame from six example sequences from GTFD dataset ((a) - (c)) and CDnet14 dataset ((d) - (f)). The text rectangles
on the left top of the original frames indicate the name of the video sequences.

estimated as the rank of the background model and further ad-
justed by SOFT-IMPUTE [21] algorithm until rank

(
B̂
)
> r.

β = 2.5σ2 where σ is estimated online by the mean variance
of

{
Dij − B̂ij

}
. Note that the pixel-level smoothness will

result in high computational burden. Therefore, we set η to
be a large value to severely penalize the spatial inconsistency,
which can speed up 3 times while increasing about 2% in
F-measure. The final parameter settings are (α, β, γ, λ,Q) =(
0.707, 2.5σ2, 2β, 2, 0.01 |SV |

)
. Furthermore, we construct the

spatiotemporal consistency in every 10 frames in our algorith-
m.
Evaluation Metrics. For the quantitative evaluation, we em-
ploy the Precision (P ), Recall (R) and F-measure (F ) as
evaluation metrics.

P =
TP

TP + FP
,R =

TP

TP + FN
,F =

2PR

P +R
. (11)

where the TP, FP, FN represent the true positive, false
positive and false negative, respectively.

C. Qualitative Results

We first demonstrate some qualitative comparison results on
GTFD [18] and CDnet14 [25] in Fig. 2. From which we can
see that, VIBE works on the original pixel space therefore they
are quite sensitive to the noise and introduce ”ghost”. TTD is
robust to the noise but fails to detect the small foreground
in complex background. By introducing spatial relationship,
DECOLOR and COROLA obtain more coherent foreground
masks than the ones with single sparse constraint such as
TTD. However, DECOLOR fails to sketch the contours of the

objects, since it only consider the spatial smoothness among
the neighboring pixels. COROLA, as the state-of-the-art online
detection model, tends to produce the cavities on the objects
due to the lack of long-range sequential information. After
enforcing the long-range spatiotemporal relationship among
pixels, our method can better preserve the contours of the
moving objects and achieve robust detection results under the
various challenging scenarios.

D. Quantitative Results

Table I reports the average precision, recall and F-measure
on the 25 videos from GTFD dataset [18] while Table II
details these quantitative results of each testing video from
CDnet14 [25]. The dashes (-) in the Table II denote that
the corresponding methods failed to detect objects in this
video. From Table I and Table II, it is clear to see that:
1) Our method achieves superior result than the state-of-the-
arts in precision in most of the cases since we integrate
the sparse unary potential, the spatial pairwise potential and
the high-order potential to punish the foregrounds. 2) As for
recall, it works worse than DECOLOR since DECOLOR tends
to generate coarse contours which always leads to higher
recalls. 3) The more comprehensive measurement between
precision and recall, F-measure demonstrates the best trade-off
performance of our method with 5% and 4% higher than the
second best method on GTFD and CDnet respectively.

E. Component Analysis

We evaluate the components of the spatial smoothness
within the superpixel (Ssuperpixel) which is projected from
the supervoxel prior and the high-order consistency encoded



TABLE II
COMPARISON OF PRECISION (P), RECALL (R), AND F-MEASURE (F) SCORES ON TEN TESTING VIDEOS FROM CDNET14 DATASET.

Methods PCP ViBe GMM TTD DECOLOR COROLA OURS
P 0.17 0.25 0.47 0.40 0.85 0.76 0.97

Boats R 0.47 0.39 0.20 0.36 0.74 0.64 0.67
F 0.25 0.31 0.27 0.34 0.79 0.70 0.79
P 0.02 0.16 0.74 0.44 0.66 0.87 0.81

Fountain02 R 0.27 0.40 0.55 0.15 0.90 0.62 0.67
F 0.04 0.23 0.63 0.22 0.76 0.71 0.74
P 0.10 0.12 0.26 0.37 0.22 0.41 0.50

WinterStreet R 0.41 0.44 0.62 0.45 0.96 0.74 0.62
F 0.15 0.19 0.34 0.39 0.35 0.51 0.53
P 0.01 - - 0.27 0.41 0.39 0.59

StreetLight R 0.52 - - 0.44 0.91 0.56 0.58
F 0.01 - - 0.32 0.56 0.46 0.58
P 0.15 0.10 0.58 0.62 0.47 0.57 0.57

TwoPositionPTZCam R 0.31 0.30 0.47 0.53 0.98 0.86 0.78
F 0.16 0.13 0.48 0.50 0.61 0.65 0.62
P 0.01 0.02 0.11 0.05 0.17 0.04 0.20

ZoomInZoomOut R 0.38 0.58 0.38 0.43 0.31 0.81 0.39
F 0.03 0.04 0.15 0.08 0.16 0.07 0.24
P 0.10 0.43 0.88 0.90 0.92 0.78 0.86

Cubicle R 0.33 0.55 0.24 0.48 0.58 0.52 0.69
F 0.15 0.48 0.36 0.62 0.66 0.58 0.75
P 0.21 0.43 0.79 0.86 0.80 0.74 0.86

CopyMachine R 0.14 0.32 0.61 0.85 0.98 0.70 0.92
F 0.17 0.37 0.69 0.83 0.88 0.69 0.89
P 0.04 0.41 0.52 0.54 0.59 0.77 0.94

Corridor R 0.53 0.66 0.18 0.25 0.96 0.28 0.62
F 0.07 0.48 0.23 0.32 0.71 0.40 0.73
P 0.15 0.52 0.95 0.83 0.68 0.87 0.87

Park R 0.50 0.31 0.37 0.47 0.98 0.54 0.69
F 0.23 0.38 0.53 0.58 0.80 0.65 0.78
P 0.09 0.24 0.53 0.53 0.58 0.62 0.72

Average R 0.39 0.28 0.36 0.44 0.83 0.63 0.67
F 0.12 0.27 0.36 0.42 0.63 0.55 0.67

TABLE I
AVERAGE PRECISION (P), RECALL (R) AND F-MEASURE (F) OF OUR
METHOD AGAINST THE STATE-OF-THE-ART ALGORITHMS ON GTFD

DATASET.

Algorithm P R F
PCP 0.28 0.18 0.21
ViBe 0.41 0.49 0.41
GMM 0.48 0.65 0.52
TTD 0.59 0.29 0.32
DECOLOR 0.54 0.83 0.58
COROLA 0.59 0.67 0.56
OURS 0.64 0.70 0.63

in the supervoxel clique (Hsupervoxel) on GTFD dataset in
this section. We report the results in Table III where OURS-
I denotes our model without Hsupervoxel and Ssuperpixel by
setting η = λ = 0 and OURS-II indicates our model with
only Hsupervoxel by setting η = 0. From which we can
see, both high-order consistency and the spatial smoothness
play important roles for moving object detection. Noted that
the higher recall in OURS-I results from the coarse contours
of the detected foregrounds. After introducing supervoxel-
based high-order consistency (comparing OURS-II to OURS-
I), the average F-measure value increases 3%. Furthermore,
after introducing spatial smoothness within the superpixel
(comparing OURS to OURS-II), the average F-measure value

TABLE III
COMPONENT ANALYSIS OF THE HIGH-ORDER CONSISTENCY AND THE

SPATIAL SMOOTHNESS WITHIN THE SUPERPIXEL.

Algorithm P R F
OURS-I(without Hsupervoxel or Ssuperpixel) 0.54 0.83 0.58
OURS-II (with Hsupervoxel ) 0.61 0.69 0.61
OURS (with Hsupervoxel and Ssuperpixel) 0.64 0.70 0.63

improves 2%.

F. Computational Complexity

Our algorithm is implemented on the mixed platform of
MATLAB and C++ for the background and foreground de-
composition via on the Linux system for the supervoxel
segmentation. All experiments are carried out on a desktop
with an Intel i7 3.4GHz CPU and 16GB RAM. The total
computation cost of our algorithm consists of the cost of
supervoxel segmentation, background updating cost via SOFT-
IMPUTE and the foreground updating cost via graph cut.
Table IV reports the the our computational cost comparing
with the state-of-the-arts on GTFD dataset with resolution of
320×240. Our method works slightly slower than DECOLOR
and COROLA, but it can generate more robust foregrounds.
Though PCP, GMM and VIBE work much faster than ours,
they perform greatly worse. Therefore, our method keeps a



TABLE IV
COMPUTATIONAL COMPLEXITY COMPARISON OF OUR METHOD AGAINST

THE STATE-OF-THE-ARTS (IN FPS).

PCP VIBE GMM TTD DECOLOR COROLA OURS
Code
Type Matlab C++ C++ Matlab Matlab

& C++
Matlab
& C++

Matlab
& C++

FPS 15.50 166 76.78 0.11 0.90 3.89 0.65

good balance between the efficiency and accuracy. We believe
that we can achieve better efficiency by code optimization.

V. CONCLUSION

This paper have proposed a moving object detection method
to pursue high-order structural consistency in the low-rank and
sparse separation framework. By introducing the high-order
potential over the supervoxel clique together with the spatial
smoothness within the superpixels, our method can capture
fine appearance and perform robust against the challenging
scenarios. In the future work, we will focus on the video
segmentation method which can provide more accurate prior
for the detection model.
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