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ABSTRACT
Object tracking is a key technology in video surveillance. Reliable
tracker must be adaptive to the constantly changing object sizes.
Most of the state-of-the-art methods estimate the object scales us-
ing their appearances. Those methods are vulnerable to occlusion,
object deformation, illumination change and background clutter. In
this paper, we propose to use the geometric context of the surveil-
lance site as a strong clue for scale adaptation. With three reason-
able assumptions on the video cameras and the surveillance sites,
we deduce a simple geometric model for object scales. The parame-
ters of this model are learned without any human intervention. Then
we integrate this model into baseline trackers for robust scale adap-
tive object tracking. Experimental results on challenging surveil-
lance videos indicate that our approach favorably improves the per-
formance of single-scale baselines, and performs better or compar-
ative to the state-of-the-art multi-scale trackers while significantly
improve the speed.

Index Terms— video surveillance, object tracking

1. INTRODUCTION

Visual object tracking plays a critical role in smart video surveil-
lance. Much progress has been made in recent years [1, 2, 3, 4, 5],
however, object tracking is still struggling with a fundamental prob-
lem, i.e., the scale changes of the moving objects. It is even more
challenging when mingled with other common factors, such as oc-
clusions, varying illuminations, background clutters, motion blurs
and appearance variations. The scale changes problem is pervasive
in wide area video surveillance. Therefore it is essential to design a
scale adaptive tracker for robust object tracking in these scenarios.

Many existing methods estimate the object scale through ex-
haustive scale search [6, 7, 8, 9, 10]. Comaniciu et al. [11] proposed
to change the window size over multiple runs by a constant factor
(10%). Ma et al. [12] estimate scales by searching the image pyra-
mid exhaustively. Nebehay et al. [13] and Hong et al. [14] use key-
point matching for scale adaptation. The discriminative scale space
tracker (DSST) [15] explicitly learned separate correlation filters for
explicit translation and scale estimation which learnt the appearance
change induced by variations in the target size while reducing the
search space. However, all these trackers may be unreliable when
encountering severe noises or occlusions in complex scenes.

Those appearance-based scale-space search methods are com-
putationally demanding and are vulnerable to object deformations,
illumination changes, and occlusions. In this paper, we tackle the
problem of scale estimation from the geometric rather than appear-
ance perspective. We investigate the geometric context for visual
tracking in video surveillance applications. We have observed that
in most surveillance sites, the ground can be viewed as planes, which
imposes a strong constraint on the scale variations. By using a sim-
plified camera model, we deduce a model characterizing the pat-
terns of scale changes. The parameters of this model can be easily

learned without human intervention. Using this model, we can ro-
bustly estimate the object size in any position on the image plane.
Our geometry-based scale estimation method is inherently robust to
the interference factors faced by appearance-based methods. In con-
trary to the brute-force scale search, our method estimates scales
in a single pass, drastically lowering the computational cost. We
propose a generic algorithm to integrate our scale prediction model
into several recent trackers. In order to validate our approach, we’ve
recorded 15 video clips from several surveillance sites, all of which
exhibits large scale variations. Our experiments on this dataset show
that the proposed method outperforms the state-of-the-art methods.

The contributions of this paper can be summarized in three as-
pects: 1) We propose a generic approach to estimate the target scale
which can be incorporated into any tracking framework. The ap-
proach is scene based rather than object based, and it is robust against
challenging factors such as varying illumination, occlusions and fast
motions. 2) We propose a paradigm to integrate our scale prediction
algorithm into the tracking-by-detection framework. 3) To validate
our approach, we have recorded 15 videos with large scale varia-
tions, and they pose challenging problems such as fast motion, il-
lumination variation, background clutter, etc. Experiments on the
videos show that our tracker achieves competitive performance.

2. MODELING OBJECT SCALES USING SCENE
GEOMETRY

In order to model scale variations, we make the following assump-
tions on the surveillance site regarding its geometry, see Fig. 1:
Assumption 1. The monitoring ground can be viewed as a plane
(the ground plane).
Assumption 2. The image plane is approximately vertical to the
ground plane. (The camera roll is smaller than 20°.)
Assumption 3. Each tracked object rests on the ground plane with
constant height.

These three assumptions can be reasonably satisfied in typical
surveillance scenarios [16]. We model the moving pedestrians1 as
cylinders. According to Assumptions 1 and 3, the axis of these
cylinders are vertical to the ground plane, and based on Assumption
2, the vanishing point in the vertical direction are at infinity, so the
projection of a pedestrian can be depicted as an axis-aligned bound-
ing box. We further assume that the aspect ratio of the bounding
box is constant when the object is moving, so the scale estimation
task boils down to the box height estimation task. We derive a geo-
metric model for the box height, and propose a method to learn its
parameters.

1Although our scale prediction model is derived for pedestrians, we’ve
found experimentally that it generalized well to other types of objects such
as cars, bicycles, etc.
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2.1. Scale Prediction Model

We will now derive a simple model for scale prediction using the
following notation: homogeneous world coordinates (x, y, z, 1) and
pixel coordinates (u, v, 1) are denoted by upper and lower case bold
letters, respectively. Let P0 and Q0 be the foot and head-top posi-
tions of a pedestrian in the world coordinate system (Fig.1). Their
projections on the image plane are denoted as p0 and q0, respec-
tively. The height of the bounding box, h0, is the distance between
p0 and q0. Given the initial height, h0, we are interested in estimat-
ing the box height at any other positions.

Fig. 1. Simplified scene geometry in surveillance videos
When the pedestrian moves to another position, P1 and Q1, its

height remains unchanged as assumed, so the line Lp joining P0

and P1 is parallel to the line Lq joining Q0 and Q1. Therefore their
projections lp (joining p0 and p1) and lq (joining q0 and q1) will
intersect at a vanishing point v [17], which lies on the horizontal
vanishing line l : θTp = 0, where θ = (a, b, c)T is the parameter
of l, and p = (u, v, 1)T is the homogeneous coordinate of an image
point (u, v).

According to Assumption 2, the line segment s0 joining p0 and
q0 is parallel to the line segment s1 joining p1 and q1. The length
of s1 equals the height of the bounding box, h1, at position p1, and
the scale ratio is:

γ =
h1

h0
=
|v − p1|
|v − p0|

. (1)

Following Eq. (1), the vanishing point v can be written as:

v =
1

1− γp1 −
γ

1− γp0 (2)

and, since v lies on the vanishing line l, i.e. θTv = 0, we can solve
for γ:

γ =
θTp1

θTp0

(3)

If the horizontal vanishing line l: θTp = 0 is known, we can
estimate the bounding box height h at any position p from its initial
position p0 and initial height h0:

h = h (p) =
θTp

θTp0

h0 (4)

We call Eq. (4) the Scale Prediction Model (SPM) since it pre-
dicts the image height of an object at any position. When tracking
an object, we assume that its initial state (i.e. p0 and h0) is available
to the tracker. So the only unknown parameters are the coefficients
of the vanishing line, θ. We detail our approach to learn these pa-
rameters in the following subsection.

Note: Most tracking literatures use the center of the bounding
box to denote the object location. We can safely replace the position
parameters p0 and p in Eq. (4) with the mid-point of the segments
s0 and s1, which are centers of the bounding boxes. We follow this
convention in the following text, and treat the positions in Eq. (4) as
the centers of bounding boxes.

2.2. Learning Scene Specific SPM

The SPM (Eq. 4) can be rewritten as:

h =
h0

θTp0

θTp = βθTp (5)

where β = h0

θTp0
.

The object specific parameter β is determined by its height (in
the world coordinate system) and the parameter of the vanishing line,
θ. Eq. (5) indicates that the image height of a specific object is
a linear function of its image position, and the SPMs of different
objects differ in a scalar β.

We shall learn the parameter θ of the SPM model (Eq. (4)).
Given n pairs D = {(pi = (ui, vi, 1) , hi)}ni=1 from the trajectory
of one individual, we can estimate θ′ = βθ by minimizing the mean
squared error: 1

2n

∑n
i=1 ‖θ

′Tpi − hi‖2.
However, the data from any single object is unreliable since the

object trajectory is noisy and covers only a tiny fraction of the image
plane. So we want to learn from data collected from different objects
without knowing their trajectories. Such an approach will mitigate
the requirements for object tracking in the learning stage.

Suppose D is collected from K different objects. The SPM for
kth object is hk (p) = βkθ

Tp. We define a new SPM as:

ĥ (p) =
1

K

K∑
k=1

hk (p) =
1

K

K∑
k=1

βkθ
Tp = θ̂

T
p. (6)

where θ̂ = β̂θ =
(

1
K

∑K
k=1 βk

)
θ.

Eq. (6) defines a prediction model for the mean height of the K
objects in D. Its parameter θ̂ can be found by minimizing the mean
squared error:

θ̂ = argminθ
1

2n

n∑
i=1

‖θTpi − hi‖2. (7)

By fitting the Eq. (6), we can make use of the training data from
many different objects.

Once θ̂ is obtained, the image height h of any moving object at
any position p is readily given by:

h =
θ̂
T
p

θ̂
T
p0

h0 =
β̂θTp

β̂θTp0

h0 =
θTp

θTp0

h0 (8)

where (p0, h0, w0) is the known initial state of the object. We as-
sume that the aspect ratio of the target bounding box is fixed, so the
width of the bounding box can be calculated as well.

The SPM is learned from a training video. We detect three
classes of objects (cars, bicycles, and pedestrians) from the video
using R-FCN [18], and then collect the training data D from the
bounding boxes of these detections. The parameter θ̂ is then learned
according to Eq. (7). See Fig. 2.

The benefits of our learning approach are: 1) It is fully auto-
matic, and doesn’t require any human interventions (for labeling ob-
jects, etc.). 2) It adapts to different scenes without any manual con-
figurations. All it has to do is to observe the scene to collect sample
set D and then fit the linear model (Eq. 6) .

2.3. Object Tracking with Scale Prediction

Our SPM can be easily integrated into most of the current trackers.
We focus on integration of the SPM into the popular tracking-by-
detection [19] framework. The tracking-by-detection approach treats
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Fig. 2. Learning SPM. (a) An image from one typical scene. The
samples pi (red dots), the vanishing line (the red line). (b) The plane
in green is the learned SPM, h = θTp, which resides in the (u, v, h)
space; blue dots are samples in D; the red line l is the vanishing line
where the plane h = θTp intersects with the image plane, h = 0.

tracking as repeated object detection and model updation over time.
The tracker learns an object detection model α0 in the initial frame,
the model could be a classifier [19] or a regressor [20]. In frame
t, the object is detected using αt−1, and then the object model is
updated to αt using new information gathered from frame t.

We present a generic algorithm to integrate our SPM to any
tracking-by-detection tracker in Algorithm 1. In the detection stage,
we estimate the target size from its position using our SPM model.
In the updation stage, a set of training examples is extracted from
the image according to the new target state, the SPM implicitly in-
fluences the selection of training examples because the samples are
typically extracted based on the size of the target, therefore the SPM
affects the object model indirectly.

Algorithm 1 Object Tracking with Scale Prediction

Input: Image sequence {It}Tt=0, Initial state x0 = (p0, h0, w0),
and the SPM parameter θ;
Output: Target states {xt = (pt, ht, wt)}Tt=1;

1: Generate a set of samples S0 from I0 according to x0;
2: Learn an appearance model α0 using S0;
3: for t = 1; t <= T ; t++ do
4: Find the optimal target location pt by detecting the object in

It using αt−1;
5: Estimate the target size (ht, wt) using the SPM (Eq.4): ht =

θTpt

θTp0
h0, wt =

w0
h0
ht;

6: Output target state xt = (pt, ht, wt);
7: Generate sample set St according to xt from It;
8: Update the appearance model to αt using St;
9: end for

3. EXPERIMENTS

3.1. Experimental Setup

Baseline Trackers. In order to demonstrate the effectiveness of the
SPM for object tracking, we integrate the SPM into eight popular
trackers with/without scale adaptation, and compare their perfor-
mance with their baseline counterparts. The baseline trackers are
listed in Table 1. The first four of them are single-scale trackers,
we add scale predictions in their detection stages as shown in Algo-
rithm 1. The other four trackers detect objects over several (typically
3 to 10) scales to determine the optimal scale, we integrate the SPM
into these trackers by limiting them with single scale detection (i.e,

set the number of searching scales to 1), and then predict the tar-
get scale using our SPM. We use the codes provided by the authors,
and leave all parameters un-tuned. Our implementations and test
videos can be downloaded from https://goo.gl/Ycvurw.

Table 1. Baseline trackers.

Tracker Scale Published
MEEM [21] Single 2014(TPAMI)

KCF [20] Single 2015(TPAMI)
STRUCK [22] Single 2016(TPAMI)

BIT [23] Single 2016(TIP)
ECO [24] Multiple 2017(CVPR)

BACF [25] Multiple 2017(ICCV)
CREST [26] Multiple 2017(ICCV)
CFWCR [27] Multiple 2017(ICCV)

Dataset. There are several benchmark datasets for object tracking,
such as VOT [5, 28] and OTB [29, 30], etc. However, our assump-
tions (Sec. 2) are unsatisfied in these videos since almost all of them
are not surveillance videos. So we recorded 15 video sequences
from different surveillance sites. We also include 3 sequences from
PETS2009 dataset [31] that meets our hypotheses. These sequences
are all annotated with ground-truth bounding boxes. Our dataset
covers 7 different scenes and 3 classes of objects(pedestrian, car and
bicycle). All the videos are long enough to guarantee large object
scale variations, and they also pose challenges such as fast motion,
illumination variation, background clutter and occlusion. We learn a
SPM for each scene using the first portion of the videos, and track
on the remaining frames.

The performance of our approach is quantitatively validated us-
ing the protocol in [30], where two metrics are used: success plot and
precision plot. Tracking algorithms are ranked based on the area un-
der curve (AUC) score for the success plot, and precision at threshold
20 (Prec@20) for the precision plot.

3.2. Robust Scale Estimation

We use the groundtruth object bounding box to valid our SPM. For
each bounding box (p, h, w), we predict its height ĥ from its posi-
tion p and measure the relative error of the prediction: err(ĥ) =
|ĥ−h|

h
. The averaged relative error over all 18 videos is 6.3%, with

standard deviation 7.41%. The errors are mostly caused by the ob-
ject deformations and the uneven terrain of the ground.

Fig. 3. Predicted bounding boxes of one object by the SPM.

We illustrate the predicted bounding boxes over many other po-
sitions of one object in Fig. 3. The initial bounding box (p0, h0, w0)
is shown in green. These predictions are visually reasonable, cor-
rectly showing the trend of the object height variations with respect
to their image positions.
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3.3. Comparison Results

We experiment the eight baseline trackers and their SPM counter-
parts on the 18 videos. Their precisions and success rates averaged
over the 18 sequences are shown in Fig. 4 and Table 2 (Trackers inte-
grated with SPM are named with a -SP suffix. The speeds of differ-
ent trackers are tested on different machines, however, each baseline
and its SPM counterpart are tested in the same machine environ-
ment). The performances of all the four single-scale trackers are
significantly boosted when integrated with our SPM, and the loss in
speed is minor. Our SPM trackers performs better or comparative to
their counterpart multi-scale baselines, while significantly speedup
the trackers by a factor of about 2. These multi-scale trackers detect
the target over 3 to 10 different scales to determine the optimal object
size, this cumbersome scale searching process is time-consuming. In
contrary, the SPM counterparts detect on one single scale, drastically
lower the computational cost, and then determine the optimal size
using the SPM models which incurs only 3 Float multiplications. To
visualize the effectiveness of our SPM, we show examples of each
baseline method compared to its SPM counterpart on sample videos
from our dataset in Fig. 5.
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Fig. 4. Quantitative comparison of the baseline trackers with their
SPM counterparts.

Table 2. Performances of all trackers.

Tracker Precision Success Speed(FPS)
MEEM 0.347 0.249 5.9

MEEM-SP 0.439 0.405 5.9
KCF 0.637 0.349 14.1

KCF-SP 0.793 0.613 11.3
STRUCK 0.573 0.387 21.4

STRUCK-SP 0.685 0.552 20.3
BIT 0.668 0.402 70.8

BIT-SP 0.722 0.561 67.5
ECO 0.944 0.728 28.4

ECO-SP 0.947 0.743 51.2
BACF 0.864 0.669 36.0

BACF-SP 0.917 0.730 71.8
CREST 0.698 0.577 1.2

CREST-SP 0.696 0.591 2.1
CFWCR 0.858 0.671 1.8

CFWCR-SP 0.858 0.685 12.7

4. CONCLUSION

We propose a novel scale prediction model for robust object tracking
in surveillance videos. The SPM is a geometry-based method, and
therefore is inherently robust to the interference factors such as ap-
pearance changes and background clutters, etc. The SPM is deduced
from a reasonable scene and camera model, and can be learned on
the fly without any human interventions. We valid the performances
of many trackers integrated with SPM using challenging surveillance
videos. Experimental results show that the SPM significantly im-
proves the performances of many recent single-scale trackers, and
achieves better or comparable results when integrated with the latest
multi-scale trackers while significantly improves their speed.

SPM Tracker Baseline Tracker GroundTruth

Fig. 5. Tracking results of the eight baseline trackers compared
to their SPM counterparts. From top to bottom: KCF, STRUCK,
MEEM, BIT, CFWCR, ECO, BACF, CREST.
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