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a b s t r a c t 

How to represent the sequential person images is a crucial issue in multi-shot person re-identification. In 

this paper, we propose to select the spatial-temporal informative representatives to describe the image 

sequence. Specifically, we address representatives selection as a row-sparsity regularized minimization 

problem which can be effectively solved via convex programming. The sparsity of the representatives is 

controlled by a regularization parameter based on both spatial and temporal dissimilarities. Furthermore, 

we design a weighted patch descriptor by employing the random walk with restart model to propagate 

the patch weights on the person image. Finally, we utilize the cross-view quadratic discriminant analysis 

as the metric learning to mitigate the cross-view gaps among different cameras. Extensive experiments 

on three benchmark datasets iLIDS-VID, PRID 2011 and SAIVT-SoftBio demonstrate the promising perfor- 

mance of the proposed method. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Person Re-identification (Re-ID) aims to recognize the same in-

ividual crossing non-overlapping camera networks, which is a

rucial step of surveillance systems in modern society. Despite of

ears of effort, it still faces big challenges due to the occlusions

nd the cross-view gaps (visual differences while crossing different

ameras) caused by the changes of illumination, viewpoint, person

ose and so on. 

In spite of great achievement on single-shot Re-ID where only a

ingle image is recorded for each person per camera view, the lim-

ted information of a single image impedes its performance. Multi-

hot Re-ID, where normally the sequential frames are recorded for

ach person per camera view, is more natural in real-life surveil-

ance systems, and expected to boost the performance of Re-ID.

herefore, we focus on multi-shot Re-ID in this paper. 

Despite of richer information in multiple images, there are ad-

itional challenges in multi-shot Re-ID. On the one hand, the ma-

ority of the sequential frames contain redundant information with

imilar visual appearance. Therefore, it is crucial to summarize and

nterpret the person images by informative representatives. Some

xisting works selected the representatives via clustering. Has-

en et al. [1] proposed to select key frames based on Mean-shift
∗ Corresponding author at: Anhui University, No. 111 Jiulong Road, Hefei, China. 
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lustering [2] . Li et al. [3] designed a Fisher discriminant analysis

uided hierarchical clustering method for multi-shot Re-ID. How-

ver, they clustered the person images only based on the spa-

ial dissimilarity. To our knowledge, none of the existing methods

ake into account the temporal relationships between the sequen-

ial person images. 

On the other hand, the distractors or junks are ubiquitous due

o false detection or tracking which generates the bounding boxes

s person images for Re-ID. As a result, background clutters and

cclusions may corrupt the appearance descriptors of the person

nd the further learning model for identification. Therefore, it is

ssential to highlight the person body against the background or

cclusions on the person images. 

Based on above discussion, we propose a novel spatial-temporal

epresentatives selection (STRS) method based on the weighted

atch descriptor for multi-shot Re-ID. The main contribution in this

aper can be summarized as follows: 

• We propose to select the spatial-temporal representatives for

multi-shot Re-ID. Specifically, we employ the row-sparsity reg-

ularized minimization program to select the informative repre-

sentatives based on both spatial and temporal priors. 

• In order to suppress undesired background clutters in a bound-

ing box, we design a weighted patch descriptor to enhance the

discrimination between the person and background based on

the random walk with restart model. 

https://doi.org/10.1016/j.neucom.2018.02.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.02.039&domain=pdf
mailto:zeyiabc@163.com
https://doi.org/10.1016/j.neucom.2018.02.039
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Table 1 

Notations. 

X ∈ R d×N A person video 

x i ∈ R d Feature vector of the i -th frame 

N Number of frames in X 

d Dimensionality of x i 
X S ∈ R d×S Representatives selected from X 

D ∈ R N×N Spatial distance matrix 

T ∈ R N×N Temporal distance matrix 

Z ∈ R N×N Indicator matrix of representatives 

� ∈ R N×N Lagrange multipliers 

f i ∈ R d Feature vector of the i -th patch 

W ∈ R mn ×mn Edge weights on graph of patches 

mn Number of patches 

A ∈ R mn ×mn Transition matrix 

r row ∈ R mn Restart distributions in rows 

r col ∈ R mn Restart distributions in columns 

r ∈ R mn Restart distributions 

π ∈ R mn Weights of the patches 

X a ∈ R d×N a Selected representatives of person video from camera a 

X b ∈ R d×N b Selected representatives of person video under camera b 

n a Number of persons under camera a 

n b Number of persons under camera b 

N a Number of all selected representatives under camera a 

N b Number of all selected representatives under camera b 

H ∈ R d×r Subspace projection matrix 

y i Gallery label of the i -th person 

l i Probe label of the i -th person 

ψ i Number of selected representatives of the i -th person under camera a 

τ i Number of selected representatives of the i -th person under camera b 
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The rest of this paper is organized as follows. Section 2 re-

views the literatures on multi-shot Re-ID. Section 3 elaborates

the proposed approach, followed by the evaluation of our ap-

proach comparing with the state-of-the-arts in Section 4 . Finally,

Section 5 concludes our paper. 

First of all, the notation definition in the following sections can

be referred as Table 1 . 

2. Related work 

The traditional paradigm of Re-ID falls into two research paths:

(1) appearance modeling to leverage the various changes and oc-

clusions between cameras and, (2) learning models to mitigate the

appearance gaps between the low-level features and high-level se-

mantics. 

2.1. Appearance modeling 

Appearance modeling on single-shot Re-ID has been well ex-

plored in the past decade. Liu et al. [4] and Zhao et al. [5] selected

discriminative features which adaptively exploited features based

on the person appearance. Liao et al. [6] designed a local maximal

occurrence descriptor for person Re-ID. Shi et al. [7] encoded the

person via horizontal stripes in multi-level to capture both visual

cues and spatial structure. A straightforward strategy to employ

the single-shot appearance models on the image sequences in the

multi-shot Re-ID task is the averaging pooling. However, appear-

ance modeling for multi-shot Re-ID concerns more on temporal

aspect. Gheissari et al. [8] developed a spatiotemporal segmen-

tation algorithm to provide a structural information with stable

appearance invariance for person images. Farenzena et al. [9] pro-

posed symmetry-driven accumulation of local features based on

the distribution rules of a human body. Cheng et al. [10] designed

a visual descriptor, named Custom Pictorial Structure (CPS), to

learn the appearance of an person by improving the localization of

its parts from multiple images. Bedagkar-Gala and Shah [11] de-

signed an adaptive part-based spatiotemporal model based on

the color and facial features to characterize person appearance.

Bazzani et al. [12] statistically explored the global chromatic and
ocal patch appearance on the informative image set of a person.

ak et al. [13] and Wu et al. [14] used the pose priors to solve pose

ariation based on two strict assumptions. However, they modeled

he appearance of the person images on the whole bounding

oxes, while the background clutters and occlusions may corrupt

he appearance descriptors and the forthcoming learning models. 

.2. Learning models 

The pioneer learning models for single-shot Re-ID include

ISSME [15] , LMNNR [16] and ITML [17] . Recently, Liao et al. [6] de-

igned a cross-view quadratic discriminant analysis to learn the

etric on the derived subspace. You et al. [18] proposed a top-

ush distance learning model which enforced the optimization

o select more discriminative features to distinguish persons. The

aive way to extend such single-shot learning methods to the

ulti-shot case is to evaluate every possible image pair as the

raining or testing set and aggregate the results. Recently, some

ethods specifically handle the multi-shot learning problem. Cong

t al. [19] introduced a graph-based approach to learn the manifold

tructure while preserving the properties of the video sequences

ower dimensional subspace for Re-ID. Simonnet et at. [20] ex-

lored the multi-shot Re-ID as the temporal sequence matching via

ynamic time warping (DTW). Zhang et al. [21] measured the sim-

larity between the image subsets by introducing an energy-based

oss function. Pedagadi et al. [22] embedded the image features

nto a lower dimension space via Local Fisher Discriminant Anal-

sis (LFDA) [23] for multi-shot Re-ID with more training samples.

i et al. [24] proposed to train a random forest within pairwise

onstraints to address the multi-shot Re-ID in the reduced random

rojection subspace. Li et al. [25] proposed to learn the local met-

ic field by exploring the discriminative potentiality of a new set-

o-set distance. Wang et al. [26,27] automatically selected discrim-

native video fragments and simultaneously learnt a video ranking

e-ID. However, most of existing methods explored the sequential

erson images on the entire sequence, where the redundant infor-

ation among the adjacent frames may bias the learning models. 
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. Our approach 

In this paper, we propose a novel spatial-temporal representa-

ives selection based on the weighted patch descriptor for multi-

hot Re-ID. Our approach consists of three steps. First, we select

he informative spatial-temporal representatives from the sequen-

ial person images via the row-sparsity regularized minimization

ptimization problem. Second, we construct a weighted patch de-

criptor based on the random walk with restart model [28,29] to

uppress the undesirable background clutters and occlusions. Fi-

ally, we peform multi-shot Re-ID using Cross-view Quadratic Dis-

riminant Analysis (XQDA) method [6] to mitigate the cross-view

aps among the non-overlapping cameras. 

.1. Spatial-temporal representatives selection 

We shall elaborate our spatial-temporal representatives selec-

ion (STRS) method in this section. 

.1.1. Model formulation 

Given X = [ x 1 , x 2 , . . . , x N ] ∈ R 

d×N as the sequential person im-

ges containing N frames in d -dimensional feature space, and D ij 

s the nonnegative spatial distance (dissimilarity) between frame

 i and x j , we consider the problem of selecting a few represen-

atives X 

S ⊆ X that can efficiently describe the whole image se-

uence X based on the dissimilarities D ij between images. Let Z ij 

ndicate the probability of representing the i -th frame by the j -th

rame. From the probability perspective, we expect Z ij to be non-

egative together with the nature of 
∑ N 

i =1 Z i j = 1 [30,31] . There-

ore, we construct the formulation as, 

in 

Z 

N ∑ 

i =1 

N ∑ 

j=1 

D i j Z i j + λ‖ Z ‖ 0 , 2 

s.t. 1 

� Z = 1 

� , Z ≥ 0 (1) 

here ‖ Z ‖ 0 , 2 = 

∑ N 
i =1 ‖ 

√ ∑ N 
j=1 Z 

2 
i j 
‖ 0 . The first term reflects the to-

al cost of encoding the person images by selected representatives

hile the second term, which denotes the number of non-zero

olumns in matrix Z , enforces the sparsity of the representatives. λ
s the trade-off parameter controls the sparsity of the representa-

ives. The equality constraint 1 � Z = 1 � together with nonnegative

onstraint Z ≥ 0 guarantee the probability nature of Z ij . 

Since ‖ Z ‖ 0, 2 is hard to enforce, one popular way is to approx-

mate l 0 , 2 − norm by l 1 , 2 − norm [30,31] . Therefore, Eq. (1) can be

ewritten as, 

in 

Z 

N ∑ 

i =1 

N ∑ 

j=1 

D i j Z i j + λ‖ Z ‖ 1 , 2 

s.t. 1 

� Z = 1 

� , Z ≥ 0 (2) 

here ‖ Z ‖ 1 , 2 = 

∑ N 
i =1 ‖ 

√ ∑ N 
j=1 Z 

2 
i j 
‖ 1 . 

The above model has been successfully explored to select

he representatives based on the content dissimilarities between

ideo frames [30,31] . However, despite of the spatial dissimilar-

ty, sequential frames are highly correlated along temporal shift-

ng, which plays an important role in data mining and learning ar-

as [32,33] . As we observed, adjacent person images are generally

ith high similarity. Therefore, in addition to the spatial dissimilar-

ty, we further expect to select the temporally sparse representa-

ives. Let T i j = | j − i | be the temporal dissimilarity between frame

 i and x j , we propose to incorporate temporal relationship in rep-

esentatives selection. Based on the above discussion, we formu-

ate our Spatial-temporal Representatives Selection (STRS) problem
s, 

in 

Z 

N ∑ 

i =1 

N ∑ 

j=1 

D i j Z i j + α
N ∑ 

i =1 

N ∑ 

j=1 

T i j Z i j + λ‖ Z ‖ 1 , 2 

s.t. 1 

� Z = 1 

� , Z ≥ 0 (3) 

here α is the balance parameter to leverage the contribution of

he temporal aspect. 

Using matrix operation, Eq. (3) can be formulated more com-

actly as, 

in 

Z 
Tr (D 

� Z ) + αTr (T 

� Z ) + λ‖ Z ‖ 1 , 2 

s.t. 1 

� Z = 1 

� , Z ≥ 0 (4) 

here Tr ( ·) denotes the trace operator. 

.1.2. Optimization 

Our STRS in Eq. (4) is a convex problem. The global optimal so-

ution can be efficiently computed using the following Alternating

irect Method of Multipliers (ADMM) algorithm [34,35] . 

We first rewrite the problem of Eq. (4) as, 

in 

Z , Y 
Tr (D 

� Y ) + αTr (T 

� Y ) + λ‖ Z ‖ 1 , 2 

s.t. 1 

� Y = 1 

� , Y ≥ 0 , Z = Y (5) 

Then, ADMM [34,35] solves a sequence of sub-problems as, 

in 

Z , Y 
Tr (D 

� Y ) + αTr (T 

� Y ) + λ‖ Z ‖ 1 , 2 + 

μ

2 

‖ Z − Y ‖ 

2 
F + 〈 �, Z − Y 〉 

s.t. 1 

� Y = 1 

� , Y ≥ 0 (6) 

here 〈 P , B 〉 = Tr (P 

� B ) , � is Lagrange multipliers, μ is a penalty

arameter. 

There are two main parts of the whole ADMM algorithm, i.e.,

olving the sub-problems (Step 1 and Step 2) and updating param-

ters (Step 3). 

Step 1 . Solving Y while fixing Z . The problem becomes, 

in 

Z , Y 
Tr (D 

� Y ) + αTr (T 

� Y ) + 

μ

2 

‖ Z − Y ‖ 

2 
F + 〈 �, Z − Y 〉 

s.t. 1 

� Y = 1 

� , Y ≥ 0 (7) 

This problem can effective solved as discussed in [31] . 

Step 2 . Solving Z while fixing Y . The problem becomes, 

min 

Z , Y 
λ‖ Z ‖ 1 , 2 + 

μ

2 

‖ Z − Y ‖ 

2 
F + 〈 �, Z − Y 〉 (8) 

hich is equivalent to, 

min 

Z , Y 
λ‖ Z ‖ 1 , 2 + 

μ

2 

‖ Z − Y + 

1 

μ
�‖ 

2 
F (9) 

The optimal Z 

∗ is given by, 

 

∗ = �μ
λ

(
Y − 1 

μ
�

)
(10) 

here � is the � 2, 1 minimization operator [36] . 

Step 3 . Updating parameters � and μ as, 

⇐ � + μ(Z − Y ) 

μ ⇐ ρμ (11) 

here ρ > 1. 

The algorithm iteratively conducts Step 1–Step 3 until con-

ergence. The complete algorithm is summarized in Algorithm 1 .

iven the sequential image sequence of a person, we can construct

he selected representatives X 

S ⊆ X according to the indices of the

onzero rows of Z . 
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Algorithm 1 Optimization procedure of STRS in Eq. (4) . 

Input: D , T 

Initialize Y = Z = I , � = 0 , set λ = 0 . 1 , α = 0 . 9 , μ = 10 −1 . 

Output: Z 

1: while not converges do 

2: Solve Y while fixing Z as, 

min Z , Y Tr (D 

� Y ) + αTr (T � Y ) + 

μ
2 ‖ Z − Y ‖ 2 

F 
+ 〈 �, Z − Y 〉 

s.t. 1 � Y = 1 � , Y ≥ 0 

3: Solve Z while fixing Y as, 

min Z , Y λ‖ Z ‖ 1 , 2 + 

μ
2 ‖ Z − Y ‖ 2 

F 
+ 〈 �, Z − Y 〉 

4: Update parameters �, μ as, 

� ⇐ � + μ(Z − Y ) , μ ⇐ ρμ
5: end while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Illustration of restart distributions in rows and columns. (a) The boundary 

patch set and inner patch set and (b) illustration of patches v row 
i 

and v col 
i 
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3.2. Weighted patch descriptor 

Although above model can select the spatial-temporal repre-

sentatives from person images, a single person image itself, which

is commonly represented by a rectangular bounding box, contains

both person body and background clutters. These background clus-

ters usually lead to inaccurate dissimilarity computation and thus

degrade our representatives selection results. In order to high-

light the person area while suppress the background or occlusion

area on the person image, we design a weighted patch descriptor

for representatives selection and the forthcoming metric learning.

First, we employ the random walk with restart model [28,29] to

propagate the patch weights across different patches of image.

Then, we incorporate the obtained patch weights into a patch-

based feature descriptor, local maximal occurrence [6] to obtain a

kind of robust weighted feature descriptor. 

3.2.1. Patch weights propagation 

Given the person image with m × n patches, we construct a

graph G (V , E ) whose nodes represent m × n patches and edges

denote the relationship among patches. If nodes/patches v i , v j ∈
V , i, j = 1 , . . . , mn, are 8-neighbors, the corresponding edge weight

w ij ∈ W , which reflects the similarity between patches v i and v j is

defined as, 

w i j = exp (−γ ‖ f i − f j ‖ 

2 ) (12)

where γ indicates a scaling parameter, f i and f j are the feature vec-

tors of patch v i and v j . According to the random walk with restart

model [28,29] , the probability that a walker moves from node v i to

node v j is normalized as, 

a i j = 

w i j ∑ 

i w i j 

(13)

where a ij ∈ A is the transition matrix. 

It is noted that the patches around the center of the image have

higher probabilities to belong to the person body [29] . Based on

this observation, we define the restart distribution as, 

r = ((1 − β) r row + βr col ) / 2 (14)

where β is the hyper-parameter, r row and r col indicate the restart

distributions in rows and columns respectively. As illustrated in

Fig. 1 (a), given �bnd and �in as the boundary patch set and in-

ner patch set of the image respectively, r row and r col are defined

as, 

r row 

i = 

{
Dis (f i , f 

row 

i 
) , v i ∈ �in , 

0 , v i ∈ �bnd . 
(15)

r col 
i = 

{
Dis (f i , f 

col 
i 

) , v i ∈ �in , 

0 , v i ∈ �bnd . 
(16)
here Dis (f i , f 
row 

i 
) (or Dis (f i , f 

col 
i 

) ) denotes the Euclidian distance

etween the feature vectors of patch v i and the patch v row 

i 
of the

ame column (or v col 
i 

of the same row) as patch v i along the center

atch row (or column), as illustrated in Fig. 1 (b). 

The key idea of random walk with restart (RWR)

odel [28,29] is that the walker is forced to return to speci-

ed nodes based on a restart distribution r . Formally, given r ,

WR iteratively updates the current probability distribution πt as

ollows, 

t+1 ⇐ εA πt + (1 − ε) r (17)

here (1 − ε) is the restart probability. The converged distribution
∗ satisfies, 

∗ = εA π∗ + (1 − ε) r (18)

Eq. (18) can be effectively solved as, 

∗ = (1 − ε)(I − εA ) −1 r (19)

We render π∗ as the weights of corresponding patches. Fig. 2

isualizes some example results of the calculated patch weights.

rom which we can see, it can help us enhance the person body

higher weights) and suppress the influence of the background or

cclusions (lower weights), which is expected to guide a more ef-

ective matching. 

.2.2. Weighted feature extraction 

Once obtained the patch weights π∗ = [ π1 , . . . , πmn ] , we con-

truct the weighted feature descriptor by integrating the weights

nto a patch-based feature descriptor, local maximal occurrence [6] .

pecifically, given f i as the feature vector of the i -th patch on a

erson image which is extracted in the same manner as [6] , we

onstruct the weighted patch descriptor as [ π1 f 1 , . . . , πmn f mn ] . Fur-

hermore, a three-scale pyramid scheme is considered via down-

ampling and local average pooling operation (more details refer

o [6] ). The final weighted descriptor x i of each image has 26,960

imensions. Noted that, the representatives selection is based on

he weighted descriptor x i , i = 1 , . . . , N. 

.3. Metric learning for representatives based multi-shot Re-ID 

After selecting the informative representatives on the weighted

atch descriptors, a metric learning step is essential to miti-

ate the cross-view gaps caused by the changes such as illumi-

ation, viewpoint, person pose and so on while crossing differ-

nt cameras. Different from the verification problem which judges
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Fig. 2. The examples of weights visualization. (a) Clean background, (b) less occlusion, (c) medium occlusion, (d) background occlusion and (e) Larger occlusion. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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{

hether the image pair from two non-overlapping cameras de-

ives from the same person or not via binary classification methods

37–39] , the common strategy for Re-ID is to learn a metric dis-

ance function to rank the gallery images in one camera view

gainst each probe image from another camera view. In this paper,

e employ the Cross-view Quadratic Discriminant Analysis (XQDA)

ethod [6] as the metric learning for Re-ID. Let { X 

a , X 

b }, where

 

a = [ X 

S a 
1 

, X 

S a 
2 

, . . . , X 

S a 
n a ] ∈ R 

d×N a and X 

b = [ X 

S b 
1 

, X 

S b 
2 

, . . . , X 

S b 
n b 

] ∈ R 

d×N b 

enote the cross-view training set of N a and N b selected represen-

atives of n a and n b persons from camera a and camera b respec-

ively. They can be further expanded as: X 

a = [ x S a 
1 

, x S a 
2 

, . . . , x S a 
N a 

] and

 

b = [ x 
S b 
1 

, x 
S b 
2 

, . . . , x 
S b 
N b 

] , while x S a 
i 

, x 
S b 
i 

∈ R 

d denoting the weighted

eature vector of the i -th selected representative in camera a and

amera b respectively. Due to the unreliable result and ineffi-

ient procedure caused by the large dimensional features [40] ,

QDA [6] learns a subspace H = [ h 1 , h 2 , . . . , h r ] ∈ R 

d×r , and the

istance function in the r -dimensional subspace for the cross-view

issimilarity measurement. 

 H (X 

a , X 

b ) = (X 

a − X 

b ) T H ( �
′ −1 
I − �

′ −1 
E ) H 

T (X 

a − X 

b ) , (20)

here �
′ −1 
I 

= H 

T �I H and �
′ −1 
E 

= H 

T �E H , �I and �E are the co-

ariance matrices of the intrapersonal variations I and the ex-

rapersonal variations E . The subspace H projection matrix h can

e given to solve Eq. (20) due to the difficulty to directly optimize

 H . We can optimize Eq. (20) via, 

(h ) = 

h 

T �E h 

h 

T �I h 

(21) 

Then, the solution of J ( h ) is given as, 

ax 
h 

h 

T �E h 

s.t. h 

T �I h = 1 (22) 

The computation of �I and �E is provided as follows, 

 I �I = X̄ 

a X̄ 

a � + X̄ 

b X̄ 

b � − QG 

� − GQ 

� 
, 

n E �E = N b X 

a X 

a � + N a X 

b X 

b � − SR 

� − RS � − n I �I , (23) 

here X̄ 

a = ( 
√ 

ψ 1 x 
S a 
1 

, 
√ 

ψ 1 x 
S a 
2 

, . . . , 
√ 

ψ 1 x 
S a 
τ1 

, . . . , 
√ 

ψ n a x 
S a 
N a 

) ,

¯
 

b = ( 
√ 

τ1 x 
S b 
1 

, 
√ 

τ1 x 
S b 
2 

, . . . , 
√ 

τ1 x 
S b 
ψ 1 

, . . . , 
√ 

τn b 
x 

S b 
N b 

) , Q =
( 
∑ 

y 1 
x S a 

i 
, 
∑ 

y 2 
x S a 

i 
, . . . , 

∑ 

y i 
x S a 

i 
, . . . , 

∑ 

y n a 
x S a 

i 
) , G =

( 
∑ 

l 1 
x 

S b 
j 

, 
∑ 

l 2 
x 

S b 
j 

, . . . , 
∑ 

l j 
x 

S b 
j 

, . . . , 
∑ 

l n b 
x 

S b 
j 
) , S = 

∑ N a 
i =1 

x S a 
i 

,

 = 

∑ N b 
j=1 

x 
S b 
j 

. y i and l j are the gallery and probe labels, respec-

ively. ψ i = | X 

S a 
i 

| and τi = | X 

S b 
i 

| denote the number of the selected

epresentatives of the i -th person from X 

a and X 

b , respectively. 

. Experimental results 

We evaluate our method on three benchmark datasets includ-

ng iLIDS-VID [26] , PRID 2011 [41] and SAIVT-SoftBio [42] compar-

ng to the state-of-the-art algorithms for multi-shot Re-ID. We use
he standard measurement named Cumulative Match Characteristic

CMC) curve to figure out the matching results, where the match-

ng rate at rank- n indicate the percentage of correct matchings in

op n candidates according to the learnt distance function Eq. (20) .

.1. Experiment setup 

.1.1. Datasets 

iLIDS-VID [26] is created from the pedestrians observed in two

on-overlapping camera views from the iLIDS Multiple-Camera

racking Scenario (MCTS), which was captured at an airport ar-

ival hall under a multi-camera CCTV network. It consists of 600

mage sequences for 300 randomly sampled people. The length of

ach image sequence varies from from 23 to 192 frames, with an

verage number of 73. It is a very challenging dataset due to large

iewpoint and illumination variations, occlusions and similar cloth-

ng among person across cameras. 

PRID 2011 [41] consists of 400 image sequences of 200 outdoor

ersons in two adjacent cameras. The length of each image se-

uence varies from 5 to 675 image frames, with an average num-

er of 100. Following the protocol in [3,42,43] , we only evaluate

78 persons with length > 21 frames. The images in this dataset

nvolve viewpoint, illumination, and background variations. Com-

ared to iLIDS-VID dataset, it was captured with clean background

nd rare occlusions. 

SAIVT-SoftBio [42] consists of 152 persons captured from eight

urveilance cameras in a building environment. Since not ev-

ry person appears in each camera view, following the litera-

ures [42,43] , we select cameras 3/8 including 99 person pairs with

imilar viewpoints and cameras 5/8 including 103 person pairs

ith large viewpoint changes. The length of the image sequence

n selected camera pairs varies from 10 to 992, with average num-

er of 200 frames. Images captured from camera pair 5/8 are more

hallenging than those from cameras 3/8 due to the larger view-

oint changes. 

.1.2. Parameters 

For iLIDS-VID and PRID 2011, We randomly select half of the

ersons as training and the other half as testing. For SAIVT-SoftBio,

ollowing the principle in [43] , we randomly select one third sam-

les as training and the remnant as testing. There are five im-

ortant parameters in our method. During weight calculation, the

caling parameter γ controls the similarity between patches, ε
ontrols the proportion of initial weight referring to the restart

istributions, while β is the hyper-parameter determining the pro-

ortion of the restart distributions in rows and columns. During

patial-temporal representatives selection, λ is the trade-off pa- 

ameter controlling the sparsity of the representatives. Smaller λ,

ore representatives will generate. α is the trade-off between dis-

imilarity matrix D and temporal matrix T . We adjust one param-

ter while fixing other parameters and then obtain the best per-

ormance for our approach. The parameters are empirically set as:

 γ , ε, β, λ, α} = { 0 . 004 , 0 . 1 , 0 . 85 , 0 . 1 , 0 . 9 } . 
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Table 2 

Comparison results on iLIDS-VID and PRID 2011 (in %). 

Dataset iLIDS-VID PRID 2011 

Rank 1 5 10 20 1 5 10 20 Reference 

Method 

SDALF 6.3 18.8 27.1 37.3 5.2 20.7 32.0 47.9 2010 CVPR [9] 

Salience 10.2 24.8 35.5 52.9 25.8 43.6 52.6 62.0 2013 CVPR [44] 

RankSVM 18.6 43.3 57.1 71.2 22.4 51.9 66.8 80.7 2002 SIGKDD [45] 

RPFR 14.5 29.8 40.7 58.1 19.3 38.4 51.6 68.1 2015 WACV [24] 

LFDA 21.1 34.8 41.3 48.7 22.3 41.7 51.6 62.0 2006 ICML [23] 

SRID 24.9 44.5 55.6 66.2 35.1 59.4 69.8 79.7 2015 CVPRW [46] 

DVDL 25.9 48.2 57.3 68.9 40.6 69.7 77.8 85.6 2015 ICCV [47] 

AFDA 37.5 62.7 73.0 81.8 43.0 72.7 84.6 91.9 2015 BMVC [3] 

DVR 39.5 61.1 71.7 81.0 40.0 71.7 84.5 92.2 2016 TPAMI [27] 

OURS 64.5 86.8 93.4 97.3 84.2 96.3 98.3 99.7 Proposed 

Fig. 3. The cumulative match characteristic curves on iLIDS-VID and PRID 2011 in comparison with the state-of-the-arts. 

Table 3 

Comparison results on SAIVT-SoftBio (in %). 

Dataset SAIVT-SoftBio(Cameras 3/8) SAIVT-SoftBio(Cameras 5/8) 

Rank 1 5 10 20 1 5 10 20 Reference 

Method 

LFDA 12.2 36.8 54.6 74.9 9.3 27.1 41.2 60.6 2006 ICML [23] 

RankSVM 32.4 68.4 82.0 92.9 14.9 40.5 57.9 75.0 2002 SIGKDD [45] 

PFDS 33.2 60.5 74.0 87.2 18.6 32.9 53.0 85.3 2014 ICPR [43] 

Fused 36.4 60.3 76.0 87.6 20.0 33.0 50.4 67.8 2012 DICTA [42] 

AFDA 43.0 72.7 84.6 91.9 30.9 61.6 77.3 91.1 2015 BMVC [3] 

OURS 83.4 98.8 99.6 99.9 75.7 90.8 95.8 97.1 Proposed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Parameter evaluation on iLIDS-VID (in %). 

Param Setting Rank1 Param Setting Rank1 Param Setting Rank1 

γ 0.003 64.1 β 0.8 63.9 λ 0.05 61.0 

0.004 64.5 0.85 64.5 0.1 64.5 

0.005 64.4 0.9 64.3 0.2 64.0 

ε 0.05 63.7 α 1.0 64.0 

0.1 64.5 0.9 64.5 

0.15 63.0 0.8 64.0 

9  

s

4

 

w  

t  

c  

r  
4.2. Evaluations on benchmarks 

The performance of the proposed approach on the three bench-

mark datasets comparing with the state-of-the-art algorithms is re-

ported in this section. 

iLIDS-VID. The comparison results on iLIDS-VID dataset is re-

ported in Table 2 and Fig. 3 (a). As we can see, our approach

achieves the best performance. Specifically, the Rank 1 and Rank 5

performances of ours are 64.5% and 86.80%, respectively, where as

the second best results are 39.5% and 61.1%, respectively. 

PRID 2011. The results on PRID 2011 dataset are shown in

Table 2 and Fig. 3 (b). Compared to the iLIDS-VID dataset, this

dataset is easier to achieve better performance due to the rela-

tively more clean background and fewer occlusions. Our approach

can achieve 84.2% by Rank 1 which is almost twice of the second

best method AFDA [3] . 

SAIVT-SoftBio. The results on SAIVT-SoftBio dataset are shown

in Table 3 . We adopt the same experimental protocols as

Fused [42] and PFDS [43] . Clearly, our approach significantly

outperforms the state-of-the-art algorithms. Specifically, in Cam-

eras 3/8 case, the Rank 1 and Rank 5 have reached 83.4% and
 r  
8.8%. While for the more challenging case, Cameras 5/8, the re-

ults of Rank 1 and Rank 5 are 75.7% and 90.8%, respectively. 

.3. Component analysis 

In order to evaluate the component contribution of our method,

e evaluate the component of the weighted patch descriptor and

he spatial-temporal representative selection. Fig. 4 reports the

omponent analysis. Generally speaking: (1) Spatial-temporal rep-

esentatives selection outperforms either spatial or temporal rep-

esentatives selection on both original feature and the weighted
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Fig. 4. Component analysis of proposed method. SRS, TRS and STRS denote Spa- 

tial Representatives Selection (by setting α = 0 ), Temporal Representatives Selection 

(by setting D i j = 0 ) and Spatial-temporal Representatives Selection, respectively, on 

original features (by setting all πi = 1 ). wSRS , wTRS and wSTRS denote SRS , TRS 

and STRS on the weighted patch features, respectively. 
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eature, which indicates the contribution of taking into account

f both spatial and temporal dissimilarities. (2) wSTRS, wSRS and

TRS outperforms STRS, SRS and TRS respectively, which implies

he benefit of the weighted patch descriptor. (3) It seems that nei-

her patch weights nor temporal information achieves distinct im-

rovement on PRID 2011, the reason might be the images in PRID

011 were captured with relatively clean background and rare oc-

lusions. In a sense, our approach is more competitive for complex

nvironments. 

.4. Parameter evaluation 

Table 4 reports the parameter evaluation. Generally speaking,

ur method is not sensitive to the parameters. The most signifi-

ant parameter is λ which controls the sparsity of the representa-

ives and significantly effects the performance of our method. As

emonstrated in Fig. 5 (b), we can achieve more sparse representa-

ives and better performance by introducing the temporal aspect to

ig. 5 (a). One may suggest to reduce the number of representatives
ig. 5. The examples of selected representatives against λ. The frames with the red bound

o color in this figure legend, the reader is referred to the web version of this article.) 
y increasing λ instead. Although we can achieve more sparse rep-

esentatives by increasing λ from 0.1 to 0.2 as shown in Fig. 5 (c),

he representatives are however not informative enough and there-

ore the matching rate is not competitive enough as the case in

ig. 5 (b) by introducing the temporal aspect. 

. Conclusion 

We have proposed a novel spatial-temporal representatives se-

ection model for multi-shot person re-identification. The informa-

ive representatives are selected for each person based on their

patial and temporal dissimilarities. A convex objective function

s formulated to find the optimal solution. Furthermore, we have

esigned a weighted patch descriptor by employing the random

alk with restart weight propagation on the local maximal occur-

ence descriptor. Experimental results on the benchmark datasets

emonstrate the superior performance of the proposed model. Our

uture work will focus on exploring the temporal consistency be-

ween the person images and the neural network based pattern

ecognition methods [4 8,4 9] for Re-ID. 
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