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Abstract. In this paper, we propose a novel approach which pursues
cross-modal low-rank decomposition for robust multi-spectral foreground
detection. For each spectrum, we employ the idea of low-rank and sparse
decomposition to detect sparse moving objects against background with
low-rank structure for its robustness to noises. Unlike simply combin-
ing multi-modal detecting results or compulsively enforcing a shared
foreground mask in existing methods, we propose to pursue the cross
modality consistency among heterogeneous modalities by introducing a
soft cross-modality consistent constraint to the multi-modal low-rank
decomposition model. Extensive experiments on the benchmark dataset
GTFD suggest that our approach achieves superior performance over the
state-of-the-art algorithms.
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1 Introduction

Foreground detection is a fundamental research topic in computer vision and
essential in many related scenarios, such as video surveillance [25], behavior
analysis [5], visual tracking [15] and object retrieval [10] et al. Despite of the
great progress in the past decades, it is still a challenging task due to the complex
factors, such as background clutter, illumination, bad weather, et al.

Extensive methods have been proposed for single-modality foreground detec-
tion over the past decades. The representative methods include Gaussian Mix-
ture Models (GMM) [24], non-parameter algorithms [1], multiple features based
methods [23], low-rank decomposition models [13,32] and convolutional neural
network methods [4,17]. However, single visual sensor suffers from the aforemen-
tioned challenging scenarios. Recently, some literatures integrated the comple-
mentary thermal infrared sensor to effectively boost the performance in chal-
lenging scenarios. Han et al. [9] proposed a hierarchical scheme to automatically
align synchronous grayscale and thermal frames, and probabilistically combined
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cues from registered grayscale-thermal frames for human silhouette detection.
Davis et al. [6] proposed a new background-subtraction technique fusing contours
from thermal and grayscale videos for object detection in urban settings. Zhao
et al. [31] integrated the infrared and visible images with different strategies on
salient and non-salient regions, then employed GMM to achieve the background
subtraction.

Recently, some literatures focused on the multi-modal foreground detection
on low-rank decomposition framework for its robustness to noises [14,28]. Li
et al. [14] proposed a weighted low-rank decomposition method by learning the
shared foreground mask matrix for different modalities to achieve adaptive fusion
of different source data. Yang et al. [28] proposed a fast grayscale-thermal fore-
ground detection via collaboratively separating and integrating the foregrounds
from different modalities in low-rank decomposition framework. However, the
hard consistency [14] with shared foreground among different modalities may be
overstrict. Inspired by the fact that different images can be perceived from multi-
view features [11], we argue that the different modalities are heterogeneous with
different properties as shown in Fig. 1. Furthermore, the independency between
modalities [28] ignored the complementary benefits from different modalities as
shown in Fig. 1. Where the visible spectrum disturbed by low illumination ben-
efits from thermal source in Fig. 1(a), and the thermal one disturbed by glass
and thermal crossover benefits from visible one in Fig. 1(b). Therefore, we argue
to pursuing the cross modality consistency among the heterogeneous modalities
to capture these benefits.

Fig. 1. Sample of the multi-modal image pairs from GTFD dataset, the grayscale and
thermal modalities are heterogeneous with different properties.

Based on above discussion, we propose a novel and robust multispectral fore-
ground detection approach to capture cross modality consistency among the
heterogeneous modalities in a unified low-rank decomposition framework, we
first accumulate sequential frames as two input matrices from the grayscale and
thermal videos. The underlying background images are linearly correlated in
each modality when ignoring the sparse and heterogeneous foregrounds and out-
liers. After introducing the appearance consistency and spatial compactness con-
straint among the neighborhood in each heterogeneous modality, we propose to
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construct the cross-modal graph to pursue the cross-modality consistency among
the heterogeneous foregrounds into a unified low-rank decomposition framework.
Finally, we jointly optimize the proposed multi-modal low-rank decomposition
to generate the heterogeneous background models and the foreground masks
simultaneously.

2 Our Algorithm

Given a grayscale-thermal video pair, we solve the multi-modal foreground detec-
tion based on the low-rank decomposition framework in a batch manner.

2.1 Model Formulation

Given the k-th modal video, we accumulate n frames into a matrix by reshaping
each frame into a column vector, i.e., Dk = [dk

1 ,d
k
2 , ...,d

k
n] ∈ Rm×n, with k =

1, · · · ,K and m is the number of pixel on each frame. Herein, the grayscale-
thermal data in this paper is the special case with K = 2. First, we assume
that the underlying background images are linearly correlated in each modality
video and the foregrounds are sparse and contiguous. This assumption has been
successfully applied in background modeling [7,32].

Heterogeneous Decomposition. As we discussed above, the different modal-
ities are heterogeneous with different properties. Therefore, we decompose the
input matrices into heterogeneous foreground/background for each modality as:
Dk = Bk + Sk, where Bk ∈ Rm×n is the low-rank background matrix, and
Sk ∈ Rm×n denotes the sparse heterogeneous foreground matrix of the k-th
modality, which can be formulated as:

min
Bk,Sk

1
2
||fSk

⊥
(Dk − Bk)||2F + β||vec(Sk)||0,

s.t. rank(Bk) ≤ rk, k = 1, 2, ...,K,

(1)

where β is a balance parameter. vec(·) is a vectorize operator on a matrix. || · ||F
and || · ||0 indicate the Frobenius norm of a matrix and the l0 norm of a vector,
respectively. rk is a constant that suppresses the complexity of the background
model in each modality. fS(X) represents the orthogonal projection of a matrix
X onto the linear space of matrices supported by S:

fS(X)(i, j) =

{
0,

Xij ,

Sij = 0,

Sij = 1.
(2)

and fS⊥(X) is its complementary projection, i.e., fS(X) + fS⊥(X) = X.

Appearance Consistency and Spatial Compactness. We observe that the
neighbouring pixels have high probability with similarity appearance, which has
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been successfully applied in foreground detection [26,27]. Based on this con-
sideration, we encourage the appearance consistency by constructing adaptive
weights wk

ij,pq into the spatial compactness constraint:

||Ck vec(Sk)||1 =
∑

(ij,kl)∈εk

wk
ij,pq |Sk

ij − Sk
pq|;

wk
ij,pq = exp

−||dk
ij − dk

pq||22
2θ2

.

(3)

where, ||X||1 =
∑

ij |Xij | denotes the l1-norm, εk denotes the edge set connecting
spatially neighboring pixels in the k-th modality. Ck is the node-edge incidence
matrix denoting the connecting relationship among pixels in the k-th modality,
dk

ij and dk
pq represent the intensity of pixel ij and pq in the k-th modality

respectively and θ is a tunning parameter.

Cross-Modality Consistency. Different from the existing multispectral fore-
ground detection methods that consider the information from individual modal-
ity are independent, we further propose to enforce the cross-modality consistency
among the multispectral data. Meanwhile, to deal with occasional perturba-
tion or malfunction of individual sources, we construct the cross-modality graph
among the quad on one modality (thermal image) for each pixel from the other
modality (grayscale image). This constraint is defined as:

K∑
k=2,(ij,mn)∈F

||Sk
ij − Sk−1

mn ||2F , (4)

where F denotes edge set connecting spatially cross-modality pixels in the k-th
modality (as shown in Fig. 2). Equation (4) encourages the pixel Sk−1

ij and its
quad neighbors on the other modality [Sk

ij ,S
k
(i+1)j ,S

k
(i+1)(j+1),S

k
i(j+1)] belonging

to the same pattern. Therefore, our model can be rewritten as:

min
Bk,Sk

1
2
||fSk

⊥
(Dk − Bk)||2F + β||vec(Sk)||0 + μ||Ck vec(Sk)||1

+ γ

K∑
k=2,(ij,mn)∈F

||Sk
ij − Sk−1

mn ||2F , s.t. rank(Bk) ≤ rk, k = 1, 2, ...,K,
(5)

Equation (5) is a NP-hard problem, to make Eq. (5) tractable, we relax the
rank operator on Bk with the nuclear norm, which has proven to be an effective
convex surrogate of the rank operator [22]. Meanwhile, we impose the low-rank
constraints on the joint background matrix that concatenates all matrices of
different modalities together to optimize them collaboratively. The formulation
of collaborative low-rank representation model is proposed as follows:
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Algorithm 1. Optimization Procedure to Eq. (6)
Require: Dk, (k = 1, ..., K).

Set Bk = Dk (k = 1, 2, ..., K), Sk = 0, maxIter = 20, ε = 1e − 4.
Ensure: Bk, Sk, (k = 1, 2, ..., K).
1: for i = 1 : maxIter do
2: Parallelly update Bk by Eq. (7);
3: if rank(B̂k) ≤ rk then
4: tuning parameters λ , return to step 2.
5: end if
6: Update {Sk} by Eq. (9);
7: Check the convergence condition: if the maximum objective change between two

consecutive iterations is less than ε, then terminate the loop.
8: end for

min
B,Sk

K∑
k=1

1
2
||fSk

⊥
(Dk − Bk)||2F + β||vec(Sk)||0 + μ||Ck vec(Sk)||1

+ λ||Bk||∗ + γ
K∑

k=2,(ij,mn)∈F
||Sk

ij − Sk−1
mn ||2F ,

(6)

where γ and λ are balance parameters, || · ||∗ denotes the nuclear norm of a
matrix.

Fig. 2. The graph construction of cross-modality consistency, each pixels in grayscale
image are connected to the corresponding four neighborhoods in thermal image.

2.2 Optimization

Equation (6) can be efficiently solved by the alternating optimization algorithm.

B–subproblem. Given an current estimate of the foreground mask Ŝk, estimating
Bk by minimizing Eq. (6) turns to be the matrix completion problem:

min
Bk

K∑
k=1

1
2
||fŜk

⊥
(Dk − Bk)||2F + λ ‖ Bk ‖∗, (7)
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This is to learn a low-rank background matrix from partial observations,
which can be computed via SOFT-IMPUTE [19] by iteratively using Eq. (8):

B̂k ←− Θλ(PŜ⊥(Dk) + PŜk(B̂k)), (8)

S–subproblem. Given an current estimate of the background position matrix B̂k,
Eq. (6) can be transferred into following optimization function:

min
Sk

K∑
k=1

1
2

||fSk
⊥
(Dk − B̂k)||2F + β||vec(Sk)||0 + μ||Ck vec(Sk)||1

+ γ

K∑
k=2,(ij,mn)∈F

||Sk
ij − Sk−1

mn ||2F
(9)

The energy function Eq. (9) can be rewritten in line with the standard form
of a first-order Markov Random Fields [16] as:

min
Sk

1
2

K∑
k=1

∑
ij

(Dk
ij − B̂k

ij)
2(1 − Sk

ij) + β
∑
ij

Sk
ij + μ||Ck vec(Sk)||1

+ γ

K∑
k=2,(ij,mn)∈F

||Sk
ij − Sk−1

mn ||2F = min
Sk

∑
ij

[β − 1
2

K∑
k=1

(Dk
ij − B̂k

ij)
2]

+ μ||Ck vec(Sk)||1 + γ

K∑
k=2,(ij,mn)∈F

||Sk
ij − Sk−1

mn ||2F + C

(10)

where C = 1
2

∑K
k=1

∑
ij(D

k
ij − B̂k

ij)
2 is a constant with respect to Sk. The

Eq. (10) can be efficiently solved by graph cut algorithm [2,12].
A sub-optimal solution can be obtained by alternating optimization to {Bk},

{Sk} as summarized in Algorithm 1. The convergence of our model can be guar-
anteed obviously, as each sub-problem converges to a optimal solution.

3 Experiments

We evaluate our method against the state-of-the-arts on the public challenging
GTFD dataset [14]. It consists of 25 video sequence pairs with grayscale and ther-
mal modalities captured from fifteen different scenes, including laboratory rooms,
campus roads, playgrounds and water pools, etc. The main challenges include
intermittent motion, low illumination, bad weather, intense shadow, dynamic
scene, background clutter.



Multispectral Foreground Detection 825

3.1 Parameters

There are five parameters in our method, we adjust one parameter while fixing
other parameters and then obtain better performance for our approach. The
parameter β controls the sparsity of the foreground masks. We typically set
β = 4.5σ2, where σ is estimated online by the mean variance of {Dk −Bk}. The
parameter μ controls the spatial smoothness to punish the neighboring pixels
with different labels. The parameter γ controls the cross-modality consistency of
the foreground masks to promote the pixels with same label from different modal-
ity. The parameter r constrains the complexity of the background model. The
parameter θ is the tunning parameter for the appearance consistency. The final
parameters are empirically set as {β, μ, γ, r, θ} = {4.5σ2, 0.5β, 0.5β,

√
n, 10},

where n is the total number of pixels.

3.2 Comparison Results

We compare our approach with some state-of-the-art foreground detection algo-
rithms, including grayscale, thermal and grayscale-thermal detection methods.
Following the protocols in [14,28], we choose the detection result under grayscale
scenarios as the final foreground.

Quantitative Results. Figure 3 demonstrates several detected results from
GTFD dataset. From which we can see, the cross-modality consistent constraints
can better preserve the foreground structures from both modalities, and achieve
promising performance in both grayscale and thermal modalities even if there
are misalignment among the image pairs. Furthermore, our method can produce
more compact structured foregrounds.

Qualitative Results. Table 1 reports comparison results on precision, recall, F-
measure together with the running speed on public GTFD dataset. We can con-
clude that: (1) Our method substantially outperforms other grayscale-thermal
methods in precision, recall and F-measure, verifying the contribution of the
proposed cross-modality consistent constraints. (2) Although WELD [14] and
CLoD [28] achieve satisfying performance after fusing the grayscale and ther-
mal results, but perform much worse in each single modality than ours. (3) The
running speed of our method is lower than CLoD [28], but with much higher
precision, recall and F-measure. Therefore, our method keeps a good balance
between the efficiency and accuracy.

3.3 Component Analysis

To justify the component contributions of the proposed approach, we eval-
uate several variants of our model and report the results in Table 2, where
Ours: the proposed model; Ours-I: our model without cross-modality consis-
tency by setting γ to 0 in Eq. (6); Ours-II: our model without appearance con-
sistency by setting adaptive weighting factor wk

ij,kl to 1 in Eq. (6); Ours-III: our
model without spatial smoothness and appearance consistency by setting μ to 0.
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Table 1. Average Precision (P), Recall (R), and F-measure (F) of our method against
state-of-the-arts. The bold fonts of results indicate the best performance.

Algorithm Grayscale Thermal Grayscale-Thermal Code type FPS

P R F P R F P R F

ASOM [18] 0.18 0.07 0.06 0.16 0.07 0.08 – – – C++ 111.11

FCFT [30] 0.39 0.20 0.22 0.25 0.22 0.20 – – – C++ 38.46

APKV [20] 0.38 0.42 0.36 0.42 0.20 0.24 – – – Matlab, C++ 0.03

ViBe [1] 0.41 0.49 0.41 0.41 0.47 0.39 – – – C++ 318.47

TTD [21] 0.59 0.29 0.32 0.58 0.38 0.40 – – – Matlab 0.07

PCP [3] 0.28 0.18 0.21 0.49 0.40 0.43 – – – Matlab 20.42

GMM [24] 0.48 0.65 0.52 0.48 0.65 0.50 – – – C++ 93.37

SAC [7] 0.42 0.74 0.41 0.47 0.71 0.53 – – – Matlab 1.15

DECOLOR [32] 0.54 0.84 0.59 0.52 0.82 0.59 – – – Matlab, C++ 1.98

MAMR [29] 0.57 0.67 0.60 0.59 0.63 0.59 – – – Matlab, C++ 3.37

GMM-GT [24] – – – – – – 0.53 0.60 0.53 C++ 34.04

JSC [8] – – – – – – 0.17 0.43 0.18 Matlab 10.21

WELD [14] 0.58 0.80 0.64 0.50 0.63 0.50 0.64 0.81 0.67 Matlab, C++ 2.43

CLoD [28] 0.53 0.71 0.55 0.63 0.62 0.57 0.62 0.80 0.66 Matlab, C++ 45.66

Ours 0.66 0.86 0.71 0.65 0.85 0.70 0.66 0.86 0.71 Matlab,C++ 3.51

Table 2. Average Precision (P), Recall (R), and F-measure (F) of our method and its
variants. The bold fonts of results indicate the best performance.

Algorithm Grayscale Thermal

P R F P R F

Ours 0.66 0.86 0.71 0.65 0.85 0.70

Ours-I 0.59 0.73 0.60 0.60 0.70 0.61

Ours-II 0.64 0.86 0.70 0.63 0.85 0.69

Ours-III 0.62 0.85 0.68 0.61 0.85 0.67

The evaluation results demonstrate that: (1) Each component plays important
roles in our model. (2) The cross-modality consistency contributes most by com-
paring Ours-I to Ours, which consequentially verifies the significance of the pro-
posed model. Note that the higher recall in Ours-II and Ours-III results from
the coarse boundary of the detected foregrounds.



Multispectral Foreground Detection 827

Fig. 3. Sample results of our method against other methods. The odd rows indicate
the grayscale frames and the corresponding detection results generated by grayscale
methods, and the even rows denote the thermal frames and the corresponding detection
results generated by thermal methods.

4 Conclusion

In this paper, we have proposed novel multispectral foreground detection app-
roach by exploring the cross-modality consistency in the low-rank and sparse
decomposition framework. Extensive experiments on the GTFD dataset suggest
that our approach achieved superior performance against other state-of-the-art
approaches. In future work, we will develop prior models on foreground or back-
ground into our framework to further improve the robustness, and extend our
algorithm into a streaming or an online fashion.
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