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ABSTRACT

In this work we propose a novel network formulation for
joint representation of cross-modal audio and visual informa-
tion base on metric learning. We employ a distance learn-
ing framework as a training procedure. For this purpose we
introduce an elastic matching network (EmNet) and a novel
loss function to learn the shared latent space representation of
multi-modal information. The elastic matching network is ca-
pable of matching given face image (or audio voice clip) from
diverse number of audio clips (or face images). We quantita-
tively and qualitatively evaluate the purposed approach on the
standard audio-visual matching evaluation dataset, the over-
lap of VoxCeleb and VGGFace by both multi-way and binary
audio-visual matching tasks. The promising performance
comparing to the existing methods verifies the effectiveness
of the proposed approach, which yields to a new state-of-the-
art for cross-modal audio-visual matching.

Index Terms— Cross-modality, Audio-visual matching,
Elastic multi-way matching, Distance learning

1. INTRODUCTION

Audio-visual matching aims to match the given query audio
voice clip to the corresponding person from the gallery face
images (F2V) or vice versa (V2F), as shown in Fig. 1. It
has potential applications such as criminal investigation, face
detection, identity determination, etc. One of the challenging
in audio-visual matching is to measure the similarity or the
distance between the cross-modal information, which appears
heterogeneously.

Comparing to the conventional face recognition [1] [2],
cross-modal audio-visual matching is a recently emerged re-
search topic. The pioneer work was Nagrani et al. [3]
which proposed a Network of Seeing Voice and Hearing Face
(SVHF-Net) based on a two-stream architecture to learn the
audio and visual features respectively, then the spliced fea-
ture were fed into the Softmax layer to obtain the probability
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Fig. 1. Binary and multi-way cross-modal audio-visual
matching. F2V aims to match the given query audio voice
clip to the corresponding identity from the gallery face im-
ages. V2F aims to match the given query face image to the
corresponding identity from the gallery audio voice clips. The
binary matching task indicates only two samples in gallery,
which can be regarded as the special case of multi-way task.

of classification. Wen et al. [4] proposed a DIsjoint Map-
ping Network (DIMNet) which made full use of the covari-
ates of the attributes among different people as a pivotal con-
dition to improve the accuracy of cross-modal matching task.
However, it can only handle multi-way F2V task. Further-
more, it required to introduce more branches when the num-
ber of face images increasing in multi-way matching. Re-
cently, Chung et. al. [5] proposed a new training scheme by
increasing the number of negative samples based on the base-
line models [6] [7] to improve the discrimination ability of
the network. Albanie et al. [8] proposed a cross-modal em-
bedding for Person Identity Nodes (PINs) by curriculum min-
ing and contrastive loss for diverse cross-modal audio-visual
tasks, including retrieval, matching, ect. However, the above
methods mainly focused on the feature representation learnt
from corresponding networks while ignoring the inter-modal
difference and the intra-modal similarity. Herein, we pursue
to enhance the intra-modal similarity and expand the inter-
modal difference inspired by the metric learning mechanism
in this paper. We name our proposed method as Elastic match-
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ing Network (EmNet) since it is capable of matching the given
audio clip (or face image) for arbitrary number of face images
(or audio clips) in order to make full use of similarity between
different modalities. The capability of the state-of-the-art au-
dio visual matching methods on various tasks is summarized
in Table. 1.

Table 1. The capability of the state-of-the-art audio visual
matching methods on various tasks, where ’×’ denotes not
capable, while ’-’ indicates not available.

Binary task Multi-way task
F2V V2F F2V V2F

SVHF-Net [3]
√ √ √ −

DIMNet [4]
√ √ √ ×

PINs [8]
√ √ √ −

EmNet (Ours)
√ √ √ √

Based on above discussion, we propose an elastic network
(EmNet) for cross-modal audio-visual matching by introduc-
ing a novel distance loss function base on metric learning [9],
which maps each modality into the same joint-embedding
space [10] [8]. By minimizing the distance between posi-
tive samples while maximizing the distance between multiple
negative samples, the matching result is achieved by calculat-
ing the distance of corresponding features. Therefore, it can
take advantage of the similarity between features and toler-
ate elastic number of the samples in gallery without altering
the architecture of the network. The main contribution of this
paper can be summarized as:

• We propose a novel distance measurement inspired by
metric learning for cross-modal audio-visual matching,
which maps the cross-modal information into the joint-
embedding space and learn the representations in the
shared latent space.

• We propose an elastic matching network (EmNet)
based on the proposed distance function which can tol-
erate the diverse number of sample in gallery for both
F2V and V2F tasks in audio-visual matching with fixed
architecture of the network.

• Quantitative and qualitative evaluations on benchmark
dataset VoxCeleb [11] demonstrate the effectiveness of
the proposed model, which yields a new state-of-the-
art for audio-visual matching, comparing to the other
methods.

2. RELATED WORKS

2.1. Audio-visual Retrieval

Audio-visual retrieval aims to exploit the correlation between
audio and visual information. Representative works include
hash transformation [12, 13], subspace learning [14, 15]

and metric learning [16, 17]. Yang et al. [12] proposed a
novel end-to-end network base on deep cross-modal hashing
method and added decorrelation constraints to improve the
discrimination of each hash bit. Zhen et al. [13] proposed a
hashing-based method based on spectral analysis of different
modal correlation matrices. Wang et al. [14] addressed the
problem of the measuring the relevance and coupled feature
selection by mapping different modalities into same subspace.
Xu et al. [15] verified the quality of various cross-modal re-
trieval algorithms on sketch-based image retrieval problem.
Xu et al. [16] proposed a deep adversarial metric learning to
map data from different modalities into a shared latent sub-
space. Zhai et al. [17] proposed joint graph regularized het-
erogeneous metric learning which mapped different modali-
ties into a joint graph regularization and learned a high-level
semantic metric based on label propagation.

2.2. Audio-visual Generating

With the blossoming of GANs [18], audio-visual generating
task has become more and more popular. Owens et al. [19]
introduced a model which predicts the subband envelopes of
the audio waveform. Jalalifar et al. [20] produced a sequence
of realistic faces that synchronized with the input audio by
two networks. Chen et al. [21] proposed a model that exploit
speech to generate lip movement. Rithesh et al. [22] proposed
ObamaNet to generate video condition on key point rather
that generate directly. In [23], Zhou et al. design an end-to-
end model to solve the task of generating sounds from in-the-
wild videos. Hao et al [24]. proposed a CMCGAN to tackle
cross-modal visual-audio mutual generation by organizing all
subnetworks in a cycle architecture.

3. ARCHITECTURE OF NETWORK

At the first place, we use FFMPEG1 to divide the raw video
into audio clips and visual images while leaving the interfer-
ence in audio such as noise untouched. Similar as the existing
works [3] [6], we employ the dual branch CNN architecture
to process the audio and visual information respectively.

3.1. Dual Branch Architecture

3.1.1. Audio branch

The input to the audio branch are 3 seconds audio clips,
we first convert them to the single channel audio spectro-
gram. Since the spectrum features from different identities
vary widely in frequency, amplitude, and striations. Then we
resize them into the same resolution of 224×125, following
the protocol in [25] [7] [3]. Each branch consists of 5 con-
volution layers and 3 pooling layers (kernel-sizes in first and

1 URL: https://sourceforge.net/projects/ffmpeg/
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second convolution layers are (2, 1), (3, 6) respectively and 3
for the rest).

3.1.2. Visual branch

The RGB face images fed into visual branch are resized to the
resolution of 224×224. For each 3-second video segment, we
sample the face image at the rate of 10 fps. We call visual
data as ’Certain Face’ due to it is a single RGB image at a
certain moment without any temporal information. Similar
to audio branch, each visual branch consists of 5 convolution
layers and 3 pooling layers (kernel-sizes are 7, 5, 2, 3, 3 for
each convolution layer). Note that all visual branches share
parameters.

3.2. Cross-modal Audio-visual Matching

We conduct both binary and multi-way audio-visual matching
tasks in this paper, where the binary task can be regarded as
the special case of the multi-way task.

3.2.1. Elastic Multi-way Network

We render the multi-way audio-visual matching as the multi-
way classification task, where the multi-way F2V aims to
match the given audio voice clip from N face images (one
positive face image and N−1 negative face images), as shown
in Fig. 2. After obtaining the feature vectors of the query au-
dio clip and the face images in gallery by one audio branch
and N visual branches. The key issue is to measure the dis-
tance between them.

Distance learning The traditional cross-modal matching
tasks usually use Softmax function to the last layers of the
network to achieve the binary or multi-classification task
on the feature maps [4] [3]. The main limitation is they
cannot change the number of the face images (or audio
voice clips) in the gallery. Inspired by the metric learn-
ing [9] [26] [27], which can directly calculate the distance
between features to accomplish multi-classification task, we
propose a novel distance-based loss function for multi-way
audio-visual matching. The main idea is to minimize the dis-
tance between the anchor and the positive sample while max-
imizing the distance between the anchor to the multiple neg-
ative samples. The distance loss function can be written as:

Lossi =
N−1∑

i=1

ϕ([D(a, Posface)−D(a,Negi) + βi]+) (1)

where a is the anchor, D(a, Posface) indicates the distance
between anchor and the positive sample, while D(a,Negi)
indicates the distance between anchor and the i-th negative
sample, βi represents the margin value of anchor and the i-th
negative sample. ϕ represents the Relu function.

D(a, Posface) = ||Aud(a)− V is(Posface)||p (2)

Fig. 2. The architecture of the proposed elastic matching net-
work in the case of multi-way F2V task, while the multi-way
V2F task can be constructed in the same manner. Posface is
positive face, Negi indicates the i-th negative face and an-
chor symbolizes audio (in F2V tasks) or face (in V2F task).
The goal of EmNet is to enlarge the distance between anchor
and Negi while shrinking the distance between anchor and
Posface.

D(a,Negi) = ||Aud(a)− V is(Negi)||p (3)

where Aud(·), Vis(·) denote features obtained from audio and
visual sub-network. It’s worth noting that our network is elas-
tic for diverse number in gallery. For the multiple samples in
gallery, we only care about the distance between them which
avoids complicated operations on features and enhances the
applicability of the network. The multi-way V2F task can be
achieved in the same manner.

3.2.2. Binary Network:

The binary network can be regarded as the special case of the
multi-way network where N=2 as shown in Fig. 3, which in
turn means we need one audio branch and two visual branches
to obtain the audio and visual features. In this case, the loss
function can be rewritten as:

Loss = [D(a, Posface)−D(a,Negface) + β]+ (4)

where D(a, Posface) denote the distance between anchor and
the positive sample while D(a,Negface) denote the distance
between the anchor and the negative sample. Eq. (4) is exactly
the tripletloss. The binary V2F task can be also achieved in
the same manner.

4. EXPERIMENTS

In this section, we shall introduce the details of our experi-
ments and the results comparing to the state-of-the-arts.

Authorized licensed use limited to: Anhui University of Science and Technology. Downloaded on June 16,2021 at 07:29:30 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Demonstration of binary F2V matching task. Where
the proposed distance learning can evolved into tripletloss.
The binary V2F matching task can be achieved in the same
manner.

4.1. Dataset

We evaluate the proposed model on the large-scale bench-
mark datasets VoxCeleb [11] and VGGFace [28], which con-
tain rich face and audio information and have been widely
used in audio-visual research. Following the protocol in [3],
we evaluate our EmNet on the overlap part of these two
datasets, which contains about 1,000 identities.

Split of training and testing: We split the evalua-
tion data into 604 identities for training and 189 identi-
ties for testing. Each identity contains several face im-
ages. For multi-way task, we construct the data as
tuple{audio, Posface, Neg1, Neg2, ..., NegN−1} for F2V
task. The data construction for V2F task can be achieved in
the same manner. Therefore, for binary task, we construct the
data into tuples as{audio, Posface, Negface} in F2V task
while {face, Posaudio, Negaudio} in V2F task. The detailed
number of tuples of each task is shown in Table. 2.

Table 2. Numbers of binary task and multi-way task.

train test

identities 604 189
tuples 241,600 75,600

4.2. Implementation details

The multi-way matching task can be regarded as N : 1 clas-
sification task where N is elastic for various integers. We set
the maximum number of N = 5 in our paper and the margin
in loss function is determined by p in Eq. (2). The binary
matching is the special case of multi-way task when N = 2

and the loss function becomes tripletloss. In Binary task, we
set β in Eq. (4) of tripletloss to be 0.6 while βi in Eq. (1) is
{0.1, 0.2, 0.3, 0.4} in multi-way task.

4.3. Experimental results

In this section we compared the results of our experiments
with the recent state-of-the-art methods SVHF-Net [3], DIM-
Net [4] and PINs [8] in both binary and multi-way matching
tasks. Following the protocol in SVHF-Net [3], we use identi-
fication accuracy to measure the performance of the proposed
method. The number of the norm (p) in Eq. (2) is set as 2-
norm for multi-way and binary task.

Table 3. Results of multi-way matching task(N = 5, p = 2)
comparing to the state-of-the-arts, ’×’ denotes not capable
while ’-’ indicates not available. (in %)

model
task F2V V2F reference

SVHF-Net [3] 54.92 - CVPR 2018
DIMNet [4] 58.91 × Arxiv 2018

PINs [8] 46.13 - ECCV 2018
EmNet 69.37 68.02 Ours

Table. 3 reports the comparison results of multi-way matching
task. The matching accuracy of our model improves approx-
imately 15% comparing to the second best method SVHF-
Net [3] in F2V task which demonstrate the effectiveness of
our model.

Table 4. Results of binary matching task (N = 2, p = 2)
comparing to the state-of-the-arts, where ’-’ indicates not
available. (in %)

model
task F2V V2F reference

SVHF-Net [3] 79.50 81.01 CVPR 2018
DIMNet [4] 84.12 84.03 Arxiv 2018

PINs [8] 83.80 - ECCV 2018
EmNet 89.84 93.06 Ours

Table. 4 reports the comparison results in binary matching
task. Consistently with the results of multi-way matching
task, our EmNet significantly beats the state-of-the-art meth-
ods SVHF-Net [3], PINs [8] and DIMNet [4] in both F2V and
V2F tasks.

4.4. Ablation study

4.4.1. Evaluation on the number of norms (p)

The number of the norm in Eq. (2) is one of the key factor for
the distance learning. We evaluate the number of the norms
varying from 1 to 4 on both binary matching and multi-way
tasks in Fig. 5 and Fig. 4.
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Fig. 4. Accuracy of F2V and V2F tasks of multi-way match-
ing (N=5) against varying number of norms.

From which we can see that, in both multi-way and binary
matching tasks, our method consistently achieves the best per-
formance with 2-norm for both F2V and V2F tasks. In order
to keep the parameter consistency during the evaluation, we
set 2-norm for multi-way and binary matching.

Fig. 5. Accuracy of F2V and V2F tasks of binary matching
against varying number of norms.

4.4.2. Evaluation on the number of samples (N ) in the
gallery

To demonstrate the performance of the proposed elastic
matching network, we further evaluate our method with var-
ious number of face image (or audio clips) in both F2V and
V2F tasks with the fixed number of norm as 2. Fig. 6 illus-
trates the evaluation results where N=2 indicates the binary
matching and other values for elastic multi-way matching.

Fig. 6. Matching accuracy against the number of samples in
gallery (N ) with 2-norm.

As we predicted, due to the challenge of the intra-modal
similarities among face images (or audio clips) and the inter-
modal heterogeneity between audio and visual information,
the matching accuracy decreases while N increasing. Even
though, our method outperforms the state-of-the-art method
with the same number of ways during the matching as men-
tioned in Table. 3 and Table. 4.

4.5. Training Protocol and analysis

Our approach is an end-to-end task which is trained with
batch normalization by stochastic gradient descent. We set
the min-batch size of 64 and use Adam optimizer with β1

= 0.5, β2 = 0.999 and learning-rate = 1e-4 during the train-
ing. The weight of audio and visual branches are initialized
from a Gaussian distribution. In the test, we first compute
the distance between the anchor and each negative sample,
and compare it with its distance between the positive sam-
ples. If D(a, Posface) is the smallest, or the difference be-
tween D(a, Posface) and Dmin(a,Negi) is less than β, the
network stops updating.

5. CONCLUSION

We have proposed a novel distance learning method for elas-
tic cross-modal audio-visual matching. Benefit from the met-
ric learning, which minimizes the distance between the an-
chor and the positive sample while maximizing the distance
between the anchor to the multiple negative samples, our ap-
proach outperform the state-of-the-art audio visual matching
in both F2V and V2F tasks. Furthermore, our model allows
elastic number of gallery which improves the matching capa-
bility of the cross-modal audio-visual information. Our future
interest will focus on exploring the coherence between differ-
ence modalities for audio-visual matching.
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