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a b s t r a c t 

Low-rank and sparse factorization, which models the background as a low-rank matrix and the fore- 

ground as the contiguously corrupted outliers, exhibits excellent performance in background subtraction, 

in which the structured constraints of the foreground usually play a very essential role. In this paper, we 

propose a novel approach with multi-scale structured low-rank and sparse factorization for background 

subtraction. Different from the conventional methods that only enforce the smoothness between the spa- 

tial neighbors, we propose to explore the structured smoothness with both appearance consistency and 

spatial compactness in the low-rank and sparse factorization framework. Moreover, we integrate struc- 

tural information at different scales into the formulation for robustness. We also design a low-rank de- 

composition scheme to improve the computational efficiency of the optimization algorithm. Extensive 

experiments on benchmark datasets GTFD and CDnet suggest that our approach achieves big superior 

performance against the state-of-the-art methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Moving object detection is a fundamental problem in computer

ision, and plays a critical role in numerous vision applications,

uch as intelligent transportation [1] , vehicle navigation [2] and

cene understanding [3] . In the past decades, extensive algorithms

ade remarkable effort s to moving object detection, as referred in

he interesting surveys [4–7] , while background substraction has

een recognized as one of the most competitive approaches. Con-

entional background substraction methods include GMM [8] , VIBE

9] and their variants. Qin et al. [10] further introduced the Gabor

lter into VIBE to reduce the “ghost” and then accelerated the up-

ating procedure via GPU parallel computing. Zhang et al. [11] re-

ealed the foreground and background imbalance problem and de-

igned a two-stage compensation framework on the data and the

lgorithm level sequentially. Kim and Jung [7] comprehensively

iscussed the issue of illumination changes which is ubiquitous

n the outdoor scenarios from the methodology and performance

rospectives. However, it is still a challenging task due to unde-

ired environment such as dynamic scene, illumination changes,

evere weathers, occlusions and so on. 

Meanwhile, deep learning based methods have been widely

sed in computer vision and pattern recognition. Some state-of-
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he-art networks have been designed for semantic segmentation,

ncluding FCN [12] , DeepLab [13] , MSCNN [14] and so on. Specif-

cally, moving object detection tries to segment the moving fore-

round out of the background. Zhang et al. [15] designed a block-

ise deep learning module to encode the image representation

nd then accelerated the detection via binary scene modeling in

amming space. Heo et al. [16] combined the appearance net-

ork (a pre-trained VGG-16 network) and the motion network (a

hallow network) for moving object detection. Chen et al. [17] de-

igned an end-to-end architecture which first extracted high-level

NN features via an encoder–decoder network then modeled pixel-

ise temporal changes via an Attention ConvLSTM. Kim and Ke-

es [18] developed a encoder–decoder neural network embedded

he image into multi-scale feature space under a triplet framework

uring the encoder while learning the feature to image mapping

ia a transposed convolutional network during decoder. 

Recently, the low-rank and sparse factorization framework has

ttracted a considerable attention. The basic idea is to factorize the

iven matrix of the accumulated frames into the low-rank back-

round and sparse foreground as outliers. The pioneering work is

obust Principal Component Analysis (RPCA) [19,20] and its vari-

nts [21–23] . However, RPCA-based methods are sensitive to the

utlier noise and tend to produce cavities due to the laciness of

tructural contiguous constraints. In order to enforce structured

onstraint on the foreground, DECOLOR [24] proposed to model

he spatial contiguity among the neighboring pixels to preserve the

patial homogeneity of the foreground, Xin et al. [25] exploited

https://doi.org/10.1016/j.neucom.2018.02.101
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Fig. 1. Demonstration of the multi-scale structured appearance consistency and the spatial compactness. Where (b) is the zoom-out view of the specified part of the person 

in (a), (c) and (d) are the superpixel segmentations via SLIC [30] where the number “100” and “300” indicate the number of superpixels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

i  

t  

g  

o

 

v  

m  

c  

i  

c

2

 

r  

p  

[  

b  

[  

d  

C  

s  

p  

l  

t  

f  

t  

r  

[  

t  

s  

o  

j  

t  

d  

e  

p  

n  

v  

l  

t  

p  

c  

m  

t  

s  

t

3

 

l  

i

the continuous structural information via efficient GFL [26] to

strengthen the fusion among the adjacent pixels. GOSUS [27] pro-

posed to impose the group sparsity on the pre-processed sliding

windows or superpixels to encourage the perceptually meaningful

groups. Yang et al. [28] proposed a subspace-based motion seg-

mentation method by integrating the global sparse subspace opti-

mization via PCA projection and local refinement via a simple error

estimation. Javed et al. [29] presented an online matrix decompo-

sition with max-norm regularization and structured sparsity con-

straints on each superpixel segment. However, they construct the

structured constraint only between the spatial neighbors while ig-

noring the high-level spatial compactness of the foreground. More-

over, none of them take into account the multi-scale cues which

can further promote the appearance consistency and spatial com-

pactness on varying scales. 

In this paper, we propose a novel multi-scale structured low-

rank and sparse factorization for background subtraction. Compar-

ing to the deep-based methods, we do not require laborious pre-

training or the large training set. In addition, we have no need

of saving a large pre-trained deep model. We enforce our struc-

tured constraints in terms of integrating the multi-scale appear-

ance consistency and spatial compactness of the foreground into a

unified model. First, we observe that, the foregrounds are generally

consistent in appearance. As demonstrated in Fig. 1 (b), we should

penalty the neighboring pixels 1 and 3 with inconsistent appear-

ance while enhancing the structure between neighboring pixels 1

and 2 with consistent appearances. Second, we observe that the

foregrounds are homogeneous in the same concept of spatial re-

gion, such as the same superpixel as shown in Fig. 1 (c) and (d).

Therefore, we further encourage this structure of spatial compact-

ness on the foregrounds in this paper. 

In addition, we have observed that structure of the foreground

presents diversely on varying scales. As compared in Fig. 1 (c) and

(d). Coarse scale (with smaller number of superpixels as Fig. 1 (c))

imposes global structure of the pattern (such as the whole body

imposed in a single superpixel), while fine scale captures local

structure (such as the head imposed in a single superpixel in

Fig. 1 (d)). In this paper, we propose to integrate the multi-scale

cues into an unified structured low-rank and sparse factorization

model to capture the diverse structure of the foregrounds. 

As for the optimization, the low-rank model always suffers

from heavy computational burden due to singular value decompo-

sition procedure in most of the existing batch mannered models.

To relieve this issue, we introduce an alternative definition of the

nuclear-norm with a efficient decomposition strategy in this paper.

As summarized, we make the following contributions for mov-

ing object detection and related applications. We propose an effec-

tive approach for background subtraction. Our approach takes both

appearance consistency and spatial compactness in a multi-scale

manner for the separation of background and moving objects. In

this way, it is capable of capturing rich information among pixels

and thus improves the detection performance significantly. We de-

sign an efficient algorithm to optimize the proposed model. In par-

ticular, we decompose the low-rank background matrix into two

sub-matrices to avoid SVD operations in each iteration, and thus
eliver an efficient solver to the proposed model. Extensive exper-

ments on two benchmark datasets GTFD and CDnet demonstrate

hat, our approach can better preserve the boundary of the fore-

rounds and achieves big superior performance against the state-

f-the-arts. 

The rest of paper is organized as follow: Section 2 briefly re-

iews the related work on low-rank and sparse factorization for

oving object detection. We elaborate our approach and the effi-

ient optimization in Section 3 . Section 4 demonstrates the exper-

mental results on two benchmark datasets while Section 5 con-

ludes our paper. 

. Related work 

In the past years, extensive work have developed on low-

ank and sparse factorization for moving object detection. One

ioneering work is Robust Principal Component Analysis (RPCA)

19,20] , which decomposes a given matrix/frames into a low-rank

ackground matrix and sparse foreground matrix. Candès et al.

21] proposed to recover the low-rank and sparse components in-

ividually by solving a convenient convex program called Principal

omponent Pursuit (PCP). Zhou et al. [22] proposed to handle both

mall entrywise noises and gross sparse errors. Dou et al. [23] pro-

osed a incremental learning model using K-SVD for dictionary

earning. Ebadi et al. [31] constructed the image sequence into

he low-rank background and a dynamic tree-structured sparse

oreground. Javed et al. [32] introduced a motion-aware prior ob-

ained by optical flow as the regularization of graphs into the low-

ank component. To enforce the spatial smoothness, Zhou et al.

24] proposed to relax the requirement of sparse and random dis-

ribution of corruption by preserving l 0 -penalty and modeling the

patial contiguity of the sequence. CLASS [33] proposed a collab-

rative framework to leverage the various size of the moving ob-

ects via introducing the global appearance consistency. However,

hey considered the spatial smoothness only according to the coor-

inates of the pixels while ignoring the appearance similarity. Xin

t al. [25] introduced the intensity similarities to the neighboring

ixels via regularization terms to enforce the appearance smooth-

ess. Shakeri at al. [34] presented an online sequential framework

ia solving sequential low-rank approximation and contiguous out-

ier representation problem. However, these methods constructed

he graph only based on pixel level which ignored the spatial com-

actness. Recently, Javed et al. [29] presented an online matrix de-

omposition using max-norm constraints on each superpixel seg-

ent. However, they only enforce the structured constraint be-

ween the spatial neighbors while ignoring the more informative

tructures of the foreground including the spatial compactness and

he multi-scale cues. 

. Our approach 

In this section, we will elaborate our multi-scale structured

ow-rank and sparse factorization model, followed by the alternat-

ng optimization algorithm. 
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Fig. 2. Illustration of generating the informative graphs. (a) Weights construction 

between the neighboring pixels where the thicker edges indicate the higher appear- 

ance similarities. (b) Graph construction between the pixel pairs within the same 

superpixel. 
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.1. Problem formulation 

We formulate the problem of background subtraction as struc-

ured low-rank and sparse factorization model. A video sequence

 = [ f 1 , f 2 , ..., f n ] ∈ R 

m ×n is composed of n frames by of m pixels

er frame. B ∈ R 

m ×n is a background matrix, which denotes the

nderlying background images. Our goal is to discover the object

ask S from data matrices D , where S ij is a binary matrix: 

 i j = 

{
0 , 

1 , 

if i j is background , 

if i j is foreground . 
(1) 

We assume that the underlying background images with low-

ank structure and the foregrounds with sparse and contiguous

tructure, which has been successfully applied in structured back-

round modeling [24,35] . Furthermore, for the background region

here S i j = 0 , we assume that D i j = B i j + εi j , where εij denotes

.i.d. Gaussian noise. Based on the above assumptions, we have: 

min 

B , S i j ∈ { 0 , 1 } 
α ‖ v ec(S ) ‖ 0 

s.t. S ⊥ ◦ D = S ⊥ ◦ (B + ε) , rank (B ) ≤ r, 
(2) 

here α is a penalized factor, ‖ X ‖ 0 indicates the l 0 norm of a vec-

or. “◦” denotes element-wise multiplication of two matrices, S ⊥ 
enotes complementary matrix of S , i.e, S ⊥ + S = 1 . r is a constant

hat suppresses the structure complexity of the background model.

.1.1. Appearance consistency 

In order to preserve the spatial structure of the objects,

24,35] constructed the graph based on the neighboring pixels.

owever, as we discussed in Fig. 1 (b), it is essential to penalise the

eighbors with inconsistent appearances while enhancing the ones

ith consistent appearances [25,29] . Therefore, we enforce the ap-

earance consistency into the structure of the informative graphs

as shown in Fig. 2 (a)) by: 

| C v ec(S ) || 1 = 

∑ 

(i j,kl) ∈N 1 
w i j,kl | S i j − S kl | , (3)

here, ‖ X ‖ 1 = 

∑ 

i j | X i j | denotes the l 1 -norm, N 1 denotes the edge

et connecting spatially neighboring pixels, (i j, kl) ∈ N 1 when pixel

j and kl are spatially connected. C is the node-edge incidence ma-

rix denoting the connecting relationship among pixels, and vec ( S )

s a vectorize operator on matrix S . w ij, kl indicates the appearance

imilarity between the pixels which is defined as: 

 i j,kl = exp 

−|| d i j − d kl || 2 2 

2 δ2 
, (4) 

here d ij and d kl represent the intensity of pixel ij and kl respec-

ively and δ is a tunning parameter which is set as 30 in this paper.
ased on this construction, as shown in Fig. 1 (a), the higher proba-

ility that a pair of pixels belongs to the same pattern (with closer

ppearance similarity), the stronger correlation between this pair,

hich can enforce their appearance consistency. 

.1.2. Spatial compactness 

It is observed that, the pixels from the same superpixel, which

s a perceptually compact unit with consistent color and tex-

ure, are basically derived from the same pattern (background/

oreground) as shown in Fig. 1 (c) and (d). In order to enforce the

tructure of spatial compactness, we first generate the superpixel

egmentation via SLIC [30] , which is simple and efficient compar-

ng to LRW [36] and GWT [37] . Then, we construct the fully con-

ected graph between the pixels within each superpixel as illus-

rated in Fig. 2 (b). We introduce this structured constraint into the

odel via: 

| A v ec(S ) || 1 = 

∑ 

(i j,pq ) ∈N 2 
| S i j − S pq | , (5)

here, N 2 indicates edge set connecting all the pixel pairs within

ach superpixel and A is the node-edge incidence matrix denot-

ng the connecting relationship among pixels. Noted that we don’t

nforce additional appearance similarities onto the graph within a

uperpixel since the supperpixel is a conceptual group with similar

ppearances. In a sense, the compact structure in a superpixel can

romote the appearance consistency simultaneously. 

.1.3. Multi-scale integration 

Noted that the scale of superpixel segmentation controls the

iversity of the foreground structure. As shown in Fig. 1 (c) and

d), the coarse/fine scale with smaller/larger number of superpix-

ls represents the global/local structure of the foreground. In or-

er to capture the diverse foreground structures on varying scales,

e further integrate above structured constraints into a multi-scale

ashion. Considering the S k , k = 1 , . . . , K indicates the foreground

upport matrix on the k th scale, we encourage the foreground sup-

orts from varying scales close to the true foreground S . As con-

luded, we formulate the multi-scale structured foreground inte-

ration as: 

min 

B k , { S k 
i j 
, S i j }∈ { 0 , 1 } 

K ∑ 

k =1 

α ‖ v ec(S k ) ‖ 0 + || E 

k v ec(S k ) || 1 + η ‖ S k − S ‖ 

2 
F 

s.t. S k ⊥ ◦ D = S k ⊥ ◦ (B 

k + ε) , rank (B 

k ) ≤ r, 

(6) 

ith: 

| E 

k v ec(S k ) || 1 = β|| C 

k v ec(S k ) || 1 + γ || A 

k v ec(S k ) || 1 , (7)

here β , γ and η are the tuning parameters leveraging the con-

ribution of appearance consistency, spatial compactness and the

ulti-scale integration respectively. 

.2. Model optimization 

Eq. (6) is a NP-hard problem, to make it tractable, we relax the

ank operator on B with the nuclear norm which has been proven

s an effective convex surrogate of the rank operator [38] . There-

ore, Eq. (6) can be reformulated as: 

min 

B k , { S k 
i j 
, S i j }∈ { 0 , 1 } 

K ∑ 

k =1 

1 

2 

|| S k ⊥ ◦ (D − B 

k ) || 2 F + α ‖ v ec(S k ) ‖ 0 

+ || E 

k v ec(S k ) || 1 + λ ‖ B 

k ‖ ∗ + η ‖ S k − S ‖ 

2 
F , 

(8) 

here λ is a balance parameter. || · || ∗ and || · || F indicate the nu-

lear norm and the Frobenius norm of a matrix, respectively. 

We adopt an alternating algorithm by separating Eq. (8) over

 

k , S k and S via solving the following three subproblems. 
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3.2.1. Solving B 

k 

Due to the high computational complexity of singular value de-

composition via optimizing the nuclear norm, we decompose the

background B 

k into two sub-matrices as B 

k = M 

k N 

k inspired by

Mazumder et al. [39] and reformat Eq. (8) as: 

min 

{ S k , S i j }∈ { 0 , 1 } , M 

k , N k 

K ∑ 

k =1 

1 

2 

|| S k ⊥ ◦ (D − M 

k N 

k ) || 2 F + α ‖ v ec(S k ) ‖ 0 

+ || E 

k v ec(S k ) || 1 + η ‖ S k − S ‖ 

2 
F + 

λ

2 

‖ M 

k ‖ 

2 
F + 

λ

2 

‖ N 

k ‖ 

2 
F . 

(9)

Given an current foreground mask S k , estimating B 

k by min-

imizing Eq. (8) turns out to be the matrix completion problem.

This is to learn a low-rank background matrix from partial obser-

vations: 

arg min 

M 

k , N k 
= || P 

k − M 

k N 

k || 2 F + λ( 
∥∥M 

k 
∥∥2 

F 
+ 

∥∥N 

k 
∥∥2 

F 
) , (10)

where P 

k = S k ⊥ ◦ D + S k ◦ B 

k , which can be minimized along one

coordinate direction at each iteration. We expand this procedure

as follows: 

First, fix the other variables and update M 

k by solving the prob-

lem: 

arg min 

M 

k 
‖ P 

k − M 

k N 

k ‖ 

2 
F + λ‖ M 

k ‖ 

2 
F , (11)

which has a closed-form solution given as: 

M 

k = P 

k N 

k � (N 

k N 

k � + λI ) −1 . (12)

Then, N 

k plays a symmetric role to M 

k which can be updated

by solving: 

arg min 

N k 
‖ P 

k − M 

k N 

k ‖ 

2 
F + λ‖ N 

k ‖ 

2 
F , (13)

with a closed-form solution given as: 

N 

k = ( M 

k � M 

k + λI ) −1 M 

k � P 

k . (14)

Finally, B 

k can be achieved via: 

B 

k = M 

k N 

k . (15)

3.2.2. Solving S k 

Given a current estimate of the background position matrix B 

k ,

Eq. (8) can be transferred into following optimization function: 

min 

S k 

1 

2 

|| S k ⊥ ◦ (D − B 

k ) || 2 F + α ‖ v ec(S k ) ‖ 0 + || E 

k v ec(S k ) || 1 
+ η ‖ S k − S ‖ 

2 
F . (16)

The energy function Eq. (16) can be rewritten in line with the

standard form of a first-order Markov Random Fields [40] as: 

1 

2 

|| S k ⊥ ◦ (D − B 

k ) || 2 F + α ‖ v ec(S k ) ‖ 0 + || E 

k v ec(S k ) || 1 
+ η ‖ S k − S ‖ 

2 
F 

= 

1 

2 

∑ 

i, j 

(D i j − B 

k 
i j ) 

2 (1 − S k i j ) + α
∑ 

i, j 

S k i j + || E 

k v ec(S k ) || 1 

+ η
∑ 

i j 

(1 − 2 S i j ) S 
k 
i j 

= 

∑ 

i, j 

(α − 1 

2 

(D i j − B 

k 
i j ) 

2 + η(1 − 2 S i j )) S 
k 
i j + || E 

k v ec(S k ) || 1 

+ 

1 

2 

∑ 

i, j 

(D i j − B 

k 
i j ) 

2 . (17)
S k 
i j 

is a constant, 1 
2 

∑ 

i, j (D i j − B 

k 
i j 
) 2 is also a constant with fixed

 

k . Meanwhile, S ij which can be achieved via Eq. (19) is also a con-

tant. Known Markov unary term and pairwise smoothing term,

ne can easily obtain the optimal foreground matrix though graph

uts method [41,42] since S k 
i j 

∈ { 0 , 1 } is discrete. 

.2.3. Solving S 

Once attained the current S k and B 

k for each scale, Updating S

urns to be: 

min 

S 

K ∑ 

k =1 

‖ S − S k ‖ 

2 
F , (18)

hich has a closed-form solution given as: 

S = 

1 

K 

K ∑ 

k =1 

S k . (19)

A sub-optimal solution can be obtained by alternating optimiz-

ng B 

k , S k and S and the algorithm is summarised in Algorithm 1 . 

lgorithm 1 Optimization Algorithm to Eq. (8) . 

nput: D = [ l 1 , l 2 , ..., l n ] ∈ R 

m ×n . 

Initialize B 

k = D , S = S k = 0 , τ = 1 e − 4 , maxIter = 20 . 

utput: S , B 

k , S k . 

1: For k = 1 to K do 

2: Updating B 

k : optimizing energy function Eq. (10) via: 

(1) updating M 

k : M 

k ← P 

k N 

k T (N 

k N 

k � + λI ) −1 , 

(2) updating N 

k : N 

k ← ( M 

k � M 

k + λI ) −1 M 

k T P 

k , 

(3) updating B 

k : B 

k ← M 

k N 

k . 

3: Updating S k : using graph cuts to optimize energy function Eq.

(16) by : 

S k ← arg min S k 
∑ 

i, j (α − 1 
2 (D i j − B 

k 
i j 
) 2 + η(1 − 2 S i j )) S 

k 
i j 

+ 

|| E 

k v ec(S k ) || 1 + 

1 
2 

∑ 

i, j (D i j − B 

k 
i j 
) 2 . 

4: End For . 

5: Updating S : S ← 

1 
K 

∑ K 
k =1 S 

k . 

6: Check the convergence condition: if the maximum objective

change between two consecutive iterations is less than τ or the

maximum number of iterations reaches maxIter, then terminate

the loop. 

. Experiments 

We evaluate our approach on GTFD [35] and CDnet14

43] against five state-of-the-arts including COROLA [34] , DECOLOR

24] , GMM [8] , VIBE [9] and PCP [21] . To keep things fair, we

hoose the default parameters released by the authors for corre-

ponding methods and resize the resolution of all the frames into

60 × 120. 

.1. Evaluation settings 

.1.1. Datasets 

GTFD [35] dataset consists of 25 video sequence pairs in both

isual and thermal modality with various challenges including in-

ermittent motion, low illumination, bad weather, intense shadow,

ynamic scene and background clutter etc. We evaluate the pro-

osed method on visual modality videos. 

CDnet14 [43] is a large scale dataset consisting of 11 dif-

erent categories with 55 video sequences. We evaluate our
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Table 1 

Evaluated parameters on GTFD dataset. 

Param Setting F-measure Param Setting F-measure Param Setting F-measure 

α 14.4 σ 2 0.63 β 0.14 0.63 γ 0.014 0.64 

16.2 σ 2 0.69 0.21 0.69 0.028 0.69 

18 σ 2 0.66 0.28 0.65 0.042 0.63 

η 0.006 0.65 γ 7.5 0.63 {A 1 , A 2 } {450, 650} 0.67 

0.007 0.69 8.5 0.69 {650, 950} 0.69 

0.008 0.63 9.5 0.65 {450, 950} 0.68 

Fig. 3. Sample results of our method against the state-of-the-arts on six videos from GTFD dataset. 
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ethod on 10 videos from 5 challenging categories including Base-

ine (Office, PETS2006), intermittentObjectMotion (Sofa, winterDrive-

ay), nightVideos (TramStation, WinterStreet), Shadow (CopyMa-

hine, BusStation) and Thermal (Park, Corridor). 

.1.2. Evaluation criterion 

The Precision, Recall, F-measure are first comprehensively eval-

ated, which are defined as following: 

Precision = 

TP 

TP + FP 

, Recall = 

TP 

TP + FN 

, 

F-measure = 2 

Precision × Recall 

Precision + Recall 
. 

(20) 

here the TP, FP, FN represent the true positive, false positive and

alse negative, respectively. 

Furthermore, the Mean Absolute Error (MAE) is evaluated to

easure the disagreement between the detected results and the

roundtruth: 

AE = 

1 

N × F 

F ∑ 

i =1 

∑ 

p∈ DR , ́p ∈ GT 

XOR (p, ṕ ) (21) 

here N denotes and resolution of the frame and F denotes the

umber of the frames in the video clip. DR and GT indicate the

Detection Result” and the “Ground Truth” respectively. XOR ( ∗) de-

otes the logic operator “exclusive OR ”. p, ṕ ∈ { 0 , 1 } denotes the

ackground/foreground pixels. 

.1.3. Parameters 

There are six important parameters in our model. We adjust

ne parameter while fixing other parameters and then obtain best
erformance for our approach. In our model of Eq. (8) , the pa-

ameter α which controls the sparsity structure of the foreground

asks is set as α = 16 . 2 σ 2 , where σ 2 is estimated online by the

ean variance of { D ij − B ij } . The parameter β , γ , η and λ control

he relative contribution of each term in Eqs. (7) and (8) , respec-

ively. We empirically set as { β, γ , η, λ} = { 0 . 21 , 0 . 028 , 0 . 007 , 8 . 5 } .
he number of superpixels on two different scales are {A 1 , A 2 } =
 650 , 950 } with K = 2 . We evaluate the parameter variations on

TFD dataset and report the corresponding F-measure in Table 1 . It

s worth to note that our method is insensitive to the parameters. 

.2. Qualitative results 

Figs. 3 and 4 demonstrate the detected results on a certain

rame of video clips from GTFD [35] and CDnet14 [43] respec-

ively. From which we can see, our method can produce more pre-

ise boundary information and better suppress the influence of the

oise. PCP is not able to capture contiguous structure of the fore-

round since only enforcing the sparse structure of the foreground.

MM and VIBE work on the original pixel space therefore they

re quite sensitive to the noise and introduce “ghost”. DECOLOR is

uch more robust but fails to sketch the contours of the objects.

OROLA, as the state-of-the-art online detection model, tends to

roduce the cavities on the objects due to the lack of structure

onstraint of spatial compactness. 

.3. Quantitative results 

Tables 2 and 3 report Precision, Recall, F-measure, and MAE on

ublic GTFD dataset [35] and CDnet14 [43] respectively. It is clear

o see that our method significantly outperforms the state-of-the-

rts in precision. Although the recall of our method looks lower
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Fig. 4. Sample results of our method against the state-of-the-arts on ten videos from CDnet dataset. 

Table 2 

The average Precision, Recall, F-measure and MAE values on GTFD dataset. 

Algorithm PCP [21] VIBE [9] GMM [8] DECOLOR [24] COROLA [34] OURS 

Precision 0.29 0.40 0.51 0.54 0.53 0.65 

Recall 0.18 0.47 0.64 0.82 0.62 0.80 

F-measure 0.22 0.39 0.51 0.59 0.52 0.69 

MAE 0.0155 0.0169 0.0125 0.0061 0.0135 0.0048 
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than DECOLOR [24] , from Fig. 3 we can see, DECOLOR [24] tends

to produce coarse boundary which always leads to high recall. The

more balanced criteria between precision and recall, F-measure,

together with the MAE verify the promising performance of our

method. 

4.4. Component analysis 

In order to validate the contribution of our multi-scale structure

integration of appearance consistency and spatial compactness, we

evaluate several variants of our model on GTFD and report the

results on Table 4 , where OURS: the proposed model; OURS-I: our

model without spatial compactness structure by setting γ = 0 ;
URS-II: our model without appearance consistency structure

y setting all w i j,kl = 1 ; OURS-III: our model on the single scale

without multi-scale structure) by setting η = 0 with the number

f superpixels A = 950 . From Table 4 we can see that: 1) Both

ppearance consistency and spatial compactness structures play

mportant roles for moving object detection. 2) The multi-scale

ntegration can further boost the performance. Together with the

isualized examples on Fig. 5 we can see that: 1) After introducing

he spatial compactness structure (comparing OURS to OURS-I),

he model can better capture the global spatial coherence and

uppress the influence of the noises. 2) After introducing the

ppearance consistency structure (comparing OURS to OURS-II),

he model can better preserve the local contour of the objects. 3)
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Table 3 

Comparison of Precision (P), Recall (R), F-measure (F) and MAE on videos from CDnet14 dataset. 

Methods PCP [21] VIBE [9] GMM [8] DECOLOR [24] COROLA [34] OURS 

P 0.65 0.75 0.81 0.87 0.81 0.96 

Office R 0.08 0.73 0.54 0.83 0.74 0.82 

F 0.15 0.73 0.63 0.82 0.76 0.84 

P 0.69 0.74 0.88 0.64 0.59 0.89 

PETS2006 R 0.13 0.22 0.27 0.23 0.15 0.67 

F 0.22 0.33 0.40 0.30 0.23 0.75 

P 0.48 0.47 0.85 0.87 0.82 0.87 

Sofa R 0.05 0.36 0.30 0.44 0.36 0.44 

F 0.09 0.40 0.43 0.56 0.47 0.56 

P 0.27 0.62 0.66 0.64 0.71 0.73 

WinterDriveway R 0.05 0.32 0.17 0.48 0.35 0.71 

F 0.09 0.41 0.26 0.52 0.37 0.71 

P 0.50 0.27 0.32 0.41 0.49 0.49 

TramStation R 0.19 0.65 0.54 0.98 0.82 0.84 

F 0.27 0.37 0.39 0.57 0.60 0.61 

P 0.51 0.21 0.22 0.20 0.45 0.61 

WinterStreet R 0.21 0.69 0.68 0.97 0.60 0.57 

F 0.29 0.31 0.31 0.34 0.50 0.56 

P 0.28 0.48 0.69 0.79 0.77 0.95 

CopyMachine R 0.06 0.80 0.68 0.99 0.76 0.92 

F 0.10 0.57 0.68 0.87 0.75 0.93 

P 0.92 0.78 0.87 0.86 0.81 0.86 

BusStation R 0.12 0.34 0.36 0.78 0.28 0.76 

F 0.21 0.46 0.50 0.79 0.33 0.80 

P 0.99 0.67 0.92 0.65 0.89 0.91 

Park R 0.27 0.37 0.45 0.99 0.37 0.61 

F 0.42 0.47 0.60 0.78 0.48 0.71 

P 0.80 0.46 0.48 0.57 0.66 0.89 

Corridor R 0.20 0.68 0.25 0.99 0.16 0.87 

F 0.30 0.52 0.30 0.70 0.24 0.88 

P 0.61 0.55 0.67 0.65 0.70 0.82 

Average R 0.14 0.52 0.42 0.77 0.46 0.72 

F 0.21 0.46 0.45 0.63 0.47 0.74 

MAE 0.0368 0.0404 0.0349 0.0284 0.0259 0.0069 

Fig. 5. Example results of our method and its variants on four video sequences from GTFD dataset. 

Table 4 

Component analysis of our method and its variants on the GTFD dataset. 

Algorithm Precision Recall F-measure 

OURS 0.65 0.80 0.69 

OURS-I 0.58 0.81 0.64 

OURS-II 0.62 0.78 0.66 

OURS-III 0.60 0.82 0.66 

B  

l

4

 

a  
y multi-scale integration, our model yields to better global and

ocal consistency in both spatial and appearance aspects. 

.5. Computational complexity 

Our method are implemented on the mixing platform of C ++
nd MATLAB without any code optimization on a desktop with an
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Table 5 

Computational complexity (in fps) and F-measure comparison on GTFD dataset. 

PCP VIBE GMM DECOLOR COROLA OURS OURS-SS OURS-SS + SI 

Code Type C ++ C ++ MATLAB MATLAB & C ++ MATLAB & C ++ MATLAB & C ++ MATLAB & C ++ MATLAB & C ++ 

FPS 57 60 65 2.59 11 1.13 2.14 1.55 

F-measure 0.22 0.39 0.51 0.59 0.52 0.69 0.69 0.70 

Fig. 6. Illustration of limitation and failure example of our approach from video “car3” and “pedestrain7” from GTFD dataset [35] . 
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Intel i7 3.4 GHz CPU and 32 GB RAM. Runtime together with the F-

measure of our method against other methods on GTFD dataset is

presented in Table 5 , where OURS-SS: our model excludes the time

for superpixel segmentation, OURS-SS + SI: OURS-SS model solving

B via conventional SOFT-INPUT [44] instead of our decomposition

strategy. From which we can see: 1) Though GMM, VIBE and PCP

run much faster than ours, these methods perform significantly

worse. 2) Our method performs slight slower than DECOLOR and

COROLA. The main reason is the time for superpixel segmentation

and more connections on the informative graphs. 3) The matrix

decomposition strategy can speed up the optimization comparing

to the conventional SOFT-INPUT [44] without losing accuracy. Our

method achieves significantly superior accuracy. We believe that it

can be accelerated by further code optimization. 

4.6. Limitation 

We also encounter unsatisfactory results and detection failure

as shown in Fig. 6 . (1) The unfaithful superpixel segmentation of

the car in Fig. 6 (b1) and the pedestrian in Fig. 6 (b2) will introduce

false contour of the moving object as shown in Fig. 6 (d1) and (d2).

(2) The tiny object (the bicycle man indicated in Fig. 6 (a1)) mov-

ing in the comparative dark environment fails to be detected as

shown in Fig. 6 (d1). The first limitation could be refined by more

robust superpixel segmentation method. The second failure could

be significantly alleviated via multi-modal resources like thermal

images. 

5. Conclusion 

In this paper, we have proposed a novel method for moving

object detection via multi-scale structured low-rank and sparse

factorization. We first encourage the structure of the neighboring

pixels with close appearance. Then we explore the spatial com-

pactness structure among the pixels within the same superpixel.

Finally we integrate the multi-scale coherence with different

number of superpixels into a unified framework. We optimize the

proposed model via an efficient alternating algorithm. Extensive

experiments against state-of-the-arts on the public datasets sug-
est that, the proposed method can better preserve the boundary

f the objects and is robust to the noise. In future work, we will

ocus on extending our model to online or streaming fashion for

eal-life applications. 
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