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a b s t r a c t 

Multi-modal foreground detection, which integrates multiple complementary data like visible and ther- 

mal infrared sources for moving object detection, has received more and more attention recently. In this 

paper, we propose a novel M ulti-modal F oreground D etection approach that pursues the inter- and intra- 

modality consistencies in a unified L ow-rank and S parse separation model called MFDLS. In particular, 

we first introduce a soft cross-modal constraint to pursue the inter-modal consistency among different 

modalities, while allowing sparse inconsistency to model their heterogeneous properties. Second, in ad- 

dition to the conventional local appearance consistency within each modality, we further propose to pre- 

serve the global appearance consistency via Gaussian Mixture Model as the intra-modality consistency. 

Extensive experimental results yield to a new state-of-the-art comparing to the prevalent multi-modal 

foreground detection methods. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Foreground detection aims to extract moving objects from

ackground in a video segment. It plays an important and fun-

amental role in computer vision due to its potential applica-

ions, such as behavior analysis, video surveillance, visual object

racking [1] , pedestrian detection and other application scenar-

os in [2,3] . Representative works on foreground detection include

aussian Mixture Models (GMM) [4] , ViBe [5] , and multiple fea-

ures based methods [6] , etc . More development on foreground de-

ection (background subtraction) can refer to comprehensive sur-

eys [7–9] . Despite of decades of effort s [10,11] , it still suffers from

any challenges, such as complicated background, low illumina-

ion, bad weather, etc . 

Low-rank and sparse separation, which decomposes a video se-

uence matrix into low-rank background matrix and sparse fore-

round matrix, has attracted increasing attention for foreground

etection [12,13] . In the past years, many progress has been

ade for single-mode foreground detection based on low-rank

nd sparse separation [14–16] . However, single-model foreground

etection still faces the above challenging issues. 
∗ Corresponding author at: School of Computer Science and Technology, Anhui 

niversity, Hefei, China. 
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Recently, some works introduced the heterogeneous thermal

nfrared data as a supplementary source to boost the robustness

f foreground detection. Different from the visible images where

ach pixel represents the color of the object appearance cap-

ured by the electromagnetic specturm that can be perceived by

uman eyes, the pixels on the infrared images mainly depends

n the emissivity and temperature distribution of the object.

hey are heterogeneous with distinctive properties in context,

exture and color space, which can complement each other.

i et al. [17] proposed to learn the share foreground mask in

ulti-modal foreground detection based on a weighted low-rank

nd sparse separation approach to adaptively fuse the data from

ifferent modalities. Yang et al. [18] designed a fast foreground

etection method by collaboratively separating and integrating

he foregrounds in thermal and visible modalities. However, the

ard consistency of sharing a foreground mask between different

odalities [17] might be overstrict, since different modalities are

eterogeneous and thus with distinctive properties. As demon-

trated in Fig. 1 (a), the pedestrian obscured in visible modality will

e compensated by the source/image from the thermal modality.

nd the visible one, which was greatly disturbed by lamplight as

emonstrated in Fig. 1 (b), was less affected in thermal modality. 

Moreover, some works successfully explored the intra-modal

ppearance consistency in foreground detection [19,20] , in which

he local appearance consistency was introduced to improve detec-

ion performance based on the assumption that neighboring pixels

https://doi.org/10.1016/j.neucom.2019.08.087
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.08.087&domain=pdf
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Fig. 1. Illustration of the heterogeneous foregrounds with different sizes in different modalities. The first and the second rows indicate the visible and thermal image pairs 

from GTFD dataset. 
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tended to have a similar appearance. However, such local consis-

tency lacked of global information and thus might be easily dis-

turbed by noises. In addition, existing low-rank and sparse separa-

tion methods assume the moving objects as sparse outliers, which

might limit their performance when moving objects are relatively

in large size such as in Fig. 1 (c). 

According to the above observations, we project an innovative

multi-modal foreground detection method to simultaneously cap-

ture cross-modal consistency among the heterogeneous modalities

and local-global appearance consistency within each modality in a

single low-rank separation framework. Given the two accumulative

matrices of the videos from both visible and thermal modalities,

we first assume that the potential background along the sequen-

tial frames in each modality are linearly correlated while the fore-

grounds or outliers are generally sparse. Within each modality, we

first incorporate the local appearance consistency constraint among

the neighborhood pixels and further enforce the global appear-

ance consistency to improve the robustness to noises and sparse

assumption on foreground objects. In different modalities, to take

both collaboration and heterogeneity into account, we propose the

soft cross-modal consistency to make foreground mask consistent

while allowing the sparse inconsistency. The all consistent con-

straints are integrated into a unified low-rank separation model (as

shown in Fig. 2 ). Finally, we jointly optimize the proposed multi-

modal foreground detection model via an efficient solver to si-

multaneously separate the background models and the foreground

masks which are heterogeneous in distinctive modalities. 

The major contributions of this work can be summarized as: 

• We propose an effective method to integrate complementary

yet heterogeneous source data in multi-modal foreground de-

tection. More experiments demonstrate the effectiveness of the

proposed model against the state-of-the-art multi-modal fore-

ground detection methods. 

• We propose to introduce a soft consistency to capture both

collaboration and heterogeneity among different modalities for

multi-modal foreground detection. 

• We integrate the global appearance consistency model by the

GMM within each modality to improve the robustness to noises
and sparse assumption on foreground objects. e  
The preliminary version of this work can be referred to [21] ,

here we proposed to integrate soft cross-modal consistency and

ocal appearance consistency into the low-rank separation model

o capture both collaboration and heterogeneity among different

odalities. Based on the observation that existing low-rank and

parse separation methods present limited performance on larger

ize foregrounds due to the assumption that the foregrounds are

enerally sparse, in this work, we further consider the global ap-

earance consistency in each modality for detecting moving ob-

ects with diverse sizes and with higher robustness to the noises.

oreover, more experiments have been implemented to verify the

ffectiveness of our model compared to the preliminary version. 

The rest parts of this paper are organized as follows. In

ection 2 , the related work to our MFDLS is introduced. We detail

he MFDLS and the proposed constraints in Sections 3 . The experi-

ental results and analysis betweening our method and the state-

f-the-art methods are shown in Sections 4 . Section 5 concludes

his paper. 

. Related works 

Background subtraction is the most commonly used method for

oreground detection, while low-rank and sparse separation is one

f the representative framework in background subtraction due to

ts robust to noises. We focus on multi-modal foregrund detec-

ion in the low-rank and sparse separation framework. Therefore,

e briefly discuss the state-of-the-art literatures on background

ubtraction, low-rank and sparse separation and multi-modal fore-

round detection as the related works. 

Background subtraction . The key task of background subtraction

s to establish a solid background model [22] . Background subtrac-

ion has been extensively usaged since the 1990s and primarily

or moving object detection. Representative approaches consist

f mixture of Gaussian [4] , the variations on Gaussian distribu-

ion [23,24] , and other models [25,26] . Ali et al. [24] utilized

he Gaussian components to model the intensity value of pixel

locks based on the dynamic learning rate. Chen et al. [23] pro-

osed a hierarchical superpixel segmentation method based

n the optical flow and spanning trees based GMM. Hofmann

t al. [25] designed a method that treats decision threshold and
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Fig. 2. The diagram of the proposed MFDLS, where k indicates the number of modality of the input video. 
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andomness parameters of all pixels as adaptive state variables.

hong et al. [26] integrated based pixel level method and based

bject level method for foreground detection. However, these

ethods independently modeled the background for each pixel on

ach frame, while ignoring the relationship between continuous

rames, therefore the sensitive to noise and occlusion. 

Recently, regarding foreground detection as a classification task,

eep learning methods [27] have gained increasing attention for

etecting the object from video sequences. For instance, Zeng

t al. [28] proposed a fully convolutional network structure that

sed the results of foreground detection of different background

ubtraction algorithms as input. Instead of the traditional back-

round model strategy, some methods [27] calculated the proba-

ility of the foreground for each pixel. Braham and Van Droogen-

roeck [27] designed a CNN model to learn the spatial features and

hen subtracted the background from an input image patch. Mean-

hile, some deep learning based approaches [29] regarded the

oreground detection as a segmentation problem, which directly

redicted the category (foreground/background) of each pixel via

eep learning networks (i.e., full convolution neural networks) for

 single input image. Even if deep learning gives significant im-

rovements in foreground detection, it presents the drawback to be

upervised requiring hand labeled images for training. On the con-

rary, low-rank representation methods (like the proposed method)

re unsupervised. 

Low-rank and sparse separation . Low-rank and sparse back-

round modeling aims to detect the foreground by decom-

osing the correlated background from the sequential frames

n the low-rank subspace. Robust Principal Component Analysis

RPCA) [30] first devoted to the low-rank and sparse background

odeling. Principal Component Pursuit (PCP) [31] proposed to re-

over the low-rank background and the sparse foregrounds indi-

idually via a convex program. Zhou et al. [10] further proposed to

nforce a spatial consistency constraint into the low-rank represen-

ation framework to encourage the spatial smoothness inside the

oregrounds. Xin et al. [20] proposed to regularize the foreground

nd background by the generalized fused lasso into the low-rank

epresentation model. 
The main challenge of applying the low-rank and sparse

ecomposition to foreground detection are to have on-

ine/incremental algorithms and spatio-temporal algorithms. As 

or the online/incremental algorithms, He et al. [32] proposed an

nline method based robust subspace estimation from randomly

ubsampled data for faster separation rate. MERoP [33] presented

 provably correct algorithm to achieve the online fashion for

oth the static and dynamic RPCA. Guo et al. [34] indicated that

he time sequences of sparse vectors and dense vectors can be

ecovered by their sum when the slowly changing background

s separated from the moving foreground object. Rodriguez and

ohlberg [35] proposed a new incremental fashion for PCP with

omparable performance to the batch PCP. pROST [36] used the

 p -norm as a convex relaxation of the sparse function to iden-

ify sparse foreground objects and a framework which efficient

lternating online optimization. 

In order to make use of the spatial-temporal information dur-

ng the videos, Sobral et al. [37] used the spatial and temporal

aliency detector to build shape constraint and confidence map for

onstraining the spare component. Javed et al. [38] used the max-

orm constraint to obtain initial foregrounds followed by efficient

FL (Generalized Fussed Lasso) to acheive the background sub-

raction in the online fashion on superpixel. Ebadi et al. [39] pro-

osed to handle the camera motion method by inducing the struc-

ured sparsity incorporating the spatial prior. Javed et al. [40] in-

estigated an online graph regularization spatiotemporal RPCA al-

orithm by saving low-rank spatiotemporal information in a dual

pectral graphs. 

Multi-modal foreground detection . Multi-modal data has at-

racted increasing attention in the community [41] with the rapid

evelopment of various sensors, such as thermal infrared and

epth sensors. Researchers started to develop the foreground de-

ection with multi-modal resources to compensate for the lim-

tations of the data from single modality [17,18] . Nadimi and

hanu [42] provided a physical model to combine the exter-

al conditions with the visible and infrared data into a globally

onsistent dynamic representation. Becker et al. [43] investigated

he strategy of fusing infrared and visible video streams from a
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vibrating camera. Bouwmans et al. [44] conducted a comprehen-

sive study on the types and sizes of features used in background

modeling and foreground detection, as well as its inherent spec-

trum, spatial and temporal characteristics. 

Some literature [43,44] investigated the fusion of visible and

infrared spectrum and analyze the role of features in background

modeling. Conaire et al. [41] used infrared and visible features to

remove incorrectly detected foreground regions to model a robust

background. Li et al. [17] proposed a weighted low-rank decompo-

sition (WELD) to adaptively fuse the variables from each modality

with the shared foreground mask for multi-modal foreground de-

tection. Yang et al. [18] designed a collaborative low-rank decom-

position (CLoD), which efficiently detected the foreground under

thermal and visible modalities by incroporating the multi-modal

separation. However, most existing methods ignore the global

appearance consistency. 

3. Proposed methodology 

Our Multi-modal Foreground Detection via inter- and intra-

modality consistent Low-rank Separation MFDLS is in a batch

processing manner. 

3.1. Problem formulation 

As for the k -th modal video sequences k = 1 , . . . , K, we first re-

shape each frame into a column of vectors, and then accumulate

the video sequence into a m × n matrix, i.e. , D 

k = [ d 

k 
1 
, d 

k 
2 
, . . . , d 

k 
n ] ∈

R m ×n , where m and n indicate the total number of pixels on each

frame and the number of frames of the video respectively. Herein,

we use grayscale-thermal data, therefore K = 2 . One can easily ex-

tend our model to larger K since on one hand, we formulate our

model in a general fashion by using an arbitrary number K as the

number of modalities. On the other hand, when the inputs are

more than 2 modalities, the proposed soft cross-modal consistency

could indeed handle such scenarios to achieve collaborative fusion

of all modalities. We assume that the foregrounds are contigu-

ous and sparse and the background along the sequential frames in

each modality are linearly correlated, which has been widely em-

ployed in existing works [10,45] . Therefore, our ultimate task is to

separate the input multi-modal video sequences/matrices D 

k , k =
1 , 2 , . . . , K into the contiguous and sparse foreground masks S k and

the low-rank backgrounds B 

k ∈ R m × n for each modality as: 

min 

B k , S k 

1 

2 

|| f S k ⊥ (D 

k − B 

k ) || 2 F + β|| v ec(S k ) || 0 , 
s.t. rank (B 

k ) ≤ r k , k = 1 , 2 , . . . , K, 

(1)

where vec ( · ) converts a matrix into a vector. β is a tuning parame-

ter. || · || 0 and || · || F represent the l 0 norm of a vector and the Frobe-

nius norm of a matrix, respectively. r k is a constant denoting the

rank of a matrix, which controls the correlation of the background

matrix in the k -th modality. Herein, D 

k = B 

k + S k . f S ( X 

k ) orthogo-

nally project the matrix X 

k to the linear space based on the sup-

port matrix S k : 

f k S (X 

k )(i, j) = 

{
0 , S i j = 0 , 

X 

k 
i j 
, S i j = 1 . 

(2)

f 
S k ⊥ 

(X 

k ) is the complementary projection, i.e. , f k 
S 
(X 

k ) + f 
S k ⊥ 

(X 

k ) =
X 

k . S k 
i, j 

implies the binary foreground indications: 

S k i, j = 

{
1 , 

0 , 

if i j is foreground , 

if i j is background . 
(3)

Local appearance consistency . In order to maintain the spatial

smoothness of foregrounds, it is necessary to encourage adjacent
ixels to have similar appearance, which is called intra-modal ap-

earance consistency in this paper. || vec ( S k )|| 0 and the intra-modal

ppearance consistency on S can be regarded as the unary term

nd pairwise term of Markov Random Field (MRF) which can be

olved by graph cuts algorithm [46] in the same manner as [10] .

ollowed by [19,20] , we construct the adaptive weights w 

k 
ij, pq into

he smoothness to enforce the local appearance consistency: 

| C 

k v ec(S k ) || 1 = 

∑ 

(i j,kl) ∈ ε k 
w 

k 
i j,pq | S k i j − S k pq |;

 

k 
i j,pq = exp 

−|| d k i j − d k pq || 2 2 

2 θ2 
. 

(4)

here || X || 1 = 

∑ 

i j | X i j | indicates the l 1 -norm. C 

k denotes an adja-

ency matrix, which represents the degree of relationship between

ixel nodes in the k -th modality and εk denotes the edge connec-

ion among the spatial neighborhood pixels in the k -th modality,

is a tunning parameter and d k ij and d k pq represent respectively

he values of pixel ij and pq in the k -th modality. Then, our model

ncorporates this appearance consistency can be expressed as

ollows: 

in 

B k , S k 

1 

2 

|| f S k ⊥ (D 

k − B 

k ) || 2 F + β|| v ec(S k ) || 0 + μ|| C 

k v ec(S k ) || 1 , 
.t. rank (B 

k ) ≤ r k , k = 1 , 2 , . . . , K, 

(5)

here μ is a balance parameter for local appearance consistency. 

Global appearance consistency . Due to the assumption of sparse-

ess on moving objects, Eq. (1) is theoretically insufficient to de-

ect the foregrounds with lage size. From the perspective of statis-

ics, we further assume that the backgrounds and foregrounds

n each modality are with Gaussian distribution, which has been

uccessfully and widely applied in foreground detection [14] .

herefore, we further enforce a global appearance consistency to

ompete the sparse term and thus to improve the capability of

etecting the foreground with large sizes. The global interaction

etween the appearance model of the foreground and the back-

round can be written as: 

K 
 

k =1 

1 ∑ 

l=0 

m ∑ 

i =1 

n ∑ 

j=1 

δ(l, S k i j ) A 

k 
l (i, j) = 

K ∑ 

k =1 

∑ 

l,i, j 

δ(l, S k i j ) A 

k 
l (i, j) (6)

here A 

k 
0 

and A 

k 
1 

are the Gaussian Mixture Models of back-

round and foreground respectively, which are employed to sim-

late the distribution of background and foreground pixels in the

 -th modality. δ(l, S k 
i j 
) is the Dirac delta function that represents

he S k 
i j 

related with the value of l . The A 

k 
l 
(i, j) is a unary poten-

ial that assesses the possibility of pixel i becoming a foreground

r background based on the appearance model of frame j . 

Soft cross-modal consistency . Unlike existing multi-modal fore-

round detection methods [17,18] , we further propose to enforce

he soft cross-modal consistency among the multi-spectral data,

hich models the interdependency between two modalities while

llowing the sparse inconsistency for their heterogeneous proper-

ies. The soft cross-modal constraint is formulated as: 

K ∑ 

 =2 , (i j) ∈F 
| S k 

i j 
− V 

k −1 
i j 

| , (7)

here F is the set of all the pixels as vertices in each modality

as shown in Fig. 2 ), and V ij denotes the set of four neighbors cor-

esponding to the pixel S k 
i j 

in another modality. Thus V 

k −1 
i j 

is de-

ned as [ S k −1 
i j 

, S k −1 
(i +1) j 

, S k −1 
(i )( j+1) 

, S k −1 
(i +1)( j+1) 

] . Eq. (7) urges the pixel

 

k 
i j 

and its cross-modal neighbors V 

k −1 
i j 

possessing to the similar

roperty, which is helpful to improving robustness of cross-modal

oreground detection. Note that we allow sparse inconsistency in

ifferent modalities to account for their heterogeneous properties,
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Algorithm 1 Optimization Process to Eq. (9) . 

Input: D 

k , (k = 1 , . . . , K) . 

Set S k = 0 , B 

k = D 

k , maxIter = 28 , ε = 1 e − 4 . 

Output: S k , B 

k . 

1: for i = 1 : maxIter do 

2: Update B 

k according to Eq. (10); 

3: if rank ( ̂  B 

k ) ≤ r k then 

4: adjust parameter λ, go to step 2. 

5: end if 

6: Update { S k } according to Eq. (12); 

7: Convergence condition: if the number of the interation 

reaches maxIter or the absolute difference betweentwo con- 

tinuous iterations is smaller than ε, then break the loop. 

8: end for 

 

fi

w  

B  

t

 

i  

e  

4

 

M  

t

4

 

d  

p  

r

 

o  

e  

u

 

b  

c  

i  

s

1 URL: https://github.com/yenaipeng/cropped-GTFD.git . 
o we use the absolute value instead of square value to employ the

parse properties. 

Therefore, taking all above considerations together, our model

an be summarized as: 

in 

B k , S k 

1 

2 

|| f S k ⊥ (D 

k − B 

k ) || 2 F + β|| v ec(S k ) || 0 + μ|| C 

k v ec(S k ) || 1 

+ γ
K ∑ 

k =2 , (i j) ∈F 
| S k i j − V 

k −1 
i j 

| + ρ
K ∑ 

k =1 

∑ 

l,i, j 

δ(l, S k i j ) A 

k 
l (i, j) 

.t. rank (B 

k ) ≤ r k , k = 1 , 2 , . . . , K. 

(8) 

here γ is a tuning parameter for soft cross-modal consistency. 

Eq. (8) is a NP-hard problem. We utilize the nuclear norm to

ake Eq. (8) more convenient to calculate, which has demon-

trated to be an effective convex surrogate of the rank opera-

or [47] to relax the constraints of rank operator on B 

k . Meanwhile,

e spliced matrices of different modalities together for collabora-

ive optimization. The final model of our propose is: 

min 

B , S k 

K ∑ 

k =1 

1 

2 

|| f S k ⊥ (D 

k − B 

k ) || 2 F + β|| v ec(S k ) || 0 + λ|| B 

k || ∗

+ μ|| C 

k v ec(S k ) || 1 + γ
K ∑ 

k =2 , (i j) ∈F 
| S k i j − V 

k −1 
i j 

| 

1 + ρ
K ∑ 

k =1 

∑ 

l,i, j 

δ(l, S k i j ) A 

k 
l (i, j) (9) 

here || · || ∗ denotes the nuclear norm of a matrix and λ is a

alance constant. 

.2. Optimization 

The objective function defined in Eq. (9) is a non-convex func-

ion, including continuous and discrete variables. The joint opti-

ization of B and S is extremely difficult. Hence, we usaged the al-

ernating algorithm to decompose the minimization of B and S into

wo subproblems. B-subproblem is a convex optimization problem

nd S-subproblem is a combinatorial optimization problem. Exper-

ments show that the optimal solutions of B-subproblem and S-

ubproblem can be computed efficiently. 

Problem of Eq. (9) can be transformed into the following two

ubproblems: 

B − subproblem . Fixing the current estimation of the foreground

ask ˆ S k , we first minimize Eq. (9) to estimate B 

k : 

in 

B k 

K ∑ 

k =1 

1 

2 

|| f ˆ S k ⊥ 
(D 

k − B 

k ) || 2 F + λ ‖ B 

k ‖ ∗ (10) 

Here we learn a low-rank background matrix, and utilize SOFT-

MPUTE [48] algorithm to estimate B 

k by iteratively employing

q. (11) and 
λ means the singular value thresholding.: 

ˆ 
 

k ← − 
λ

(
f ˆ S k ⊥ 

(D 

k ) + f ˆ S k 
( ̂  B 

k ) 
)

(11) 

S − subproblem . Fixing the current estimation of the background

osition matrix ˆ B 

k , Eq. (9) can be transferred into following opti-

ization function: 

min 

S k 

K ∑ 

k =1 

1 

2 

|| f S k ⊥ (D 

k − ˆ B 

k ) || 2 F + β|| v ec(S k ) || 0 

+ μ|| C 

k v ec(S k ) || 1 + γ
K ∑ 

k =2 , (i j) ∈F 
| S k i j − V 

k −1 
i j 

| 

+ ρ
K ∑ 

k =1 

∑ 

l,i, j 

δ(l, S k i j ) A 

k 
l (i, j) (12) 
The Eq. (12) can be calculated in a standard format of a

rst-order Markov Random Fields [49] as: 

min 

S k 

1 

2 

K ∑ 

k =1 

∑ 

i j 

(
D 

k 
i j − ˆ B 

k 
i j 

)2 (
1 − S k i j 

)
+ β

∑ 

i j 

S k i j 

+ μ|| C 

k v ec(S k ) || 1 + γ
K ∑ 

k =2 , (i j) ∈F 
| S k i j − V 

k −1 
i j 

| 

+ ρ
K ∑ 

k =1 

∑ 

l,i, j 

δ(l, S k i, j ) A 

k 
l (i, j) 

= min 

S k 

K ∑ 

k =1 

∑ 

li j 

[ 
β − 1 

2 

(
D 

k 
i j − ˆ B 

k 
i j 

)2 + ρδ(l, S k i, j ) A 

k 
l (i, j) 

] 

+ μ|| C 

k v ec(S k ) || 1 + γ
K ∑ 

k =2 , (i j) ∈F 
| S k i j − V 

k −1 
i j 

| + S (13) 

here S = 

1 
2 

∑ K 
k =1 

∑ 

i j (D 

k 
i j 

− ˆ B 

k 
i j 
) 2 is a constant as a result of fixed

ˆ 
 

k . We utilize the graph cuts algorithm [46] to solve Eq. (13) effec-

ively. 

In Algorithm 1 , we summarize the whole process of alternat-

ng optimizate { B 

k } and { S k } detailedly. With the optimal results of

ach sub-problems, our model achieves the best convergence state.

. Experiments 

Our method is implemented on the mixing platform of C++ and

ATLAB without any code optimization on a desktop computer of

he Intel i5-7500 3.4 GHz CPU and 16GB RAM. 

.1. Experimental settings 

Datasets . We evaluate our method on the public challenging

atasets OSU03 [50] , GTFD [17] and Cropped GTFD 

1 and and com-

aring to the prevalent multi-modal foreground detection algo-

ithms. 

OSU03 dataset consists of 6 thermal and visible sequences pairs

f outdoor pedestrains. We extract 100 consecutive frames from

ach sequence and manually labeled one frame in each 10 consec-

tive frames with groundtruth for evaluation purpose. 

GTFD dataset consists of 25 video sequence pairs captured from

oth visible and thermal modalities in challenging scenariors, in-

luding TC (thermal crossover), IM (intermittent motion), IL (low

llumination), BW (bad weather), IS (intense shadow), DS (dynamic

cene) and BC (background clutter). 

https://www.github.com/yenaipeng/cropped-GTFD.git
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Fig. 3. Qualitative examples of our method against the prevalent methods on the OSU03 dataset. The odd and the even rows illustrate the original frames (the first column) 

along with the corresponding detected foregrounds (the rest columns) in grayscale modality and thermal modality, respectively. 
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Cropped GTFD . To justify the effectiveness of our approach on

larger size foreground detection, we obtain the Cropped dataset

by cropping the active area of 11 video sequence pairs from GTFD

dataset. Therefore the foreground objects occupy a larger propor-

tion of entire frames (averagely 10% with largest and least propor-

tion as 32% and 5%) than the original GTFD (approximately 2%).

There are no no duplicate video sequences in GTFD dataset the

Cropped GTFD dataset. 

Evaluation metrics. We evaluate the detecting results using the

following three metrics, precision, recall and F-measure (denoting

P, R, F, respectively): 

P = 

TP 

TP + FP 

, R = 

TP 

TP + FN 

, F = 

2PR 

P + R 

(14)

where TP, FP, TN, and FN denote the number of true positives, false

positives, true negatives, and false negatives, respectively. 

4.2. Comparison results 

To demonstrate the superiority of our model, we conduct the

comparison to the prevalent foreground detection algorithms, in-

cluding grayscale, thermal and thermal-grayscale detection meth-

ods. Following the protocols in [17,18] , the results on single

Grayscale or Thermal modality of the multi-modal methods like

WELD [17] or CLoD [18] are achieved by considering the two du-

plications of each modality as the multi-modal input. Note that

the foreground masks from each modality will complement each

other during the optimization and we directly adopt the masks

from grayscale modality as the final result. Therefore, the grayscale

and the thermal sources can mutually promote and complement

the detecting during optimization, which is the main advantage

of employing both sources on grayscale and thermal data. While

WELD [17] or CLoD [18] utilizes a shared mask for each modality

and generate the final result by a fusing scheme. 

4.2.1. Results on OSU03 dataset 

Qualitative results. Fig. 3 illustrates several examples of detect-

ing results on the OSU03 dataset. From which we can see that our
ethod is clearly superior to other state-of-the-art methods with

ner details such as the body’s posture and less influence from the

ackground. 

Quantitative results Table 1 reports the quantitative results of

ur method against the state-of-the-art methods on precision, re-

all and F-measure on the OSU03 dataset. We can see that: (1)

ur method substantially surpasses the state-of-the-art methods,

hich verifying the contribution of the proposed local and global

ppearance consistency. (2) DECOLOR [10] and SAC [45] achieve

igher in recall which result from the coarse contour as shown in

ig. 3 . Our method achieves much higher F-measure, which claims

he comprehensive performance between the precision and recall.

3) Our method is not satisfactory in terms of time consump-

ion due to the more complex graphs which brings more burden

o graph cuts. Furthermore, introduing of GMM will also increase

he computation time. However, our method is superior in accu-

acy and each compoment plays important role in our model as

hown in Section 4.4 . We shall also discuss this limitation in the

ection 4.6 . 

.2.2. Results on GTFD dataset 

Qualitative results. Fig. 4 illustrates several examples of detecting

esults on GTFD dataset, from which we can see, our method can

etter detect the foreground mask from both modalities benefited

rom the soft cross-modal consistency. Furthermore, our method

an produce more smooth foreground objects due to the local and

lobal appearance consistency. 

Quantitative results. We compare the results of our method

ith prevalent methods in precision (P), recall (R) and F-measure

F), together with the computational complexity on GTFD dataset

n Table 2 . It is clear that: (1) Our method substantially sur-

asses other thermal-grayscale methods in recall, precision and

-measure, proving the validity of the proposed constraints

f soft cross-modal consistency. (2) Although CLoD [18] and

ELD [17] achieve satisfying performance after fusing the results

f grayscale and thermal, they still perform worse than ours. (3)

rom Table 2 , we can see that our method works slightly overshad-

wed than WELD [17] and comparatively to by DECOLOR [10] in



A. Zheng, N. Ye and C. Li et al. / Neurocomputing 371 (2020) 27–38 33 

Table 1 

Quantitative comparison of the average Precision (P), Recall (R) and F-measure (F) on the OSU03 dataset. The 

top three results are highlighted in red , blue and green , respectively. [6,10,17,18,31,45,51–53] 

Table 2 

Quantitative comparison of the average Precision (P), Recall (R) and F-measure (F) on GTFD dataset. The top 

three results are highlighted in red , blue and green , respectively. [4–6,10,17,18,31,45,51–59] 

Fig. 4. Qualitative examples of our method against the prevalent methods on GTFD dataset. The odd and the even rows illustrate the original frames (the first column) along 

with the corresponding detected foregrounds (the rest columns) in grayscale modality and thermal modality, respectively. 
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Table 3 

Quantitative comparison of the average Precision (P), Recall (R) and F-measure (F) on cropped GTFD dataset. 

The top three results are highlighted in red , blue and green , respectively. [6,10,17,18,31,45,51–53] 

Fig. 5. Qualitative examples of our method against the prevalent methods on cropped GTFD dataset. The odd and the even rows illustrate the original frames (the first 

column) along with the corresponding detected foregrounds (the rest columns) in grayscale modality and thermal modality, respectively. 
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F-measure on either Grayscale or Thermal modality, the reason

may be the wrong detection on the single modality will sup-

press the contribution of the proposed soft consistency. However,

our MFDLS significantly beat all the state-of-the-art methods on

multi-modal (grayscale and thermal) case, which verifies the ne-

cessity and effectiveness of multi-modal foreground detection and

the proposed model respectively. 

4.2.3. Results on cropped GTFD dataset 

Qualitative results. Fig. 5 illustrates several examples of detecting

results on Cropped GTFD dataset under the challenging of larger

size foregrounds. The detection results are consistent to that on

GTFD dataset. Our method can better preserve the compact fore-

ground structures and the fine details from both modalities, espe-

cially when the other state-of-the-art methods fail to capture the

large foregrounds. 

Quantitative results. Table 3 reports the quantitative results of

our method against the state-of-the-art methods on precision, re-

call and F-measure on the cropped GTFD dataset. It is clear that:

(1) Our method substantially surpasses the state-of-the-art meth-

ods. (2) Together with Table 2 we can see that, the improvement

of our method is more prominent on the cropped GTFD dataset

with larger foregrounds, verifying the contribution of the proposed

global appearance consistency. (3) WELD [17] generate coarse a

contour of the foregrounds, which results in a higher recall, while

our method achieves much higher F-measure, which claims the

comprehensive performance between the precision and recall. 
.3. Challenge-based performance 

We further evaluate our approach (MFDLS) against the state-of-

he-arts on variouse challenges [17] in GTFD dataset to analyze the

hallenge-sensitive performance as shown in Fig. 6 . It is clearly to

ee that our MFDLS (GT) significantly improves F-measure in the

hallenging of BW (bad weather), IS (intense shadow), DS (dynamic

cene) and BC (background clutter), which verifies the effective-

ess of our method while hanlding the challenging senarios. Algh-

uth our MFDLS (GT) works overshadowed than WELD (GT) [17] in

C (thermal crossover), IM (intermittent motion) and IL (low illu-

ination) senarios, both MFDLS (G) and MFDLS (T) outperforms

ELD (G) and WELD (T), which in turn means the better per-

ormance of WELD (GT) [17] results from the fusing of WELD (T)

nd WELD (T). Furthermore, our MFDLS beats the state-of-the-art

ethods on the whole GTFD dataset with all seven challenges as

hown in Table 2 , which indicates the generality and robustness of

he proposed method. 

.4. Ablation study 

We implement the ablation study on our model with three

ariants on cropped GTFD dataset and report the results in Table 4

nd Fig. 7 . Specifically, Ours-I, Ours-II and Ours-III indicate the

ariants of our model of eliminating the soft cross-modal con-

istency, global appearance consistency and local appearance

onsistency, by setting γ to 0, ρ to 0 and w 

k 
ij, kl to 1 in Eq. (9) ,

espectively. By comparing Ours-I, Ours-II and Ours-III to Ours,

espectively, from Table 4 , we observe that the significance of the
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Fig. 6. The comparison of our MFDLS against the state-of-the art methods on the seven challenging scenarios on GTFD dataset, where G, T, and GT denote Grayscale, Thermal 

and Grayscale-thermal, respectively. 
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Table 4 

Ablation study with different variants by progressively introducing three components 

including (a) soft cross-modal consistency (CM), (b) global appearance consistency (GA), 

and (c) local appearance consistency (LA). The top three results are highlighted in red , 

blue and green , respectively. 

Fig. 7. The detecting results of the continuous frames of our method with its variants. The first four columns denote the frames taken in every 5 frames in grayscale modality 

(the first row), followed by the detecting results of our method (the second row) together with the three variants (the third to the fifth rows) and the ground truth (the 

sixth row). The last four columns indicate the corresponding frames and results in thermal modality. 
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component contribution can be descendingly ordered as soft

cross-modal consistency (CM), global appearance consistency (GA)

and local appearance consistency (LA). 

From Fig. 7 we can observe that: (1) By introducing the soft

cross-modal consistency (comparing Ours-I to Ours), our method

can benefit from complementary information from the thermal

modality especially when the grayscale modality encounters illu-

mination clutter. (2) By introducing the global appearance consis-

tency (comparing Ours-II to Ours), our method produce more com-

pact structures of the foregrounds with much less “cavities”. (3) By

introducing the local appearance consistency (comparing Ours-III

to Ours), our method can better detect the fine details along the

contours of the foregrounds. 

4.5. Parameter analysis 

Our model contains seven important parameters, { β , μ, γ , ρ ,

θ , r, λ}. In particular, β controls the sparsity of the foreground

masks, μ controls the spatial smoothness to punish the neighbor-

ing pixels with different labels, γ balances the soft cross-modal
onsistency of the foreground masks to promote the pixels with

ame label from different modality, ρ and θ adjust the global

ppearance consistency and the local appearance consistency. r is

he rough estimation of the rank ( B ), λ controls the complexity of

he background model. We empirically set β = 0 . 045 σ 2 , where σ
enotes the mean variance of the difference matrix { D 

k − B 

k } . The

nitial β of our algorithm is very large, and then decreases by 0.08

ntil it reaches 0.045 σ 2 . We adjusted each parameter while fixing

he other five to achieve the best performance of our model. We

nitialize λ to be the mean of the second largest singular values

f D 

k in our implementation, and run the SOFT-IMPUTE algorithm.

f the existing k is subject to rank( B 

k ) ≤ r , we reduce λ by a

actor ( 1 √ 

2 
in our implementation) and repeat the SOFT-IMPUTE

lgorithm until rank( B 

k ) > r for all k = 1, 2,..., K. We empirically

et the other parameters as { β , μ, γ , ρ , θ , r } = { 0.045 σ 2 , 0.5 β ,

.2 β , 0.15 μ, 10, 
√ 

n }, where n is the total number of pixels. 

Table 5 reports the parameter analysis on the cropped GTFD

ataset. Since β , μ, γ and ρ are interrelated and jointly adjusted

uring optimization, we only analyze γ instead of four of them. In

ddition, we further analyze r and θ in our model. From Table 5 we
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Table 5 

Parameter analysis of our method on cropped GTFD dataset. 

Param Setting P R F 

r 2 
√ 

n 0.653 0.639 0.603 √ 

n 0.659 0.887 0.738 
1 
2 

√ 

n 0.609 0.913 0.706 

γ 0.3 β 0.656 0.885 0.734 

0.2 β 0.659 0.887 0.738 

0.1 β 0.664 0.861 0.731 

θ 5 0.657 0.875 0.733 

10 0.659 0.887 0.738 

15 0.659 0.880 0.736 
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bserve that: (1) Our model is insensitive to the parameters γ and

which demonstrate the generality of our model. (2) Although the

esults are slightly unstable with different r , it is noted that the

est result generated from r = 

√ 

n consistent to [10] , where n is

he total number of pixels, which is a dynamic value for different

ideos. Therefore, it also verifies the generality of our model. 

.6. Limitation 

From the above experiments, we can conclude that our method

as a significant advantage over many existing methods on pub-

ic challenging datasets GTFD, OSU03 and GTFD’s extended dataset,

ut our method is not satisfactory in terms of time consumption.

he main reason is that our algorithm adds the calculation of GMM

nd the adjacency matrix constructed between modalities will in-

rease the burden of graph cuts algorithm. In the future, we will

ptimize the code or replace the graph cuts algorithm with some

ther algorithm or choose a higher computing platform to reduce

he time consumption. 

. Conclusion 

We have proposed a novel approach for multi-modal fore-

round detection via pursuing the inter- and intra-modality consis-

encies in a united low rank and sparse decomposition framework.

irst, we have explored the intra-modality consistency via preserv-

ng the global appearance consistency in addition to the conven-

ional local appearance consistency. Second, we have explored the

nter-modal consistency among different modalities by enforcing a

oft cross-modal constraint. At last, the comprehensive experimen-

al results on benchmark multi-modal motion detection datasets

alidate the promising performance of our method comparing to

he state-of-the-art methods. Our future work will focus on inves-

igating the online version of algorithm and extending our method

ith more modalities like RGB-T-D (RGB-Themal-Depth) case. 
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