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a b s t r a c t 

The promising achievement of sparse ranking in image-based recognition gives rise to a number of de- 

velopment on person re-identification (Re-ID) which aims to reconstruct the probe as a linear combina- 

tion of few atoms/images from an over-complete dictionary/gallery. However, most of the existing sparse 

ranking based Re-ID methods lack considering the geometric relationships between probe, gallery, and 

cross-modal images of the same person in multi-shot Re-ID. In this paper, we propose a novel joint 

graph regularized dictionary learning and sparse ranking method for multi-modal multi-shot person Re- 

ID. First, we explore the probe-based geometrical structure by enforcing the smoothness between the 

codings/coefficients, which refers to the multi-shot images from the same person in probe. Second, we 

explore the gallery-based geometrical structure among gallery images, which encourages the multi-shot 

images from the same person in the gallery making similar contributions while reconstructing a cer- 

tain probe image. Third, we explore the cross-modal geometrical structure by enforcing the smooth- 

ness between the cross-modal images and thus extend our model for the multi-modal case. Finally, 

we design an APG based optimization to solve the problem. Comprehensive experiments on bench- 

mark datasets demonstrate the superior performance of the proposed model. The code is available at 

https://github.com/ttaalle/Lhc . 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Person re-identification (Re-ID), which aims to identify person

mages from the gallery that shares the same person as the given

robe, is an active task driven by the applications of visual surveil-

ance and social security. Despite years of extensive effort s, It still

aces various challenges due to the changes in illumination, poses,

amera view and occlusions. Multi-shot Re-ID, where each person

s recorded by multiple frames, is more realistic in real-life ap-

lications with more visual aspects than single-shot Re-ID. Exten-

ive methods have been proposed for multi-shot Re-ID including

ppearance modeling based methods [1–5] , learning-based meth-

ds [6–9] and CNN-based methods [10–16] . Moreover, a single vi-

ual sensor suffers from the intra-class difference and inter-class

imilarity due to the poor illumination, clothing changes and back-

round clutters in Re-ID. On one hand, the same person appears
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istinctly under different cameras due to the clothing changes or

llumination changes. On the other hand, the distinct persons may

hare similar visual appearance due to the similar clothing and

ow-resolution environment. Therefore, it is essential to integrate

he complementary thermal infrared or depth sensors to relieve

his intra-class difference and help distinguish this inter-class sim-

larity in single visible RGB modality. We focus on multi-modal

ulti-shot Re-ID in this paper. 

Sparse Ranking (SR) has been successfully applied to extensive

mage-based applications which give rise to a number of devel-

pments on Re-ID [4,17–20] . The basic idea is to reconstruct the

robe image as a linear combination of a few atoms/images from

n over-complete dictionary gallery. However, most existing sparse

anking based Re-ID methods encode the probe images from the

ame person independently and therefore fail to take advantage of

he relationship among the probe, gallery and cross-modal images

f the same person. We argue that these intrinsic geometric struc-

ures are crucial in multi-modal multi-shot Re-ID. 

In multi-shot Re-ID, first, the multiple images of the same per-

on (as shown in Fig. 1 ) under the same camera generally have a

https://doi.org/10.1016/j.patcog.2020.107352
http://www.ScienceDirect.com
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Fig. 1. Probe and gallery-based dual graph regularized sparse ranking for multi-shot Re-ID. 
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similar visual appearance. Therefore, we assume that the images

of the same probe person produce similar codings during sparse

ranking. This is known as a manifold assumption which has been

commonly employed in many other computer vision problems.

Second, the multiple images of a certain person in the gallery also

share similar visual appearance, as shown in Fig. 1 . Therefore, we

further assume that the images of the same person in the gallery

make a similar contribution to the reconstruction. This constraint

encourages the sparse presentation of probe images more com-

pactly. Third, although some works investigate the thermal infrared

or depth information as the complementary modality in person Re-

ID [21–25] , most of the existing works directly utilize the thermal

infrared or depth information as auxiliary information or connec-

tive feature for Re-ID while ignoring the cross-modal coherence.

Therefore, we further argue to explore the cross-modal geomet-

rical structure by enforcing the cross-modal coherence constraint

into the sparse ranking model for multi-modal person Re-ID. 

Based on the above discussion, we propose a novel joint graph

regularized dictionary learning and sparse ranking for multi-modal

multi-shot person re-identification in this paper. Our model incor-

porates the geometrical structures embedded in probe, gallery, and

cross-modalities simultaneously. First, to capture the geometrical

structure among the probe images in multi-shot Re-ID, we pro-

pose to enforce the probe-based graph regularizer into the sparse

ranking model. This regularization encourages the probe images

from the same person generating similar codings. Then, to cap-

ture the geometrical structure among the gallery images, we fur-

ther propose to enforce another gallery-based graph regularizer.

This regularization encourages the gallery images of the same per-

son making similar contributions while reconstructing a certain

probe image. At last, to handle the multi-modal case, we pro-

pose to explore the cross-modal geometrical structure among the

cross-modal images by imposing the cross-modal coherence con-

straint, which thus extends our dual graph regularized sparse rank-

ing model for multi-modal person Re-ID. The main contributions

can be summaries as: 

• We propose to enforce the probe and gallery-based dual graph

regularizer into the sparse ranking formulation, by enforcing

the smoothness between the images of the same person in both

probe and gallery. It can better capture the intrinsic geometric

structure for multi-shot Re-ID. 
• We propose to introduce a cross-modal regularizer for multi-

modal person Re-ID, by enforcing the same person in differ-
ent modalities making similar contributions while reconstruct-

ing probe image from another modality. 
• Comprehensive experiments on challenging benchmark datasets

with both hand-crafted and deep features validate the superior

performance of our model for multi-modal multi-shot person

Re-ID. 

A preliminary version of this work appeared in [26] . In this

ork, we further automatically learn the dictionary. Moreover, we

xtend our model to the multi-modal case and propose a cross-

odal consistency to preserve the geometric structure between

ifferent modalities for multi-modal person Re-ID. In addition,

ore extensive experiments have been conducted in both single-

odal and multi-modal person Re-ID. 

. Related work 

.1. Sparse ranking based person Re-ID 

Recent works show that Sparse Ranking (SR) can effectively re-

ist noise, handle partial occlusion and image corruption in Re-

D. Liu et al. [27] learned two coupled dictionaries for both probe

nd gallery from both labeled and unlabeled images to transfer

he features of the same person from different cameras. Karanam

t al. [18] learned a single dictionary for both gallery and probe

mages to overcome the viewpoint and associated appearance

hanges and then discriminatively trained the dictionary by enforc-

ng explicit constraints on the associated sparse representations.

hou et al. [28] proposed a joint learning framework that unifies

epresentative feature learning and discriminative metric learning.

isanti et al. [4] proposed to learn a discriminative sparse basis ex-

ansion of targets in terms of a labeled gallery of known individu-

ls for multi-shot Re-ID. Recently, Jing et al. [17] proposed a semi-

oupled dictionary learning method for super-resolution multi-shot

e-ID. In addition, Li et al. [19] designed a semi-coupled projective

ictionary learning framework for multi-shot Re-ID with great res-

lution diversities. Li et al. [20] designed an effective cross-view

ictionary learning model to reformulate the data encoding and

econstruction for multi-shot Re-ID. However, most of the exist-

ng sparse ranking based Re-ID methods encode the probe images

rom the same person independently and thus fail to take advan-

age of their intrinsic geometric structure information. 
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.2. Multi-modal person Re-ID 

In the early stage, single-modal Re-ID methods devoted to

esign discriminative features. Representative methods included

ymmetry-Driven Accumulation of Local Features (SDALF) [3] ,

eighted Histograms of Overlapping Stripes (WHOS) [4] , Local

aximal Occurrence (LOMO) [7] and so on. Meanwhile, metric

earning was designed to bridge the gaps between the low-level

eature and high-level human semantic. Roth et al. [9] proposed

 Keep It Simple and Straightforward Metric Learning (KISSME)

o conduct a hypothesis test on similar/dissimilar pairs. Pedagadi

t al. [8] tried to minimize the intra-class divergence and maxi-

ize the inter-class diversities via Local Fisher Discriminant Analy-

is (LFDA). Liao et al. [7] performed the KISSME algorithm in a sub-

pace with a reduced feature dimension by proposing Cross-view

uadratic Discriminant Analysis (XQDA). However, most of the ex-

sting metric learning methods tend to learn a projection matrix

hrough training data, which is difficult to overcome the impact of

ata quality and distribution. 

Person Re-ID can also benefit from multi-modal resources such

s thermal or depth information. Mogelmose et al. [21] combined

he thermal features into RGB appearance modeling and later on

urther integrated the depth information [22] . Pala et al. [23] im-

roved the accuracy of appearance descriptors by fusing them

ith anthropometric measures extracted from depth data. John

t al. [24] combined RGB-Height histogram and gait feature of

epth information. Wu et al. [25] proposed a kernelized implicit

eature transfer scheme to estimate the Eigen-depth feature from

GB images implicitly when the depth device was not available.

owever, they ignore the common expression ability of the multi-

odal features in the metric procedure. 

. The proposed model 

Given X = [ x 1 , x 2 , . . . , x n ] ∈ R d×n , where n denotes the

umber of images of a person in probe, with x j ∈ R d , j =
 1 , . . . , n } denoting the corresponding d -dimensional feature.

 = [ D 

1 
, D 

2 
, . . . , D 

G ] ∈ R d×M G denotes the total M G images of G per-

ons in gallery, where D 

p = [ d 

p 
1 
, d 

p 
2 
, . . . , d 

p 
g p 

] ∈ R d×g p , p = { 1 , . . . , G }
epresents the matrix of g p basis vectors for the p -th person, and

 p denotes the number of images of the p -th person in gallery.

bviously, M G = 

∑ G 
p=1 g p . The basic idea of sparse ranking based

e-ID [4] is to reconstruct a testing probe image x j with linear

panned training gallery images of G persons in the gallery: 

 j ≈
G ∑ 

p=1 

D 

p c p 
j 
= D c j , (1) 

here c 
p 
j 

= [ c 
p 
j, 1 

, c 
p 
j, 2 

, . . . , c 
p 
j,g p 

] T ∈ R g p ×1 represents the coding co-

fficients of the p -th person against the probe instance x j , each

olumn c j = [ c 1 
j 

T 
, c 2 

j 

T 
, . . . , c G 

j 

T 
] T ∈ R M G ×1 is a sparse representation

or a probe image. In other words, each probe image can be repre-

ented as a sparse linear combination of those basis vectors in the

ictionary. A good representation together with dictionary should

inimize the empirical loss function and impose a function to

easure the sparseness [29,30] , which can be represented as: 

in 

D , C 
‖ X − D C ‖ 

2 
F + λ‖ C ‖ 1 , s.t. ‖ d i ‖ 

2 
2 ≤ ε, (2)

here ‖ · ‖ F denotes the Frobenius norm of the matrix, ‖ C ‖ 1 is

 1 norm to impose the sparse constraint on related solution of C

nd λ is a penalty parameter balancing the sparseness term and

he reconstruction term. Each d i represents a basis vector in the

ictionary and ‖ d i ‖ 2 2 ≤ ε is used to avoid the scaling problem of

 . In this paper ε is set as 1. 
i 
.1. Dual graph regularized dictionary learning and sparse 

epresentation 

Recall that sparse representation tries to find a dictionary

allery and a sparse coefficient matrix whose product can best

pproximate the original probe matrix. The column vectors of D

an be regarded as the basis vectors and each column of C is

he new representation of each probe image in this new gallery

pace. Graph regularized sparse coding performs great superiority

n image-based applications [31–33] . In this paper, we propose a

ovel dual graph regularized dictionary learning and sparse repre-

entation framework to consider the intrinsic geometric structures

mong probe and gallery images for multi-shot person Re-ID. 

.1.1. Probe-based graph regularization 

In multi-shot Re-ID, we argue that the feature vectors derived

rom the multiple images of the same person tend to have sim-

lar geometric distribution. We propose to enforce this constraint

n probe (test) images to obtain a kind of consistent sparse repre-

entations for probe images by incorporating the geometric struc-

ure of the data. As shown in Fig. 1 , we first enforce a probe-based

raph regularizer over the coding coefficients to exploit the intrin-

ic geometric distribution among the probe images: 

 p = 

n ∑ 

i =1 

n ∑ 

j=1 

‖ c i − c j ‖ 

2 
2 S i, j , (3) 

here { c i , c j } ∈ R M G ×1 are the coding coefficients of probe images

 i and x j from the same person over gallery dictionary D respec-

ively. The probe-based graph matrix S ∈ R n ×n is defined as: 

 i, j = exp 

(−‖ x i − x j ‖ 

2 
2 

2 σ 2 
1 

)
, (4) 

here σ 1 is a scaling parameter and fixed as 0.1 in this paper. The

robe-based regularizer in Eq. (3) encourages the probe images

rom the same person with higher similarity to generate closer

oding coefficients during reconstruction. 

.1.2. Gallery-based graph regularization 

We further argue that the multiple images of the same per-

on in the gallery fall into similar geometry in multi-shot Re-ID,

hich in turn means for each pair of gallery images of the same

erson, they should contribute similarly while reconstructing each

robe image since they are generally with similar features. There-

ore, as shown in Fig. 1 , we further propose to enforce this con-

traint on gallery data (or dictionary) to exploit their intrinsic ge-

metry. Specifically, we enforce a gallery-based graph regularizer

ver the codings: 

 g = 

G ∑ 

p=1 

g p ∑ 

k =1 

g p ∑ 

l=1 

( c p 
k 

− c p 
l 
) 2 B 

p 

k,l 
, (5) 

here c 
p 

k 
= [ c 

p 

1 ,k 
, c 

p 

2 ,k 
, . . . , c 

p 

n,k 
] T ∈ R g p ×1 represents the coding coef-

cients to reconstruct x j for the p -th person. The similarity matrix

 = diag { B 

1 
, B 

2 
, . . . , B 

G } ∈ R M G ×M G , and each element B 

p ∈ R g p ×g p is

efined as: 

 

p 

k,l 
= exp 

(−‖ d 

p 

k 
− d 

p 

l 
‖ 

2 
2 

2 σ 2 
2 

)
, (6) 

here σ 2 is a scaling parameter and fixed as 0.1 in this paper.

 = [ D 

1 
, D 

2 
, . . . , D 

G ] ∈ R d×M G denotes the total M G images of G per-

ons in gallery, where D 

p = [ d 

p 
1 
, d 

p 
2 
, . . . , d 

p 
g p 

] ∈ R d×g p , p = { 1 , . . . , G }
epresents the matrix of g p basis feature vectors for the p th per-

on. The gallery-based regularizer in Eq. (5) encourages the higher

imilarity between the gallery images from the same person, the

loser contribution to the reconstruction. 
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Therefore, our dual graph regularized dictionary learning and

sparse representation model can be summarised as: 

J d = min 

D , C 
‖ X − D C ‖ 

2 
F + λ‖ C ‖ 1 + 

1 

2 

βJ p + 

1 

2 

γ J g , s.t. ‖ d i ‖ 

2 
2 ≤ ε, (7)

where β and γ denote the balance parameters controlling the con-

tribution of the probe-based graph and gallery-based graph respec-

tively. 

3.2. Joint model for multi-modal problem 

To capture the cross-modal coherence while handling the

multi-modal problem, we further propose a joint model to con-

sider the intrinsic geometric structures among cross-modal images

of the same person and thus extend our dual graph regularized

sparse ranking model in Eq. (7) to multi-modal person Re-ID. 

Given X 

M = [ X 

(1) 
, X 

(2) 
, . . . , X 

(M) ] , D 

M = [ D 

(1) 
, D 

(2) 
, . . . , D 

(M) ] ,

where X 

(v ) ⊆ X 

M 

, D 

(v ) ⊆ D 

M 

, X 

(v ) and D 

(v ) denote the query and

corresponding dictionary of the v -th modality respectively. In

order to capture the geometric structures among the multispectral

data, we further propose to enforce the cross-modal coherence

among M modalities by introducing a cross-modal regularizer as:

J m 

= 

M ∑ 

v =1 

M ∑ 

u =1 

‖ ( C 

(u ) − C 

(v ) ) ‖ 

2 
F , (8)

which encourages the images in different modalities to have sim-

ilar codings in the relevant dictionaries. Inspired by the method

on heterogeneous camera network [34] , our aim here is to learn a

consistent feature representation across different modalities. 

Therefore, the final objective function can be summarised as: 

J = min 

D (v ) , C (v ) 

M ∑ 

v =1 

{ 

‖ X 

(v ) − D 

(v ) C 

(v ) ‖ 

2 
F + λ‖ C 

(v ) ‖ 1 + 

1 

2 

βJ p 
(v ) 

+ 

1 

2 

γ J g 
(v ) 

} 

+ μJ m 

, s.t. ‖ d 

(v ) 
i ‖ 

2 
2 ≤ ε, (9)

where β , γ and μ are the balance parameters controlling the con-

tribution of the probe-based graph, gallery-based graph and cross-

modal regularizer respectively. J p 
( v ) and J g 

( v ) denote the probe-

based graph and gallery-based graph from the v th modality. With

simple algebra, Eq. (9) can be rewritten as: 

J = min 

D (v ) , C (v ) 

M ∑ 

v =1 

{ 

‖ X 

(v ) − D 

(v ) C 

(v ) ‖ 

2 
F + λ‖ C 

(v ) ‖ 1 + βtr( C 

(v ) L 1 
(v ) C 

(v ) T )

+ γ tr( C 

(v ) T L 2 
(v ) C 

(v ) ) 
} 

+ μ
M ∑ 

v =1 

M ∑ 

u =1 

‖ C 

(u ) − C 

(v ) ‖ 

2 
F , s.t. ‖ d 

(v ) 
i ‖ 

2 
2 ≤ ε, (10)

where C 

(v ) = [ c 1 
(v ) , c 2 

(v ) , . . . , c n (v ) ] ∈ R M G ×n , L 1 
(v ) = D S 

(v ) − S (v ) 

and L 2 
(v ) = D B 

(v ) − B 

(v ) denote the probe and gallery-

based graph Laplacian matrix respectively for each modal-

ity, D S 
(v ) = diag { ∑ 

j S 1 , j 
(v ) 

, 
∑ 

j S 2 , j 
(v ) 

, · · ·} and D B 
(v ) =

diag { ∑ 

j B 1 , j 
(v ) 

, 
∑ 

j B 2 , j 
(v ) 

, · · ·} indicate the degree matrix of

S (v ) and B 

(v ) respectively, and diag{ ���} indicates the diagonal

operation, tr { ���} indicates the trace of a matrix. 

In summary, the pipeline of the proposed joint graph regular-

ized sparse ranking (JGRSR) model is illustrated in Fig. 2 as for

RGB-D multi-modal problem. The proposed JGRSR will optimize

the coding coefficients enforced by both the dual graph regular-

izer and the cross-modal regularizer during each iteration, which

will further propagate to the dictionary learning phase in each
odality. The optimized codings investigate the geometric struc-

ure among all probe, gallery and cross-modal spaces in a unified

ramework. The final rankings of the certain probe against given

allery are achieved by the accumulation, which will be detailed

n Section 5 based on the coding coefficients and redistribution er-

ors. 

. Optimization 

As summarized in Algorithm 1 . To solve Eq. (10) , our aim is

o solve the coefficient matrix C and the dictionary matrix D . We

rst fix the initial dictionary matrix as the gallery feature matrix to

ain the initial coefficient matrix. Then we fix the coefficient ma-

rix to obtain the new dictionary matrix. The proposed model can

e optimized by iteratively learning the coefficient matrix and the

ictionary matrix until convergence based on Accelerated Proximal

radient (APG) [35] algorithm. We will elaborate on the process

n the following two subsections. 

lgorithm 1 Optimization Procedure to Eq. (10). 

nput : probe matrix X 

(v ) , initial gallery dictionary matrix D 

(v ) ,

aplacian matrix L 1 
(v ) 

, L 2 
(v ) , parameters λ, β, γ and μ, v = 1, …,

; 

et C 

(v ) 0 = C 

(v ) 1 = 0 , D 

(v ) 0 = D 

(v ) 1 = D 

(v ) 
, ξ = 1 × 10 3 , θ =

 × 10 −4 , ρ0 = ρ1 = 1 , maxIter = 30 ; 

terate : for t = 1, 2, …, maxIter 

parse Representation: for k = 1, 2, …, maxIter 

: While not converged do 

: Update K 

(v ) k +1 

by K 

(v ) k +1 = C 

(v ) k + 

ρk −1 −1 

ρk 
( C 

(v ) k − C 

(v ) k −1 

) ;
: Update C 

(v ) k +1 

by Eq. (18); 

: Update ρk +1 = 

1+ 
√ 

1+4 ρ2 
k 

2 ; 

: Update k by k = k + 1 ; 

: The convergence condition: the maximum element change of

 

(v ) k between two consecutive iterations is less than θ . 

: end While 

ictionary Update: for k = 1, 2, …, maxIter 

: While not converged do 

: Update P 

(v ) k +1 

by P 

(v ) k +1 = D 

(v ) k + 

ρk −1 −1 

ρk 
( D 

(v ) k − D 

(v ) k −1 

) ;
: Update D 

(v ) k +1 

by Eq. (22); 

: Update ρk +1 = 

1+ 
√ 

1+4 ρ2 
k 

2 ; 

: Update k by k = k + 1 ; 

: The convergence condition: the maximum element change of

 

(v ) k between two consecutive iterations is less than θ . 

: end While 

: D 

(v ) is normalized. 

utput : C 

(v ) 
, D 

(v ) 

In Algorithm 1 , ξ and θ are empirically set as in APG (Accel-

rated Proximal Gradient) [35] . Specifically, ξ is the Lipschitz con-

tant denoting the step size in the gradient descent algorithm. θ is

n error threshold for convergence. ρk is a positive and incremen-

al number with ρ0 = ρ1 = 1 , which can gradually reduce the step

ize and speed up the convergence rate of the algorithm. 

.1. Learning the graph regularized sparse codes 

In this section, we discuss how to learn the graph regularized

parse codes by all dictionary D 

(v ) 
, v = { 1 , . . . , M} . The Eq. (10) be-



A. Zheng, H. Li and B. Jiang et al. / Pattern Recognition 104 (2020) 107352 5 

Fig. 2. Pipeline of the proposed joint graph regularized sparse ranking (JGRSR) model for multi-modal Re-ID in the RGB-D case. 
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omes: 

in 

C (v ) 

M ∑ 

v =1 

{ 

‖ X 

(v ) − D 

(v ) C 

(v ) ‖ 

2 
F + λ‖ C 

(v ) ‖ 1 + βtr( C 

(v ) L (v ) 
1 

C 

(v ) T ) 

+ γ tr( C 

(v ) T L (v ) 
2 

C 

(v ) ) 
} 

+ μ
M ∑ 

v =1 

M ∑ 

u =1 

‖ C 

(u ) − C 

(v ) ‖ 

2 
F . (11) 

Eq. (11) with L 1 -regularization is nondifferentiable when c j 
(v ) 

ontains values of 0, the standard unconstrained optimization

ethods can not be applied. For the sake of more meaningful in-

erpretation [35] , we further consider the non-negativeness of the

odings C 

(v ) 
, Eq. (11) can be written as: 

in 

C (v ) 

M ∑ 

v =1 

{ 

‖ X 

(v ) − D 

(v ) C 

(v ) ‖ 

2 
F + λ1 

T C 

(v ) 1 + βtr( C 

(v ) L (v ) 
1 

C 

(v ) T ) 

+ γ tr( C 

(v ) T L (v ) 
2 

C 

(v ) ) 
} 

+ μ
M ∑ 

v =1 

M ∑ 

u =1 

‖ C 

(u ) − C 

(v ) ‖ 

2 
F , s.t. C 

(v ) ≥ 0 , 

(12) 

here 1 denotes the vector that its all elements are 1. To solve

q. (12) , we convert it to an unconstrained form as: 

in 

C (v ) 

M ∑ 

v =1 

{ 

‖ X 

(v ) − D 

(v ) C 

(v ) ‖ 

2 
F + λ1 

T C 

(v ) 1 + βtr( C 

(v ) L (v ) 
1 

C 

(v ) T ) 

+ γ tr( C 

(v ) T L (v ) 
2 

C 

(v ) ) 
} 

+ μ
M ∑ 

v =1 

M ∑ 

u =1 

‖ C 

(u ) − C 

(v ) ‖ 

2 
F + ψ( C 

(v ) ) , (13) 

here 

( C 

(v ) 
i, j 

) = 

{
0 , i f C 

(v ) 
i, j 

≥ 0 , 

∞ , otherwise 
(14) 

We utilize the accelerated proximal gradient (APG) [35] ap-

roach to optimize. We denote: 

F ( C 

(v ) ) = min 

C (v ) 

M ∑ 

v =1 

{ 

‖ X 

(v ) − D 

(v ) C 

(v ) ‖ 

2 
F + λ1 

T C 

(v ) 1 + βtr( C 

v L v 1 C 

v T )

+ γ tr( C 

(v ) T L (v ) 
2 

C 

(v ) ) 
} 

+ μ
M ∑ 

v =1 

M ∑ 

u =1 

‖ C 

(u ) − C 

(v ) ‖ 

2 
F , 

( C 

(v ) ) = ψ( C 

(v ) ) . (15)

Obviously, F ( C 

(v ) ) and Q( C 

(v ) ) are a differentiable convex func-

ion and a non-smooth convex function, respectively. Therefore, ac-
ording to the APG method, we obtain: 

 

(v ) k +1 = min 

C (v ) 

ξ

2 

‖ C 

(v ) − K 

(v ) k +1 + ∇F ( K 

(v ) k +1 

) /ξ‖ 

2 
F + Q( C 

(v ) ) , (16)

here k indicates the current iteration time, and ξ is the Lipschitz

onstant. 

∇F ( K 

(v ) k +1 

) is: 

F ( K 

(v ) k +1 

) = 2( D 

(v ) T D 

(v ) K 

(v ) k +1 − D 

(v ) T X 

(v ) ) + λE 

+2 βK 

(v ) k +1 

L (v ) 
1 

+ 2 γ L (v ) 
2 

K 

(v ) k +1 + 2 μ
M ∑ 

u =1 

( K 

(u ) 
k +1 − K 

(v ) k +1 

) , (17) 

here K 

(v ) k +1 = C 

(v ) k + 

ρk −1 −1 

ρk 
( C 

(v ) k − C 

(v ) k −1 

) , ρk is a positive se-

uence with ρ0 = ρ1 = 1 . Eq. (16) can be solved by: 

 

(v ) k +1 = max (0 , K 

(v ) k +1 − ∇F ( K 

(v ) k +1 

) /ξ ) . (18)

.2. Learning dictionary 

In this section, we describe the method of learning the dictio-

ary D 

(v ) 
, while fixing the coefficient matrix C 

(v ) . The problem be-

omes a least squares problem with quadratic constraints. 

 ( D 

(v ) ) = min 

D (v ) 
‖ X 

(v ) − D 

(v ) C 

(v ) ‖ 

2 
F , s.t. ‖ d 

(v ) 
i ‖ 

2 
2 ≤ ε. (19)

In the process of dictionary learning, we continue to use the

ccelerated proximal gradient (APG) [35] approach. We denote: 

 

(v ) k +1 = min 

D (v ) 

ξ

2 

‖ D 

(v ) − P 

(v ) k +1 + ∇F ( P 

(v ) k +1 

) /ξ‖ 

2 
F , (20)

here k indicates the current iteration time, and ξ is the Lipschitz

onstant. 

∇F ( P 

(v ) k +1 

) is: 

F ( P 

(v ) k +1 

) = 2( P 

(v ) k +1 

C 

(v ) C 

(v ) 
T 

− X 

(v ) C 

(v ) T ) , (21)

here P 

(v ) k +1 = D 

(v ) k + 

ρk −1 −1 

ρk 
( D 

(v ) k − D 

(v ) k −1 

) , ρk is a positive se-

uence with ρ0 = ρ1 = 1 . Eq. (20) can be solved by: 

 

(v ) k +1 = P 

(v ) k +1 − ∇F ( P 

(v ) k +1 

) /ξ . (22)

The specific process can be referred to as Alg. 1 . It’s worth not-

ng that we end up with the dictionary as normalized. 



6 A. Zheng, H. Li and B. Jiang et al. / Pattern Recognition 104 (2020) 107352 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R  

R  

f  

C  

t  

t  

i  

n  

a

6

 

b  

M  

a  

W  

e  

1  

f

6

 

p  

o  

c  

h

 

F  

t  

8  

w  

I  

L  

N  

h  

l  

t

6

 

a  

o  

t  

v  

s  

c

 

W  

m  

t  

i  

c  

N  

f  

C  

i

6

 

f  

c  

o  

I  

i  
5. Ranking implementation for multi-shot Re-ID 

The basic idea of sparse ranking based Re-ID is to encode a

testing probe image x j 
(v ) with linear spanned training dictionary

gallery D 

(v ) in the v -th modality. c j 
(v ) is a sparse code for probe

image x j 
(v ) in dictionary D 

(v ) . Each item c i, j 
(v ) represents the con-

tribution of each image in dictionary space to encode the probe

image x j 
(v ) . The larger the contribution, the more likely they are

the same person. 

Due to the sparsity of the coding coefficients, the majority

of which collapse to zero after a few higher coding coefficients.

Therefore, we can not support ranking for all individuals in the

gallery. Lisanti et al. [4] propose a soft and hard re-weighting tech-

nique to deal with this issue. To avoid re-running the whole sparse

ranking algorithm after each re-weighting, we provide an Error

Distribution measurement. First, we obtain the normalized coding

error e j 
( v ) for current probe x j 

(v ) using: 

e j 
(v ) = 

‖ x j 
(v ) − D 

(v ) c j 
(v ) ‖ 2 

‖ x j 
(v ) ‖ 2 

. (23)

Then, we re-distribute the coding error into the dictionary

gallery individuals according to their similarity to the current

probe image x j 
(v ) : 

W 

p 

j,k 

(v ) = 

1 /dis ( x j 
(v ) , d 

p 

k 

(v ) 
) ∑ G 

p=1 

∑ g p 
k =1 

(1 /dis ( x j 
(v ) , d 

p 

k 

(v ) 
)) 

, k ∈ { 1 , . . . , g p } , (24)

where d 

p 

k 

(v ) 
represents the feature of the k th image from the

p th person in dictionary gallery D 

v under the v th modality,

dis ( x j 
(v ) , d 

p 

k 

(v ) 
) denotes the Euclidean distance between probe

x j 
(v ) and each element d 

p 

k 

(v ) 
in gallery. W 

p 

j,k 

(v ) 
indicates the simi-

larity/weight of d 

p 

k 

(v ) 
relative to x j 

(v ) . 

In this paper, we employ the coding coefficients as the similar-

ity measures and define the accumulated coding coefficients from

the p th person as a part of the ranking value of the probe person

with n images against the p th person. Moreover, we use the cod-

ing residues to assign the p th category whose coding coefficients

are all zeros with the ranking score. Therefore, the final ranking

score of the probe person with n images against the p th person in

the gallery under the v th modality is defined as follows: 

r p 
(v ) = 

n ∑ 

j=1 

g p ∑ 

k =1 

( c p 
j,k 

(v ) + W 

p 

j,k 

(v ) 
e j 

(v ) ) , p ∈ { 1 , . . . , G } . (25)

The higher similarity of d 

p 

k 

(v ) 
relative to x j 

(v ) , the higher value

distributed to c 
p 

j,k 

(v ) 
. Since e j 

( v ) is usually a small value, the value

distributed to c 
p 

j,k 

(v ) 
is also very small, which will not change the

ranks of the non-zero coding coefficients but will reorder the zero

coding coefficients according to Euclidean distance. 

Our final decision rule in the v th modality is: 

class ( X 

(v ) ) = arg max 
p 

r p 
(v ) 

. (26)

The rankings from different modalities can be fused as: 

r p f usion = 

M ∑ 

v =1 

ηv r 
p (v ) , 

M ∑ 

v =1 

ηv = 1 , (27)

where ηv balances the contributions of different modalities. 

6. Experimental results 

We evaluate our method on eight multi-shot person Re-ID

benchmark datasets including: (1) three single-modal datasets, i-

LIDS [36] , CAVIAR4REID [2] and MARS [37] ; (2) three multi-modal
GB-D datasets, PAVIS [38] , BIWI [39] and IAS-Lab [40] ; (3) two

GB transferred depth datasets, transferred 3DPeS [2] and trans-

erred CAVIAR4REID [2] . We use the standard measurement named

umulated Match Characteristic (CMC) curve [41] to figure out

he matching results, where the matching rate at rank- n indicates

he percentage of correct matchings in top n candidates accord-

ng to the learned ranking function Eq. (26) . Our previous non-

egative dual graph regularized sparse ranking [26] is referred to

s NNDGSR in the following content. 

.1. Evaluation on single-modal benchmarks 

The single modal representation, referred as JGRSR _ single, can

e regarded as the special case of our model in Eq. (9) with

 = 1 . We evaluate the proposed method on both hand-crafted

nd deep features. Followed by the protocol in [4] , we use

HOS [4] as hand-crafted feature. As for deep feature, we gen-

rate APR [11] features pre-trained on large Re-ID dataset Market-

501 [41] for i-LIDS [36] and CAVIAR4REID [2] , while utilize IDE

eature [37] for MARS [37] as provided. 

.1.1. Comparison on i-LIDS 

i-LIDS [36] dataset is composed by 479 images of 119 peo-

le, which was captured at an airport arrival hall under two non-

verlapping camera views with almost two images each person per

amera views. This dataset consists of challenging scenarios with

eavy occlusions and pose variance. 

Evaluation results on i-LIDS [36] dataset are shown in Table 1 .

rom which we can see, our approach significantly outperforms

he state-of-the-art. The Rank-1 accuracies of our approach achieve

4.9% and 79.6% on hand-crafted and deep features respectively,

hich improve 22% and 2.4% than the second best method ISR [4] .

t is worth noting that: (1) The limited number of samples in i-

IDS [36] compromises the performance of deep learning. (2) Our

NDGSR [26] significantly improves the ranking results on both

and-crafted and deep features. (3) By introducing the dictionary

earning to our NNDGSR [26] , our JGRSR _ single can further boost

he performance. 

.1.2. Comparison on CAVIAR4REID 

CAVIAR4REID [2] dataset contains 72 unique individuals with

veragely 11.2 images per person extracted from two non-

verlapping cameras in a shopping center, 50 of which with both

he camera views and the remaining 22 with only one camera

iew. The images for each camera view have variations with re-

pect to resolution changes, light conditions, occlusions and pose

hanges. 

Evaluation results on CAVIAR4REID [2] are shown in Table 1 .

e evaluate our method with APR [11] deep features in the same

anner as on i-LIDS [36] and adopt the same experimental pro-

ocols as ISR [4] by 50 random trials. Clearly, our approach signif-

cantly outperforms the state-of-the-art algorithms on both hand-

rafted and deep features. Specifically, the Rank-1 accuracies with

 = 5 achieve 93.7% and 89.5% on hand-crafted features and deep

eatures respectively. Together with the results on i-LIDS [36] and

AVIAR4REID [2] , it suggests that the proposed method achieves

mpressive performance on small size datasets. 

.1.3. Comparison on MARS 

MARS [37] dataset is the largest and newly collected dataset

or video-based Re-ID. It is collected from six near-synchronized

ameras in the campus of Tsinghua University. MARS [37] consists

f 1261 pedestrians each of which appears at least two cameras.

t contains 625 identities with 8298 tracklets for training and 636

dentities with 12,180 tracklets for testing. Different from the other
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Table 1 

Comparison results at Rank-1 on i-LIDS and CAVIAR4REID (in %). 

Features Methods i-LIDS CAVIAR4REID References 

N = 2 N = 3 N = 5 

HPE [42] 18.5 - - ICPR2010 

AHPE [43] 32 7.5 7.5 PRL2012 

SCR [44] 36 - - ICAVSS2010 

MRCG [45] 46 - - ICAVSS2011 

Hand-craft SDALF [3] 39 8.5 8.3 CVPR2010 

features CPS [2] 44 13 17.5 BMVC2011 

COSMATI [46] 44 - - ECCV2012 

WHOS + ISR [4] 62.9 75.1 90.1 PAMI2015 

WHOS [4] + NNDGSR [26] 84.3 78.7 93.2 Ours 

WHOS [4] + JGRSR _ single 84.9 79.6 93.7 Ours 

APR [11] + EU [11] 67.7 44.3 53.8 PR2019 

Deep features APR [11] + ISR [4] 77.2 65.7 80.7 PR2019 + PAMI2015 

APR [11] + NNDGSR [26] 78.4 70.4 89.0 Ours 

APR [11] + JGRSR _ single 79.6 71.5 89.5 Ours 

Table 2 

Comparison with baselines on MARS dataset (in %). 

Features Methods Rank-1 Rank-5 Rank-20 References 

HOG3D [47] + KISSME [9] 2.6 6.4 12.4 BMVC2010 + CVPR2012 

GEI [48] + KISSME [9] 1.2 2.8 7.4 PAMI2005 + CVPR2012 

Hand-craft HistLBP [49] + XQDA [7] 18.6 33.0 45.9 ECCV2014 + CVPR2015 

Features BoW [41] + KISSME [9] 30.6 46.2 59.2 ICCV2015 + CVPR2012 

LOMO + XQDA [7] 30.7 46.6 60.9 CVPR2015 

ASTPN [50] 44 70 81 ICCV2017 

LCAR [15] 55.5 70.2 80.2 TCSVT2018 

SFT [16] 70.6 90 97.6 CVPR2017 

MSCAN [10] 71.8 86.6 93.1 CVPR2017 

EUG [51] 62.6 74.9 82.6 CVPR2018 

BUC [52] 61.1 75.1 - AAAI2019 

Deep features IDE + EU [37] 58.7 77.1 86.8 ECCV2016 

IDE [37] + ISR [4] 63 77.1 85.6 ECCV2016 + PAMI2015 

IDE [37] + NNDGSR [26] 72.50 88.0 93.30 Ours 

IDE [37] + JGRSR_single 75.76 92.68 97.27 Ours 
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atasets, it also consists of 23,380 junk bounding boxes and 147,743

istractors bounding boxes in the testing samples. 

In this dataset, the query trackelets are automatically gener-

ted from the testing samples. For each query trackelet, we con-

truct two feature vectors via max pooling and average pooling

espectively on the provide deep features, IDE [37] . For the re-

aining testing trackelets, since there are multiple trackelets for

ach person under a certain camera, we conduct the max pool-

ng for each trackelet to construct the multiple feature vectors fol-

owed by the state-of-the-art methods on MARS [37] . Note that,

ur method doesn’t require any training therefore only the testing

et containing the query set is utilized. The performance of our

ethod against different metrics is reported in Table 2 . As we can

ee: (1) CNN based methods generally outperform the traditional

etric learning methods on hand-crafted features. (2) The sparse

anking based method outperforms on the powerful deep features

omparing with the traditional Euclidian distance. (3) By introduc-

ng the non-negative dual graph regularized into the sparse rank-

ng framework, our NNDGSR [26] can significantly boost the per-

ormance by increasing 12.76% at Rank-1 accuracy. (4) Introducing

he dictionary learning can better improve the performance on the

arge dataset. 

.2. Evaluation on multi-modal benchmarks 

The multi-modal Re-ID in Eq. (9) is referred as JGRSR _ multi in

he following content. We evaluate the multi-modal Re-ID on three

GB-D datasets PAVIS [38] , BIWI [39] and IAS-Lab [40] . Followed by

he protocol in [25] , we use ELF18 [1] and LBP [5] as RGB features,
nd DVCov [25] as depth feature. We adopt the same protocol as

VCov [25] by randomly selecting five images of each person in

ither probe or gallery for multi-shot evaluation for all the three

ulti-modal datasets. All the experimental results are based on 10

andom trials. 

For the single-modal case, we use LDA to learn the distance

etric for contrastive features, except for the Skeleton [39] and

VCov [25] , which were matched by Euclidean distance and

eodesic distance [25] respectively. To fuse the multi-modal fea-

ures as the comparison, we first evaluate the traditional neural

etwork based (NN-based) method by directly feeding the RGB and

epth features into the fully-connected (FC) layer and reduce the

eatures to 10 0 0-dim based on the softmax loss in the training

hases. Then, we evaluate the prevalent metric learning methods

y weighting the ranking results achieved in different modalities

ollowed by [25] . 

.2.1. Comparison on PAVIS 

PAVIS [38] dataset consists of two groups denoted by Walking 1

nd Walking 2. Images of Walking and Walking 2 were obtained by

ecording the same 79 people with a frontal view, walking slowly

n an indoor scenario, where 60 people in Walking 2 were dressed

n different clothes from Walking 1. Following the common train-

est policy [38] , we randomly sampled half of the group Walking 1,

.e., images of 40 persons for training, and the remaining 39 per-

ons for testing. These 39 testing persons in Walking 1 were used

s gallery data and the corresponding images of these 39 persons

n Walking 2 were used as probe data. 
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Table 3 

Comparison with baselines on PAVIS dataset (in %). 

Modality Methods Rank-1 Rank-5 References 

LOMO [7] 19.74 44.36 CVPR2015 

ELF18 [1] 52.62 78.26 TCSVT2017 

Color Hist [53] 48.92 74.82 ECCV2008 

RGB HOG [54] 45.33 73.92 CVPR2010 

LBP [5] 45.64 72.36 ICIG2011 

ELF18 [1] + ISR [4] 54.62 64.62 TCSVT2017 + PAMI2015 

ELF18 [1] + NNDGSR [26] 58.46 73.85 Ours 

ELF18 [1] + JGRSR_single 58.72 74.62 Ours 

RIFT2M [55] 8.77 27.69 ISOP2007 

Fehrs [56] 30.56 58.67 ICRA2012 

Skeleton [39] 37.33 71.13 Springer2014 

4D RAM [57] 43.00 - CVPR2016 

RTA [58] 52.40 - ECCV2018 

DVCov [25] 66.00 82.92 TIP2017 

Depth DVCov [25] + ISR [4] 64.36 86.44 TIP2017 + PAMI2015 

DVCov [25] + NNDGSR [26] 65.13 87.18 Ours 

DVCov [25] + JGRSR_single 66.67 87.18 Ours 

ELF18 [1] + DVCov [25] + NN 47.74 80.36 TCSVT17 + TIP17 

ELF18 [1] + DVCov [25] +LFDA [8] 47.08 68.05 TCSVT17 + TIP17+CVPR13 

RGB-D ELF18 [1] + DVCov [25] +KISSME [9] 61.69 79.23 TCSVT17 + TIP17+CVPR12 

ELF18 [1] + DVCov [25] +XQDA [7] 57.49 83.33 TCSVT17 + TIP17+CVPR15 

ELF18 [1] + DVCov [25] + JGRSR_multi 68.97 87.44 Ours 

Fig. 3. Top 5 ranking results on PAVIS. In each group of images, the query image is on the left. The first, second and third rows are the ranking results of our method with 

LEF18, DVCov and LEF18+DVCov feature (s) respectively. The bounding boxes indicate the correct matchings. 
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Evaluation results on PAVIS [38] are shown in Table 3 . Clearly,

our approach significantly outperforms the state-of-the-art algo-

rithms on both RGB feature, ELF18 [1] and depth feature DV-

Cov [25] . After combing the RGB and depth features, our multi-

modal representation achieves 68.97% at Rank-1 accuracy, which

significantly beats the traditional NN-based method and the state-

of-the-art metric learning methods. Together with the demonstra-

tion in Fig. 3 we can see, our model can relieve the problem of the

person’s clothing changes and the lighting influence by leveraging

the RGB and depth representation. 

6.2.2. Comparison on BIWI 

BIWI [39] dataset contains three groups of sequences Training,

Still and W alk − ing captured from 50 different people, with 300

frames of depth images and skeletons for each person. In Training ,

people performed motions, such as walking and rotating. Only 28

people presented in Training were recorded in Still and Walking ,

which were collected in a different day and a different scene so

that most persons were dressed differently. In Still , people slightly

moved, while in Walking , every person walked in different view

angles. 
For this dataset, we use images of those 28 commonly ap-

eared persons in Training as gallery data and their images in

till and Walking as probe data. Table 4 reports the evaluation

esults on BIWI [39] dataset. From which we can see, (1) Our

GRSR _ single significantly outperforms the state-of-the-art on RGB

eatures. (2) The performance of sparse ranking based methods

including ISR [4] and Ours) is restricted on depth features. This

ight be caused by the dramatical posture changes of the pedes-

rian in this dataset which destroys the robustness of the features.

ven though it is still clear that. (3) by introducing the probe

nd gallery-based graph regularizers and the dictionary learning,

ur NNDGSR [26] and JGRSR _ single outperform the conventional

parse ranking method ISR [4] with competitive results. (4) Our

GRSR _ multi achieves the best performance comparing to the NN-

ased method and metric learning methods. 

.2.3. Comparison on IAS-Lab 

IAS-Lab [40] dataset consists of three groups of sequences

raining, TestingA and TestingB . Each person is with about 500

rames of depth images and skeletons rotated on himself and

alked during the recording. TestingA and TestingB were collected
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Table 4 

Comparison with baselines on BIWI dataset (in %). 

Modality Methods Still Walking References 

Rank-1 Rank-5 Rank-1 Rank-5 

LOMO [7] 18.17 35.47 10.31 21.39 CVPR2015 

ELF18 [1] 4.11 19.13 1.50 16.77 TCSVT2017 

Color Hist [53] 10.61 31.92 5.86 21.70 ECCV2008 

RGB HOG [54] 12.35 30.39 6.94 23.29 ECCV2008 

LBP [5] 10.87 35.57 5.34 23.31 CVPR2015 

ELF18 [1] + ISR [4] 4.41 21.43 3.56 17.86 TCSVT2017 + PAMI2015 

ELF18 [1] + NNDGSR [26] 8.57 21.43 5.36 19.65 Ours 

ELF18 [1] + JGRSR_single 14.71 21.78 10.14 21.01 Ours 

RIFT2M [55] 4.34 20.78 3.75 18.31 ISOP2007 

Fehrs [56] 14.06 43.78 12.09 39.60 ICRA2012 

Skeleton [39] 26.55 62.73 16.94 47.18 Springer2014 

DVCov [25] 23.07 58.89 21.40 54.12 TIP2017 

Depth DVCov [25] + ISR [4] 5.7 21.01 4.06 19.31 TIP2017 + PAMI2015 

DVCov [25] + NNDGSR [26] 17.29 25.56 14.28 20.46 Ours 

DVCov [25] + JGRSR_single 21.65 42.14 16.96 23.35 Ours 

ELF18 [1] + DVCov [25] + NN 4.29 27.86 7.14 21.68 TCSVT17 + TIP17 

ELF18 [1] + DVCov [25] +LFDA [8] 16.43 40.00 7.86 17.14 TCSVT17 + TIP17+CVPR13 

RGB-D ELF18 [1] + DVCov [25] +KISSME [9] 22.86 32.86 12.14 34.29 TCSVT17 + TIP17+CVPR12 

ELF18 [1] + DVCov [25] +XQDA [7] 15.71 37.86 13.57 35 TCSVT17 + TIP17+CVPR15 

ELF18 [1] + DVCov [25] + JGRSR_multi 28.18 64.29 21.79 46.43 Ours 

Table 5 

Comparison with baselines on IAS-Lab dataset (in %). 

Modality Methods TestingA TestingB References 

Rank-1 Rank-3 Rank-1 Rank-3 

LOMO [7] 25.79 66.28 30.06 79.90 CVPR2015 

ELF18 [1] 21.81 67.77 23.01 67.81 TCSVT2017 

Color Hist [53] 24.42 66.48 23.89 60.93 ECCV2008 

RGB HOG [54] 38.89 72.67 49.62 86.79 ECCV2008 

LBP [5] 32.81 68.22 52.88 89.81 CVPR2015 

LBP [5] + ISR [4] 41.65 73.61 56.67 85.41 CVPR2015 + PAMI2015 

LBP [5] + NNDGSR [26] 43.78 73.86 60.42 86.38 Ours 

LBP [5] + JGRSR_single 47.74 75.28 62.56 88.85 Ours 

RIFT2M [55] 20.94 60.87 19.88 60.02 ISOP2007 

Fehrs [56] 24.05 64.95 20.46 62.65 ICRA2012 

Skeleton [39] 49.83 91.49 60.25 93.58 Springer2014 

DVCov [25] 35.56 72.53 36.14 71.45 TIP2017 

Depth DVCov [25] + ISR [4] 41.65 72.22 36.11 66.70 TIP2017 + PAMI2015 

DVCov [25] + NNDGSR [26] 50.00 69.47 41.67 68.87 Ours 

DVCov [25] + JGRSR_single 52.80 80.56 44.44 73.89 Ours 

LBP [5] + DVCov [25] + NN 48.89 74.44 34.44 54.44 CVPR2015 + TIP2017 

LBP [5] + DVCov [25] +LFDA [8] 23.33 64.00 20.00 61.33 CVPR15 + TIP17+CVPR13 

RGB-D LBP [5] + DVCov [25] +KISSME [9] 24.67 56.67 30.67 61.33 CVPR15 + TIP17+CVPR12 

LBP [5] + DVCov [25] +XQDA [7] 38.67 62.00 38.00 58.00 CVPR15 + TIP17+CVPR15 

LBP [5] + DVCov [25] + JGRSR_multi 55.06 89.37 65.28 91.56 Ours 

w  

f
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a

 

m  
ith different clothes and in different environments respectively

or the same person in Training . 

Following the evaluation settings on PAVIS [38] , half of Train-

ng sequences were randomly selected as gallery data, while the

amples in TestingA and TestingB of the same persons were se-

ected as probe data. Table 5 reports the evaluation results on IAS-

ab [40] . As we can see, (1) our approach significantly outperforms

he state-of-the-art methods on both RGB and depth features. (2)

lthough our methods work overshadowed to LBP [5] and Skele-

on [39] on Rank-3, they achieve much higher Rank-1 which is the

ost important metric in real-life application. (3) By combining

oth RGB and depth features, our JGRSR _ multi can further boost

he performance. 

.3. Evaluation on depth transferred multi-modal benchmarks 

Although it is effective to incorporate depth information into

he RGB space for multi-modal Re-ID, we cannot guarantee the
epth information in most of the surveillance. Therefore, we gener-

te the transferred Eigen-depth feature (TED) [25] as depth feature

or two RGB datasets 3DPeS [59] and CAVIAR4REID [2] where the

epth information is not available. For RGB features, we apply two

avorable hand-crafted features, WHOS [4] and ELF18 [1] , and one

eep feature APR [11] . Following the protocol in [25] , we select the

IWI [39] as the auxiliary dataset, then estimate depth information

or 3DPeS [59] and CAVIAR4REID [2] . 

3DPeS [2] dataset contains hundreds of video sequences of 200

eople taken from a multi-camera distributed surveillance sys-

em over several days, with different light conditions and dif-

erent points of view. Two images were randomly selected as

allery data and another two as probe data in 3DPeS [2] . As for

AVIAR4REID [2] dataset, we follow the experiment settings in

ect 6.1 for single-modal Re-ID, and randomly select five images

s gallery data or probe data for the multi-modal case. 

We evaluate our method on both single-modal and multi-

odal cases as shown in Table 6 and Table 7 respectively. From
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Table 6 

Comparison of single-modal cases on 3DPeS and CAVIAR4REID (in %). 

Dataset 3DPeS CAVIAR4REID 

Rank 1 2 3 4 5 1 2 3 4 5 

TED feature ( + metric) 

+ LFDA [8] 28.23 33.54 37.19 40.73 42.29 60.83 70.83 81.11 65.56 87.78 

+ KISSME [9] 16.77 19.38 21.35 24.17 25.94 57.50 67.78 73.61 76.39 80.28 

+ XQDA [7] 30.31 35.73 39.17 42.69 44.48 57.94 69.94 76.83 81.00 85.28 

+ ISR [4] 35.23 40.07 43.10 45.41 47.54 64.47 75.31 80.11 82.81 84.81 

+ NNDGSR [26] 36.33 42.59 46.20 48.97 51.39 70.08 80.53 84.00 85.92 87.72 

+ JGRSR_single 36.98 41.15 43.49 46.35 49.48 73.72 81.75 85.78 87.72 89.44 

WHOS feature [4] ( + metric) 

+ LFDA [8] 41.98 48.75 52.71 55.42 58.23 71.67 82.22 87.78 90.56 91.94 

+ KISSME [9] 32.92 40.10 44.06 45.83 48.02 63.44 75.28 81.67 86.94 90.28 

+ XQDA [7] 49.38 57.29 61.15 64.17 66.35 66.67 78.33 86.67 90.28 91.67 

+ ISR [4] 67.67 75.22 79.19 81.84 83.78 90.10 93.89 95.28 96.81 97.08 

+ NNDGSR [26] 70.56 77.50 81.15 83.66 85.43 93.19 96.28 97.39 98.08 98.47 

+ JGRSR_single 70.72 77.97 81.61 84.10 86.09 93.72 96.78 97.86 98.36 98.81 

ELF18 feature [1] ( + metric) 

+ LFDA [8] 28.65 35.42 39.27 41.56 45.00 67.78 79.72 85.83 90.83 93.33 

+ KISSME [9] 21.88 26.04 32.29 33.33 35.42 63.06 77.22 82.5 85.56 89.72 

+ XQDA [7] 30.94 37.50 43.75 48.96 48.96 68.89 77.78 85.28 89.72 91.94 

+ ISR [4] 45.02 53.91 58.69 62.03 64.57 81.06 88.89 92.28 93.75 94.89 

+ NNDGSR [26] 46.11 55.67 60.89 64.54 67.21 86.22 91.22 94.06 95.33 96.19 

+ JGRSR _ single 47.60 56.81 61.96 65.58 68.09 86.71 92.67 94.31 95.56 96.67 

APR feature [11] ( + metric) 

+ LFDA [8] 38.54 44.58 48.75 51.77 55.00 63.61 77.78 84.44 88.06 91.67 

+ KISSME [9] 27.60 34.37 38.85 41.56 44.06 65.00 78.61 83.61 85.56 88.06 

+ XQDA [7] 36.46 45.94 52.40 57.19 60.73 69.50 83.56 88.67 91.67 93.83 

+ ISR [4] 51.09 60.23 65.11 68.25 70.79 80.69 89.03 92.08 93.75 95.83 

+ NNDGSR [26] 52.80 62.32 67.29 69.36 72.46 89.00 93.47 95.33 96.17 96.78 

+ JGRSR _ single 53.45 63.58 68.23 71.48 73.82 89.50 94.44 96.11 96.11 96.57 

Table 7 

Comparison of multi-modal cases on transferred 3DPeS and CAVIAR4REID (in %). 

Dataset 3DPeS CAVIAR4REID 

Rank 1 2 3 4 5 1 2 3 4 5 

WHOS [4] + TED [25] (+ metric) 

+ LFDA [8] 42.71 49.06 53.02 56.25 58.33 72.78 82.78 88.06 90.56 91.94 

+ KISSME [9] 34.06 40.42 44.06 46.56 48.54 64.33 76.11 82.50 85.00 89.17 

+ XQDA [7] 49.90 58.02 61.35 63.75 65.94 67.50 78.06 85.83 90.00 91.94 

+ ISR [4] 67.85 75.27 79.52 81.82 83.85 89.25 93.97 95.97 97.06 97.69 

+ NNDGSR [26] 69.01 76.04 9.43 81.51 83.59 93.33 96.53 98.06 98.61 98.75 

+ JGRSR _ multi 71.55 77.60 81.32 84.05 85.74 94.17 97.14 98.31 98.83 99.08 

ELF18 [1] + TED [25] (+ metric) 

+ LFDA [8] 28.65 35.42 39.27 41.56 45.00 68.33 80.00 85.83 91.39 93.33 

+ KISSME [9] 21.88 26.46 31.15 33.96 37.19 64.72 75.83 83.89 86.67 89.44 

+ XQDA [7] 31.15 38.54 42.71 45.83 48.96 69.72 77.78 86.39 89.94 91.04 

+ ISR [4] 46.70 56.79 62.10 65.91 68.82 84.14 90.61 93.36 94.97 95.75 

+ NNDGSR [26] 47.92 58.44 63.54 67.29 69.58 87.50 93.06 94.44 95.83 96.67 

+ JGRSR _ multi 48.75 57.60 62.29 66.25 69.06 88.42 93.89 95.5 96.81 97.50 

APR [11] + TED [25] (+ metric) 

+ LFDA [8] 38.54 44.58 48.75 51.77 55.00 63.61 77.78 84.44 88.06 91.67 

+ KISSME [9] 28.23 34.17 39.17 41.56 43.33 66.67 77.50 83.06 86.39 88.89 

+ XQDA [7] 36.88 46.98 53.44 57.92 61.15 70.11 83.39 88.72 91.67 93.50 

+ ISR [4] 52.51 62.32 68.03 71.68 74.07 86.50 92.39 94.56 95.86 96.39 

+ NNDGSR [26] 52.86 62.11 66.8 70.25 72.79 87.64 93.61 95.14 95.83 96.39 

+ JGRSR _ multi 54.69 64.58 69.79 72.40 76.04 89.70 94.08 95.89 96.61 97.42 

 

 

 

 

 

 

i  

e  

c  

T  

o

Table 6 we can see, the sparse ranking based methods (ISR [4] ,

NNDGSR [26] and JGRSR _ single ) significantly beat the conventional

metric learning methods (KISSME [9] and XQDA [7] ) on both hand-

crafted features and deep features. The transferred depth fea-

ture TED performs overshadowed by the other three RGB features

(WHOS [4] , ELF18 [1] and APR [11] ) since the single depth feature
s not sufficient to describe the appearance of the person. How-

ver, the augmentation of TED [25] feature into the RGB features

an effectively improve top-rank matching accuracies, as shown in

able 7 . Furthermore, Table 7 demonstrates the promising results

f our JGRSR _ multi comparing to the state-of-the-art methods. 
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Fig. 4. The component analysis on PAVIS, BIWI, IAS-Lab, 3DPeS and CAVIRA4REID datasets. 

Table 8 

The probe and gallery sizes on PAVIS, BIWI, IAS-Lab, 3DPeS and CAVIRA4REID 

datasets (in {number of person} × {number of images per person}). 

Dataset PAVIS BIWI IAS-Lab 3DPeS CAVIAR4REID 

probe-size 39 × 5 28 × 5 6 × 5 100 × 2 36 × 5 

gallery-size 39 × 5 28 × 5 6 × 5 100 × 2 36 × 5 
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.4. Ablation study 

To verify the contribution of the components in our model,

e implement the ablation study of several variants of our

ethod on PAVIS [38] , BIWI [39] , IAS-Lab [40] , 3DPeS [59] and

AVIAR4REID [2] . Fig. 4 reports the results. From which we can

ee: (1) Probe and gallery-based graph regularizers play important

oles in sparse ranking based Re-ID (comparing baseline + J p + J g to

aseline ). (2) By enforcing the dictionary learning ( + DL ), it can im-

rove the performance to some content. (3) By integrating other

odality resources, it can further boost the performance ( + J m 

).

ig. 4 consistently demonstrates the contribution of each com-

onent in the proposed joint graph regularized dictionary learn-

ng and sparse ranking model. It should be noted that baseline

s the initial sparse representation method (ISR [4] ), baseline +
 p + J g denotes ours previous work NNDGSR [26] , baseline + J p +
 g + DL denotes JGRSR _ single and baseline + J p + J g + DL + J m 

denotes

GRSR _ multi . Table 8 indicates the gallery and probe sizes of each

ataset in Fig. 4 . 
Table 9 

Parameter analysis at rank-1 on PAVIS dataset (in %). 

Parameter Setting Rank-1 Parameter Settin

0.05 68.73 0.1 

λ 0.1 68.97 β 0.2 

0.2 68.48 0.3 

0.2 67.68 0.2 

γ 0.5 68.97 μ 0.3 

0.8 67.43 0.4 
.5. Parameter analysis 

There are five important parameters in our model: { λ, β , γ , μ,

v }. The first four parameters in Eq. (10) control the sparsity of the

odings, the probe-based regularizer in probe images, the gallery-

ased regularizer in gallery images and the cross-modal coherence

espectively, while the last parameter ηv from Eq. (26) balances the

ontribution of corresponding modality. In this paper, η1 and η2 

ndicate the contribution of RGB and depth modality respectively

nd η1 = 1 − η2 . We empirically set: { λ, β , γ , μ, η1 } = {0.1, 0.2,

.5, 0.3, 0.7}. The results with different λ, β , γ , μ and η1 on PAVIS

re shown in Table 9 , which demonstrates that our model is not

ensitive to the parameters. 

. Conclusion 

In this paper, we have proposed a novel joint graph regularized

ictionary learning and sparse ranking method for multi-modal

ulti-shot person Re-ID. First, it can simultaneously capture the

ntrinsic geometric structures in both probe and gallery. In addi-

ion, it preserves the cross-modal consistency while handling the

ulti-modal (RGB-depth) Re-ID task. Then we provide a fast opti-

ization for the proposed unified sparse ranking framework. Ex-

ensive experiments on challenging multi-modal multi-shot person

e-ID datasets demonstrate the promising performance of the pro-

osed method. Although there are many fast algorithms to opti-

ize sparse ranking framework, our method still faces the com-

utational complexity problem due to the graph construction, es-

ecially on large-scale datasets. In the future, we will leverage the

trong feature learning capability of convolutional neural networks

CNN) and the noise resistance ability of sparse ranking, and design
g Rank-1 Parameter Setting Rank-1 

68.73 0.8 68.21 

68.97 η1 0.7 68.97 

67.95 0.6 67.95 

67.69 

68.97 

67.96 
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more robust deep learning based Re-ID models for diverse chal-

lenging scenarios. 

Declaration of Competing Interest 

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper. 

Acknowledgments 

This study was partially funded by the National Key Re-

search and Development Program of China (2016YFB1001001),

the National Natural Science Foundation of China ( 61976002 and

61860206004 ), the National Laboratory of Pattern Recognition

(NLPR) ( 20190 0 046 ), and Open fund for Discipline Construction, In-

stitute of Physical Science and Information Technology, Anhui Uni-

versity. 

References 

[1] Y.C. Chen , W.S. Zheng , J.H. Lai , P. Yuen , An asymmetric distance model for

cross-view feature mapping in person re-identification, IEEE Trans. Circ. Syst.
Video Technol. 27 (8) (2017) 1661–1675 . 

[2] S.C. Dong , M. Cristani , M. Stoppa , L. Bazzani , V. Murino , Custom pictorial
structures for re-identification, in: British Machine Vision Conference, 2011,

pp. 6 8.1–6 8.11 . 
[3] M. Farenzena , L. Bazzani , A. Perina , V. Murino , M. Cristani , Person re-identifi-

cation by symmetry-driven accumulation of local features, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2010, pp. 2360–2367 . 

[4] G. Lisanti , I. Masi , A.D. Bagdanov , A.D. Bimbo , Person re-identification by iter-

ative re-weighted sparse ranking, IEEE Trans. Pattern Anal. Mach.Intell. 37 (8)
(2015) 1629–1642 . 

[5] Y. Zhang , S.T. Li , Gabor-lbp based region covariance descriptor for person
re-identification, in: International Conference on Image and Graphics, 2011,

pp. 368–371 . 
[6] S.C. Liao , S.Z. Li , Efficient psd constrained asymmetric metric learning for per-

son re-identification, in: IEEE International Conference on Computer Vision,

2015, pp. 3685–3693 . 
[7] S.C. Liao , Y. Hu , X.Y. Zhu , S.Z. Li , Person re-identification by local maximal oc-

currence representation and metric learning, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 2197–2206 . 

[8] S. Pedagadi , J. Orwell , S. Velastin , B. Boghossian , Local fisher discriminant anal-
ysis for pedestrian re-identification, in: IEEE Conference on Computer Vision

and Pattern Recognition, 2013, pp. 3318–3325 . 

[9] M. Koestinger , M. Hirzer , P. Wohlhart , P.M. Roth , H. Bischof , Large scale metric
learning from equivalence constraints, in: IEEE Conference on Computer Vision

and Pattern Recognition, 2012, pp. 2288–2295 . 
[10] D.W. Li , X.T. Chen , Z. Zhang , K.Q. Huang , Learning deep context-aware features

over body and latent parts for person re-identification, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 384–393 . 

[11] Y.T. Lin , L. Zheng , Z.D. Zheng , Y. Wu , Z.L. Hu , C.G. Yan , Y. Yang , Improving

person re-identification by attribute and identity learning, Pattern Recogn. 95
(2019) 151–161 . 

[12] J.X. Liu , B.B. Ni , Y.C. Yan , P. Zhou , S. Cheng , J.G. Hu , Pose transferrable person
re-identification, in: IEEE Conference on Computer Vision and Pattern Recog-

nition, 2018, pp. 4099–4108 . 
[13] C. Su , S.L. Zhang , J.L. Xing , W. Gao , Q. Tian , Multi-type attributes driven multi-

-camera person re-identification, Pattern Recogn. 75 (2018) 77–89 . 

[14] T. Xiao , H.S. Li , W.L. Ouyang , X.G. Wang , Learning deep feature representations
with domain guided dropout for person re-identification, in: IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 1249–1258 . 
[15] W. Zhang , S. Hu , K. Liu , Z. Zha , Learning compact appearance representation

for video-based person re-identification, IEEE Trans. Circ. Syst. Video Technol.
29 (8) (2018) 2442–2452 . 

[16] Z. Zhou , Y. Huang , W. Wang , L. Wang , T. Tan , See the forest for the trees: Joint

spatial and temporal recurrent neural networks for video-based person re-i-
dentification, in: IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 6776–6785 . 
[17] X.Y. Jing , X.K. Zhu , F. Wu , R.M. Hu , X.G. You , Y.H. Wang , H. Feng , J.Y. Yang ,

Super-resolution person re-identification with semi-coupled low-rank discrim-
inant dictionary learning, IEEE Trans. Image Process. 26 (3) (2017) 1363–1378 . 

[18] S. Karanam , Y. Li , R.J. Radke , Person re-identification with discriminatively
trained viewpoint invariant dictionaries, in: IEEE International Conference on

Computer Vision, 2015, pp. 4516–4524 . 

[19] K. Li , Z.M. Ding , S. Li , Y. Fu , Discriminative semi-coupled projective dictionary
learning for low-resolution person re-identification, in: AAAI Conference on Ar-

tificial Intelligence, 2018, pp. 2331–2338 . 
[20] S. Li , M. Shao , Y. Fu , Person re-identification by cross-view multi-level dictio-

nary learning, IEEE Trans. Pattern Anal. Mach.Intell. 40 (12) (2018) 2963–2977 .
[21] A. Møgelmose , T.B. Moeslund , K. Nasrollahi , Multimodal person re-identifica-
tion using rgb-d sensors and a transient identification database, in: Interna-

tional Workshop on Biometrics and Forensics, 2013, pp. 1–4 . 
[22] A. Møgelmose , C. Bahnsen , T. Moeslund , A. Clapes , S. Escalera , Tri-modal per-

son re-identification with rgb, depth and thermal features, in: IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2013, pp. 301–307 . 

[23] F. Pala , R. Satta , G. Fumera , F. Roli , Multimodal person reidentification us-
ing rgb-d cameras, IEEE Trans. Circ. Syst. Video Technol. 26 (4) (2016) 

788–799 . 

[24] V. John , G. Englebienne , B. Krose , Person re-identification using height-based
gait in colour depth camera, in: IEEE International Conference on Image Pro-

cessing, 2013, pp. 3345–3349 . 
[25] A.C. Wu , W.S. Zheng , J.H. Lai , Robust depth-based person re-identification, IEEE

Trans. Image Process. 26 (6) (2017) 2588–2603 . 
[26] A.H. Zheng , H.C. Li , B. Jiang , C.L. Li , J. Tang , B. Luo , Non-negative dual graph

regularized sparse ranking for multi-shot person re-identification, in: Chinese

Conference on Pattern Recognition and Computer Vision, 2018, pp. 108–120 . 
[27] X. Liu , M.L. Song , D.C. Tao , X.C. Zhou , C. Chen , J.J. Bu , Semi-supervised coupled

dictionary learning for person re-identification, in: IEEE Conference on Com-
puter Vision and Pattern Recognition, 2014, pp. 3550–3557 . 

[28] Q. Zhou , S.B. Zheng , H.B. Ling , H. Su , S. Wu , Joint dictionary and metric learn-
ing for person re-identification, Pattern Recognition. 72 (2017) 196–206 . 

[29] M. Aharon , M. Elad , A. Bruckstein , K-Svd: an algorithm for designing overcom-

plete dictionaries for sparse representation, IEEE Trans. Signal Process. 54 (11)
(2012) 4311–4322 . 

[30] H. Lee , A. Battle , R. Raina , A.Y. Ng , Efficient sparse coding algorithms, in: Ad-
vances in Neural Information Processing Systems, 2007, pp. 801–808 . 

[31] M. Zheng , J.J. Bu , C. Chen , C. Wang , L.J. Zhang , G. Qiu , D. Cai , Graph regular-
ized sparse coding for image representation, IEEE Trans. Image Process. 20 (5)

(2010) 1327–1336 . 

[32] L.D. Sha , D. Schonfeld , Dual graph regularized sparse coding for image rep-
resentation, in: IEEE Visual Communications and Image Processing, 2017,

pp. 1–4 . 
[33] H.X. Wang , Y. Kawahara , C.Q. Weng , J.S. Yuan , Representative selection with

structured sparsity, Pattern Recogn. 63 (2017) 268–278 . 
[34] J.X. Zhuo , J.Y. Zhu , J.H. Lai , X.H. Xie , Person re-identification on heteroge-

neous camera network, in: CCF Chinese Conference on Computer Vision, 2017,

pp. 280–291 . 
[35] N. Parikh , S. Boyd , et al. , Proximal algorithms, Found. Trends® Optim. 1 (3)

(2014) 127–239 . 
[36] W.S. Zheng , S.G. Gong , T. Xiang , Associating groups of people, in: British Ma-

chine Vision Conference, 2009, pp. 23.1–23.11 . 
[37] L. Zheng , Z. Bie , Y.F. Sun , J.D. Wang , C. Su , S.J. Wang , Q. Tian , Mars: A video

benchmark for large-scale person re-identification, in: European Conference on

Computer Vision, 2016, pp. 868–884 . 
[38] I.B. Barbosa , M. Cristani , A. Del Bue , L. Bazzani , V. Murino , Re-identification

with rgb-d sensors, in: European Conference on Computer Vision Workshops,
2012, pp. 433–442 . 

[39] M. Munaro , A. Fossati , A. Basso , E. Menegatti , L. Van Gool , One-shot Person
Re-identification with a Consumer Depth Camera, in: Person Re-Identification,

Springer, 2014, pp. 161–181 . 
[40] M. Munaro , A. Basso , A. Fossati , L. Van Gool , E. Menegatti , 3d reconstruction

of freely moving persons for re-identification with a depth sensor, in: IEEE

Conference on Robotics and Automation, 2014, pp. 4512–4519 . 
[41] L. Zheng , L.Y. Shen , L. Tian , S.J. Wang , J.D. Wang , Q. Tian , Scalable person re-i-

dentification: A benchmark, in: IEEE International Conference on Computer Vi-
sion, 2015, pp. 1116–1124 . 

[42] L. Bazzani , M. Cristani , A. Perina , M. Farenzena , V. Murino , Multiple-shot per-
son re-identification by hpe signature, in: IEEE International Conference on

Pattern Recognition, 2010, pp. 1413–1416 . 

[43] L. Bazzani , M. Cristani , A. Perina , V. Murino , Multiple-shot person re-identifi-
cation by chromatic and epitomic analyses, Pattern Recogn. Lett. 33 (7) (2012)

898–903 . 
44] E. Corvee , F. Bremond , M. Thonnat , et al. , Person re-identification using spatial

covariance regions of human body parts, in: IEEE International Conference on
Advanced Video and Signal Based Surveillance, 2010, pp. 435–440 . 

[45] S. Bak , E. Corvee , F. Bremond , M. Thonnat , Multiple-shot human re-identifica-

tion by mean riemannian covariance grid, in: IEEE International Conference on
Advanced Video and Signal-Based Surveillance, 2011, pp. 179–184 . 

[46] G. Charpiat , M. Thonnat , Learning to match appearances by correlations in a
covariance metric space, in: European Conference on Computer Vision, 2012,

pp. 806–820 . 
[47] A. Klaser , M. Marszałek , C. Schmid , A spatiotemporal descriptor based on 3d–

gradients, in: British Machine Vision Conference, 2008, pp. 995–1004 . 

[48] J. Han , B. Bhanu , Individual recognition using gait energy image, IEEE Trans.
Pattern Anal.Mach.Intell. 28 (2) (2006) 316–322 . 

[49] F. Xiong , M. Gou , O. Camps , M. Sznaier , Person re-identification using ker-
nel-based metric learning methods, in: European Conference on Computer Vi-

sion, 2014, pp. 1–16 . 
[50] S.J. Xu , Y. Cheng , K. Gu , Y. Yang , S.Y. Chang , P. Zhou , Jointly attentive spa-

tial-temporal pooling networks for video-based person re-identification, in:

IEEE International Conference on Computer Vision, 2017, pp. 4733–4742 . 
[51] Y. Wu , Y.T. Lin , X.Y. Dong , Y. Yan , W.L. Ouyang , Y. Yang , Exploit the unknown

gradually: One-shot video-based person re-identification by stepwise learn-
ing, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018,

pp. 5177–5186 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100011222
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0051


A. Zheng, H. Li and B. Jiang et al. / Pattern Recognition 104 (2020) 107352 13 

[  

 

[  

 

[  

 

[  

[  

 

 

 

 

[  

 

[  

 

A  

p  

2  

t  

i  

p  

a

H  

h  

s  

i

B  

M  

2  

p  

t

W  

U  

n  

j  

I  

u  

a  

t  

a  

&  

P  

a  

e  

F  

S  

s

B  

s  

P  

F  

c  

g  

s

52] Y.T. Lin , X.Y. Dong , L. Zheng , Y. Yan , Y. Yang , A bottom-up clustering approach
to unsupervised person re-identification, in: AAAI Conference on Artificial In-

telligence, 33, 2019, pp. 8738–8745 . 
53] D. Gray , H. Tao , Viewpoint invariant pedestrian recognition with an ensem-

ble of localized features, in: European Conference on Computer Vision, 2008,
pp. 262–275 . 

54] O. Oreifej , R. Mehran , M. Shah , Human identity recognition in aerial im-
ages, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010,

pp. 709–716 . 

55] L.J. Skelly , S. Sclaroff, Improved feature descriptors for 3d surface matching, in:
Proceedings of SPIE, 6762, 2007 . 

56] D. Fehr , A. Cherian , R. Sivalingam , S. Nickolay , V. Morellas , N. Papanikolopou-
los , Compact covariance descriptors in 3d point clouds for object recogni-

tion, in: IEEE International Conference on Robotics and Automation, 2012,
pp. 1793–1798 . 

[57] A . Haque , A . Alahi , F.F. Li , Recurrent attention models for depth-based person

identification, in: IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 1229–1238 . 

58] N. Karianakis , Z.C. Liu , Y.P. Chen , S. Soatto , Reinforced temporal attention and
split-rate transfer for depth-based person re-identification, in: European Con-

ference on Computer Vision, 2018, pp. 715–733 . 
59] D. Baltieri , R. Vezzani , R. Cucchiara , 3dpes: 3d people dataset for surveillance

and forensics, in: ACM Workshop on Human Gesture and Behavior Under-

standing, 2011, pp. 59–64 . 

ihua Zheng received her B.Eng. degrees and finished her Master-Doctor combined

rogram in computer science and technology from Anhui University of China in
006 and 2008 respectively. And received her Ph.D degree in computer science from

he University of Greenwich of UK in 2012. She is currently an associated professor
n computer science at Anhui University. Her main research interests include com-

uter vision and artificial intelligent, especially on person/vehicle re-identificaiton,

udio-visual learning and multi-modal and cross-modal lerning. 

ongchao Li received his B.Eng. degree in software.engineering in 2017 from An-

ui University, Hefei, China. He is currently pursuing the PhD degree in computer
cience and technology at Anhui University. His current research is person re-

dentification. 
o Jiang received the B.S. degrees in mathematics and applied mathematics and the
.Eng. and Ph.D. degrees in computer science from Anhui University of China in

009, 2012 and 2015, respectively. He is currently an associated professor in com-
uter science at Anhui University. His current research interests include image fea-

ure extraction and matching, data representation and learning. 

ei-Shi Zheng received the PhD degree in applied mathematics from Sun Yat-sen

niversity in 2008. He is now a full Professor at Sun Yat-Sen University. He has

ow published more than 120 papers, including more than 100 publications in main
ournals (TPAMI, TNN/TNNLS, TIP, TSMC-B, PR) and top conferences (ICCV, CVPR,

JCAI, AAAI). His research interests include person/object association and activity
nderstanding in visual surveillance, and the related large-scale machine learning

lgorithm. Especially, Dr. Zheng has active research on person re-identification in
he last five years. He serves a lot for many journals and conference, and he was

nnounced to perform outstanding review in recent top conferences (ECCV 2016

 CVPR 2017). He has ever joined Microsoft Research Asia Young Faculty Visiting
rogramme. He has ever served as a senior PC/area chairs many conferences (such

s CVPR, BMVC, IJCAI and AAAI). He is an IEEE MSA TC member. He is an associate
ditor of Pattern Recognition. He is a recipient of the Excellent Young Scientists

und of the National Natural Science Foundation of China, and a recipient of Royal
ociety-Newton Advanced Fellowship of United Kingdom.. Homepage: http://isee.

ysu.edu.cn/hwshi . 

in Luo received the B.Eng. degree in electronics and M.Eng. degree in computer
cience from Anhui University, Hefei, China, in 1984 and 1991, respectively, and the

h.D. degree in computer science from the University of York, York, U.K., in 2002.
rom 20 0 0 to 20 04, he was a Research Associate with the University of York. He is

urrently a Professor with Anhui University. His current research interests include
raph spectral analysis, large image database retrieval, image and graph matching,

tatistical pattern recognition, digital watermarking, and information security. 

http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30155-2/sbref0059
http://isee.sysu.edu.cn/hwshi

	Joint graph regularized dictionary learning and sparse ranking for multi-modal multi-shot person re-identification
	1 Introduction
	2 Related work
	2.1 Sparse ranking based person Re-ID
	2.2 Multi-modal person Re-ID

	3 The proposed model
	3.1 Dual graph regularized dictionary learning and sparse representation
	3.1.1 Probe-based graph regularization
	3.1.2 Gallery-based graph regularization

	3.2 Joint model for multi-modal problem

	4 Optimization
	4.1 Learning the graph regularized sparse codes
	4.2 Learning dictionary

	5 Ranking implementation for multi-shot Re-ID
	6 Experimental results
	6.1 Evaluation on single-modal benchmarks
	6.1.1 Comparison on i-LIDS
	6.1.2 Comparison on CAVIAR4REID
	6.1.3 Comparison on MARS

	6.2 Evaluation on multi-modal benchmarks
	6.2.1 Comparison on PAVIS
	6.2.2 Comparison on BIWI
	6.2.3 Comparison on IAS-Lab

	6.3 Evaluation on depth transferred multi-modal benchmarks
	6.4 Ablation study
	6.5 Parameter analysis

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


