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A Subspace Learning Approach to Multishot
Person Reidentification

Aihua Zheng, Xuehan Zhang, Bo Jiang , Bin Luo, and Chenglong Li

Abstract—This paper addresses the challenging problem of
multishot person reidentification (Re-ID) in real world uncon-
trolled surveillance systems. A key issue is how to effectively
represent and process the multiple data with various appearance
information due to the variations of pose, occlusions, and view-
points. To this end, this paper develops a novel subspace learning
approach, which pursues regularized low-rank and sparse repre-
sentation for multishot person Re-ID. For the images of a person
crossing a certain camera, we assume that the appearances of
those subset images with similar viewpoints against a camera
draw from the same low-rank subspace, and all the images of
a person under a camera lie on a union of low-rank subspaces.
Based on this assumption, we propose to learn a nonnegative low-
rank and sparse graph to represent the person images. Moreover,
the recurring pattern prior is integrated into our model to refine
the affinities among images. Extensive experiments on four public
benchmark datasets yield impressive performance by improving
22.9% on imagery library for intelligent detection systems video
re identification (iLIDS-VID), 42.4% on person RE-ID (PRID)
dataset 2011, 39.7% and 30.6% on speech, audio, image, and
video technology-SoftBio camera 3/8 and camera 5/8, respectively,
and 1.6% on motion analysis and re identification set compared
to the state-of-the-art methods.

Index Terms—Low-rank and sparse representation, multi-
shot reidentification (Re-ID), recurring pattern prior, subspace
learning.

I. INTRODUCTION

PERSON reidentification (Re-ID) is used to reidentify the
same person crossing the cameras with nonoverlapping

views in the camera networks. It plays an important role in
public security [1], automatic surveillance [2], human behav-
ior analysis [3], and vehicle navigation, and has been widely
investigated during the past decades.

Generally speaking, there are two categories of the Re-ID
problem: the first category is the single-shot Re-ID, where
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only a single frame/image is recorded for each person within
each camera view. Although many remarkable methods have
been proposed for single-shot Re-ID [4]–[6], the performance
is restrained by the limited information contained in a single
image of a person. In the real-life surveillance system, the
task of Re-ID normally produces multiple frames for a sin-
gle person. Thus, it is natural to improve the performance of
Re-ID in the second category, multishot case, where a video
sequence is recorded for each person, through taking advan-
tage of the multiple visual aspects. Recently, more and more
works focus on multishot Re-ID, including appearance-based
methods [7] which focus on appearance modeling to lever-
age the various changes between cameras, and learning-based
methods [8]–[11] which focus on mitigating the appearance
gaps between the low-level features and the high-level seman-
tics. However, few of the existing methods exploit the subspace
structure of the images for a certain person.

As a subspace representation method, low-rank represen-
tation (LRR) was proposed by Liu et al. [12] to recover
the low-rank subspace structure, which can better capture the
global structure of data against the influences of outliers and
occlusions and robust to illumination or pose changes for
recognition [13]. LRR has been widely applied in image/video
segmentation [14], [15], saliency detection [16], and back-
ground modeling [17]. Recently, some works also proposed
using LRR for multishot Re-ID. Jing et al. [18] proposed a
novel multishot Re-ID framework by jointly learning a dic-
tionary pair and a mapping function from high-resolution
gallery images and low-resolution probe images, where low-
rank matrix recovery was employed in a dictionary learning
procedure to separate the noises from patches. Except for the
low-level features, Chi et al. [19] proposed to produce contin-
uous sematic attributes by embedding the low-rank attributes
into the original binary attributes, based on which, a multitask
learning framework is utilized for multishot Re-ID. However,
how to learn the subspace correlations during the person
images remains not well studied.

In this paper, we propose to employ a subspace learning
approach based on regularized low-rank and sparse represen-
tation for multishot Re-ID. LRR has been widely applied in
image/video segmentation [14], [15], due to its capability of
capturing the global low-rank structure among data, and thus
is robust to noises and/or corruptions. Therefore, we employ
the idea of LRR in the problem of multishot Re-ID as fol-
lows. For each person sequence, some of them are similar in
appearance, and thus are correlated without considering the
image or video noises and/ or corruptions. This observation
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(a)

(b)

Fig. 1. Demonstration of the low-rank observation of the person images
collected on the campus supervenience system. (a) Singular values of the
feature matrix of the images. (b) Ranks of 95% principle components of four
nature clusters, with ranks of 2, 3, 3, and 3 for corresponding clusters.

is similar with [11]. Therefore, for the sequential images of a
person crossing a certain camera, we assume that the appear-
ances of those subset images derived from similar appearance
characterization draw from the same low-rank subspace, and
all the images of a person under a camera lie on a union
of low-rank subspaces and nature clusters lie on correspond-
ing low-rank subspaces. As demonstrated in Fig. 1, Fig. 1(a)
shows some representative person images with various appear-
ances that sampled from a video sequence. We partition them
into four clusters according to their appearance, and perform
SVD on the feature matrix of each cluster. The singular value
of the matrix is the results of SVD factorization of matrix,
which denotes the correlation between elements. Thus, the
more rapidly this value declines, the lower rank of the matrix.
The results show that all feature matrices are low rank, as
shown in Fig. 1(b). Specifically, we preserve 95% principle
components of each feature matrix, and the rank of each clus-
ter is less than 4, which justifies the low-rank assumption. The
similar justification on the low-rank assumption is presented
in [15]. Based on this assumption, we employ the LRR model
to recover the subspace structures of the person images against
noises and/or corruptions of low-level features.

According to the work of Wright et al. [20], we take each
image as graph node and incorporate the sparse and nonneg-
ative constraints on the representation coefficient matrix into
our model to refine the affinities between the images of a cer-
tain person, where the nonnegativity and the sparsity ensure
the convex combination of data points and the local linear
relationship, respectively. To further refine the low-rank affin-
ity matrix, the recurring pattern prior is integrated into our
model, which exploits the nonlocal recurring regions [21] to
refine the affinities among images.

Give the learned affinity matrix, the subspace clustering
method, normalized cut (NCut) [22] is employed to generate

the subspace clusters of each person. After that, each cluster is
represented by the center of the features of the images in the
corresponding cluster, which then fed into a modern metric
learning scheme, cross-view quadratic discriminant analysis
(XQDA) [6], to mitigate the cross-view gaps.

The main contributions of this paper can be summarized as
the following three aspects.

1) We propose an effective subspace learning approach for
multishot Re-ID in the LRR framework, in which the
nonnegative, low-rank and sparse constraints are simul-
taneously employed to construct an informative graph
for refining the affinities among person images.

2) We introduce the internal image statistical prior, called
recurring pattern prior, to further refine the low-rank
affinity matrix. This prior is originally used for image
and video segmentation [15], [21], and we extend it to
the multishot Re-ID task to improve its robustness.

3) We evaluate the performance of our approach on four
benchmark datasets. The extensive experiments demon-
strate that our approach significantly outperforms the
state-of-the-art methods.

The rest of this paper is organized as follows. In Section II,
the relevant existing methods are introduced. In Section III,
we describe the details of our methods and the associated
optimization algorithm. The experimental results on the bench-
mark datasets are shown in Section IV. Finally, Section V
concludes this paper.

II. RELATED WORK

Different from the single-shot Re-ID, multishot Re-ID con-
cerns more on the additional sequential information. In the
early stage, gait recognition [23] and temporal sequence
matching [24] were employed on multishot Re-ID. However,
the rigorous assumptions on temporal consistency restricts
their performance on person Re-ID scenarios, which derives
from the uncontrolled real-world camera networks. The recent
commendable methods include the following two categories.

1) Appearance-Based Methods: They leverage the illumi-
nation, pose, and viewpoint changes in Re-ID by appear-
ance modeling. Zhao et al. [25] proposed a dColorSIFT,
which combines LAB color and SIFT for each patch to
ensure the robustness in matching. Liao et al. [6] intro-
duced another effective feature representation, which
analyzes the horizontal occurrence of local features, and
maximizes the occurrence to make a stable representa-
tion against viewpoint changes. Guo et al. [7] proposed
an ambiguity removal approach on the shape feature
to recognize and remove ambiguous samples. However,
due to the discrimination in the inner-class images and
resemblance in the interclass images, especially caused
by the pose and illumination changes [26], none of
the appearance models themselves can competent the
challenging task of Re-ID.

2) Learning-Based Methods: To bridge the appearance gaps
between the low-level feature and high-level human
semantic, many learning-based methods have been



ZHENG et al.: SUBSPACE LEARNING APPROACH TO MULTISHOT PERSON Re-ID 151

developed. Wang et al. [8], [9] presented a discrim-
inative video ranking method based on the HOG3D
spatial–temporal features of the selected video frag-
ments. Li et al. [10] proposed to train a random forest
based on pairwise constraints in the reduced random
projection subspace. By learning a feature transforma-
tion through the adaptive Fisher discriminant analysis
(FDA), Li et al. [11] proposed a hierarchical clustering
on image sequences and followed by RankSVM as the
metric learning step. You et al. [27] designed a top-push
distance learning (TDL) model by integrating a top-push
constraint during video feature matching. Meanwhile, a
set of sparse coding and dictionary learning methods
have been proposed for multishot Re-ID. However, as we
observed in Fig. 1, the person images usually draw from
the combination of several low-rank subspaces due to
the appearance variations, and unfortunately, none of the
above methods considered this issue, which motivates us
to develop a low-rank subspace learning approach for
multishot Re-ID.

III. PROPOSED APPROACH

In this section, we will detail our approach for the multishot
Re-ID problem.

A. Overview

Our Re-ID method performs the following three steps. First,
we propose a novel model, i.e., regularized nonnegative low-
rank and sparse representation, to refine the affinities among
images in an image sequence. Second, we obtain the optimal
clusters of the image sequence via the NCut method on the
optimized affinity matrix. Based on these clusters, we compute
several representatives to represent the corresponding image
sequence. Finally, we perform multishot Re-ID with XQDA
to mitigate the cross-view gaps.

B. Regularized NonNegative Low-Rank and Sparse
Representation

1) Formulation: For each image of a person, we extract the
d-dimensional local maximal occurrence (LOMO) feature [6]
to characterize the image, and the feature descriptors of the
person forms the data matrix X = [x1, x2, . . . , xn] ∈ R

d×n,
where n denotes the number of images of the person in a
certain camera. We assume that the appearances of those sub-
set images derived from a similar appearance characterization
draw from the same low-rank subspace, and all the images
of a person under a camera lie on a union of low-rank sub-
spaces. Based on this assumption, each image descriptor can
be represented as the linear combination of remaining image
descriptors, and the LRR of all image descriptors can then be
pursued in a joint fashion, i.e., X = XZ, where Z is the desired
LRR coefficient matrix. Since the feature matrix is often noisy
or grossly corrupted, the LRR can be solved by the following
program:

X = XZ + E, s.t. rank(Z) ≤ r (1)

Fig. 2. Illustrations of the recurring pattern prior. The patches with the same
color indicate the recurring patterns.

where r is the desired rank, and r � n, Zij represented the
affinity between the images i and j. In real applications, the
data are often noisy and even grossly corrupted. Therefore, we
add a noise term E to (1) for each person image. However,
LRR often results in negative Zij. In fact, the non-negativity
property is more realistic for informative data, which often
leads to better structure for data representation [28]. Besides
that, in order to capture the local linear structure of data,
we enhance the sparse property to the LRR formulation.
Therefore, we seek a coefficient matrix Z to better capture
the subspace structure by solving the following optimization
problem:

min
Z,E

rank(Z) + β‖Z‖0 + α‖E‖0

s.t. X = XZ + E, Z ≥ 0 (2)

where α and β are balance parameters. ‖ · ‖0 denotes the
l0-norm of a matrix.

To further refine the low-rank coefficient matrix, we inte-
grate the recurring pattern prior into our model based on the
assumption that the local small-size patches (e.g., with size of
8×8 pixels) tend to recur frequently within the subset images
with same appearance, as shown in Fig. 2, the patches with the
same color cover the similar appearance and tend to reoccur in
the same region of two adjacent images. The recurring pattern
prior can be employed to evaluate the probability whether two
images are drawn from the same subspace. Recurring pattern
prior is a sort of internal image statistics which has been suc-
cessfully used for image and video segmentation [21], [29] to
refine the affinity between superpixels or supervoxels.

Denoting that �i is the patch set covered by image i, and
Q ∈ R

n×n is the recurring pattern prior between the n images.
We have

Qij = e
−

(
1|�i|�p∈�iϕζ (p,�j)+ 1|�j|�q∈�jϕζ (q,�i)

)

ϕζ (p,�) = 1

|�| �
q∈�

δζ

(
K

(∥∥fp − fq
∥∥))

(3)

where |�i| indicates the number of patches within �i, fp and
fq are the histogram of oriented gradient (HOG) [30] features
of the patches p and q, and K is a kernel function, such as
Gaussian. The threshold operator δζ (a) is indicated as

δζ (a) = aI(|a| > ζ) (4)

where I(·) is indicated as 1 if |a| is larger than threshold ζ

which is assigned as 0.6 empirically. By incorporating the
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recurring pattern prior, our model is finalized as

min
Z,E

rank(Z) + β‖Z‖0 + α‖E‖0 + γ tr
(
ZTQ

)
s.t. X = XZ + E, Z ≥ 0. (5)

The larger Qij, the higher probability that the image i and j
derives from different clusters/subspaces, which will encour-
age smaller Zij by minimizing the last term. Therefore,
minimizing tr(ZTQ) prefers to enforce the coefficient matrix
Z to be block diagonal, where Zij is zero if the image i and j
are from different cluster subspaces.

2) Optimization: Directly minimizing (5) is not trivial due
to the nonconvexity of the low rank term (rank function) and
the sparse term (l0-norm). The problem of finding the spars-
est solution of an underdetermined system of linear equations
is NP-hard and difficult even to approximate [31]. In practice,
convex relaxation is usually adopted to transfer (5) into a con-
vex optimization problem by replacing the l0-norm with the
l1-norm. The theory of sparse representation and compressed
sensing [32] reveals that if the solution is sparse enough,
the solution of the l0-minimization problem is equal to the
solution of the l1-minimization problem. Hence, to tackle this
issue, we will relax the nonconvexity by convex substituting.
Specifically, we substitute the low-rank term and the l0-norm
by nuclear norm and l1-norm, respectively. Thus, (5) can be
relaxed as

min
Z,E

‖Z‖∗ + β‖Z‖1 + α‖E‖1 + γ tr
(
ZTQ

)
s.t. X = XZ + E, Z ≥ 0 (6)

where ‖·‖∗ and ‖·‖1 denote the nuclear norm and the l1-norm
of a matrix, respectively.

The optimization problem of (6) can be efficient solved via
the Augmented Lagrange Multiplier (ALM) method [33]. By
introducing the auxiliary variables J and P, (6) can be rewritten
as the following countertype:

min
Z,E,J,P

‖J‖∗ + β‖P‖1 + α‖E‖1 + γ tr
(
ZTQ

)
s.t. X = XZ + E, Z = J, Z = P, P ≥ 0. (7)

The related unconstrained problem of (7) is defined as

min
Z,E,J,P

‖J‖∗ + β‖P‖1 + α‖E‖1 + γ tr
(
ZTQ

)

+ < Y, X − XZ − E > +μ

2
‖X − XZ − E‖2

F

+ < V, Z − J > +μ

2
‖Z − J‖2

F

+ < U, Z − P > +μ

2
‖Z − P‖2

F (8)

where μ > 0 is the penalty parameter, Y, V, and U are
ALMs. As shown in [33], ALM procedure will converge
with μ increasing. The entire algorithm is summarized in
Algorithm 1. Noted that: 1) step 2 is solved via the singu-
lar value thresholding operator [34]; 2) steps 3(1) and 4 are
convex problems which can be solved by the soft-threshold (or
shrinkage) method in [33] and the operator max(·) in step 3(2)
ensures the non-negativity of P; and 3) a series of increasing
μ can be obtained by setting the update parameter ρ to be 1.1.

Algorithm 1 Optimization Procedure of Our Model
Input:

The data matrix X of person images;
The recurring pattern prior Q;
Set parameter β, α, γ , ρ = 1.1 and μ = 10−5 ;
Set Z = J = P = 0; E = 0; Y = 0; V = 0; U = 0;
ε = 10−8; MAXIter = 400.

Output: J, P, E, Z;
1: while Not converged do
2: Fix the others and update J by solving

J = arg min
J

1

μ
‖J‖∗ + 1

2

∥∥∥∥J −
(

Z + V
μ

)∥∥∥∥
2

F

3: Fix the others and update P by solving

(1)P = arg min
P

β

μ
‖P‖1 + 1

2

∥∥∥∥P −
(

Z + U
μ

)∥∥∥∥
2

F
;

(2)P = max(P, 0);

4: Fix the others and update E by solving

E = arg min
E

α

μ
‖E‖1 + 1

2

∥∥∥∥E −
(

X − XZ + Y
μ

)∥∥∥∥
2

F

5: Fix the others and update Z by solving

Z = (
XTX + 2

)−1
(XTX − XTE + J + P

+ 1

μ
(XTY − (V + U) − γ Q))

6: Update the multipliers and parameter

Y = Y + μ(X − XZ − E);
V = V + μ(Z − J);
U = U + μ(Z − P);
μ = ρμ;

7: Check the convergence conditions

(1)‖X − XZ − E‖ < ε and ‖Z − J‖ < ε

and ‖Z − P‖ < ε; Or

(2)iterations reaches MAXIter;
8: end while

C. Subspace Clustering via NCut

In this section, we will deploy the optimized low-rank and
sparse representation in the previous sections to obtain the
representatives for each image sequence. Given the optimized
coefficient matrix Z and feature matrix X, where the Z is
coefficient matrix which is not a symmetric matrix. For apply-
ing NCut algorithm, we need a symmetric matrix. So we first
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define the affinity matrix as

Zij =
{

Zij, if Zij > θ

0, otherwise.

Wij = ωe

−(Zij+Zji)/2

2τ2
1 + (1 − ω)e

−Dij

2τ2
2 (9)

where, θ = 0, Dij means the Euclidean distances between
the feature vectors of xi and xj. Then, for each person on
a different camera, we employ the NCut algorithm [22] to
achieve the subspace clustering person by person, which can
be formulated as

max
G

1

k
tr
(
GTWG

)
s.t. GTBG = Ik (10)

where k is the number of clusters, B = W1n is the degree
matrix, and G = M(MTBM)−(1/2) is the scaled partition
matrix. n is the total number of images. 1 and I denote all ones
vector and identity matrix, respectively. M ∈ {0, 1}n×k is the
partition matrix. The optimization of (10) has been addressed
in [22]. After NCut clustering, we can reduce the number of
person images by using the mean features of the k clusters,
which can also improve the efficiency of the forthcoming met-
ric learning. For instance, it can speed up 1500 times during
the training phase and 200 times during the testing phase for
iLIDS-VID. The improvement will be more significant when
the number of person images increases.

D. Cross-View Quadratic Discriminant Analysis

After the subspace clustering, the images of each person are
clustered into k clusters. The center of each cluster, ca

i,j which
is the mean of the image features of the ith person in the
jth cluster, is used as the representative of the cluster. Then,
we employ the XQDA method [6] as the metric learning step
to mitigate the cross-view gap. The cross-view training set
{Ca

i , Cb
j |i, j = 1, . . . , m} is formed by m person from camera

a and camera b. Noted that Ca
i = {ca

i,1, ca
i,2, . . . , ca

i,k} ∈ R
d×k

contains d-dimensional feature representatives of k clusters of
person i in the camera a. Different from Bayesian Face [35]
and keep it simple and straightforward metric [36] learning a
distance function in d-dimension, XQDA learned a subspace
S = (s1, s2, . . . , slr ) ∈ R

d×lr for the cross-view data, and
simultaneously learned a distance function in lr-dimensional
(lr � d) subspace as

dS

(
ca

i,h, cb
j,t

)
=

(
ca

i,h − cb
j,t

)T
S
(
�′−1

In − �′−1
Ex

)
ST

(
ca

i,h − cb
j,t

)
(11)

where
∑′−1

In = ST�InS and �′−1
Ex = ST�ExS, for i, j ∈

{1, . . . , m}, h, t ∈ {1, . . . , k}. lr = 125 in this paper. Noted
that �In and �Ex are the covariance matrices of the interper-
sonal variations In (the same person under different cameras)
and the extrapersonal variations Ex (the different person under
different cameras). Due to the inverse matrices in (11) and
zero-mean properties of In and Ex, the projection direction s
can be optimized by maximizing σEx(s)/σIn(s)

max
s

σEx(s)/σIn(s) = sT�Exs
sT�Ins

(12)

which equals to

max
s

sT�Exs, s.t. sT�Ins = 1. (13)

This can be solved by the generalized eigenvalue decomposi-
tion problem as similar in LDA. The final distance between
the person i in camera a and the person j in camera b is
obtained by

DS

(
Ca

i , Cb
j

)
= min

h

{
min

t

{
dS

(
ca

i,h, cb
j,t

)}}
(14)

where i, j ∈ {1, . . . , m}, h, t ∈ {1, . . . , k}.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate our approach on four benchmark datasets,
iLIDS-VID [8], PRID 2011 [37], speech, audio, image, and
video technology (SAIVT)-SoftBio [38], and motion anal-
ysis and re identification set (MARS) [39], and compare
the performance with state-of-the-art methods symmetry-
driven accumulation of local features [5], Salience [25],
RankSVM [40], random-projection-based random forest [10],
local fisher discriminant analysis (LFDA) [41], sparse
Re-ID [42], discriminative viewpoint dictionaries learn-
ing [43], adaptive fisher discriminant analysis (AFDA) [11],
discriminative selection in video ranking (DVR) [9], pairwise
feature dissimilarities space (PFDS) [44], and Fused [38].

A. Benchmark Datasets

1) iLIDS-VID [8]: This dataset includes 600 image
sequences for 300 indoor pedestrians recorded by two
nonoverlapping nonadjacent cameras at an airport arrival hall.
The length of each image sequence varies from 23 to 192
frames, with an average length of 73. The dataset is quite
challenging due to large occlusions, and big viewpoint changes
across the cameras.

2) PRID 2011 [37]: This dataset consists of 400 image
sequences for 200 outdoor persons from two adjacent cam-
eras. The length of each image sequence varies from 5 to
675 frames with an average number of 100. We follow the
same protocol as [9] and only 178 persons with a length > 21
frames is evaluated. It is less challenging with relatively clean
backgrounds and rare occlusions.

3) SAIVT-SoftBio [38]: This dataset consists of 150 peo-
ple from eight nonoverlapping uncontrolled real-life indoor
surveillance networks. Since not every person appears in each
camera view, following the works in [11], [38], and [44], we
select cameras 3/8 including 99 person pairs with similar view-
points and cameras 5/8 including 103 person pairs with large
viewpoint changes.

4) MARS [39]: MARS is the largest and newly collected
dataset for person Re-ID. It is an extension of the Market-1501
dataset [45] that collected from six near-synchronized cam-
eras in the campus of Tsinghua University. MARS consists
of 1261 pedestrians each of which appears at least two cam-
eras. It contains 625 identities with 8298 tracklets for training,
which having in total 509 914 bounding boxes that automat-
ically extracted by the deformable part model as pedestrian
detector and the generalized maximum multiclique problem
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TABLE I
EVALUATED THE PARAMETERS ON ILIDS-VID DATASET (IN %)

tracker. For testing, 681 089 bounding boxes are generated in
the same manner, containing 636 identities with 12 180 track-
lets. The query trackelets are automatically generated from the
testing samples. Different from the other dataset, it also con-
sists 23 380 “junk” bounding boxes and 147 743 “distractors”
bounding boxes in the testing samples.

B. Experiment Setup

For the parameters in our model: we empirically set
{β, α, γ } = {0.1, 0.01, 0.01} in optimization. In affinity defi-
nition, we set {ω, τ1, τ2} = {0.4, 0.3, 0.6}. For cluster number,
we set k = 4. We evaluate these parameters on iLIDS-VID and
report the ranking results in Table I. It is worth noting that our
approach is incentive to parameters. The variation of parame-
ters do not have too much effect on the final performance of
our approach. We randomly and identically separate the dataset
into training and testing sets for iLIDS-VID and PRID 2011.
For SAIVT-SoftBio, we follow the protocol in [44] and ran-
domly select one third sequences for training and the rest two
thirds for testing. In the testing phase, the sequences from one
camera are used as probe while those from the other cam-
era are gallery. For MARS, we follow the protocol of [39]
by selecting the query/probe set from the testing/gallary set
and use the provided training set for training. By comput-
ing the ranking of each probe sequence with all the gallery
sequences, the results are reported by cumulative match char-
acteristic (CMC) curves for the first three datasets iLIDS-VID,
PRID 2011, and SAIVT-SoftBio, where the matching rate at
rank-n indicate the percentage of correct matchings in top
n candidates. And all the experimental results are reported
based on the average of ten trials while the splitting of train-
ing and testing is fixed for each trial. For MARS, following
by [45], we use the ranking results together with the mean
average precision (mAP) for accuracy evaluation, which is
more comprehensive than CMC curves for person Re-ID when
the number of cameras more than two. Noted that the feature
of our method in Tables II–V is LOMO.

C. Evaluation on Benchmark Datasets

1) iLIDS-VID: The results for iLIDS-VID [8] dataset are
shown in Table II with corresponding CMC curves in Fig. 3.
As can be seen, the proposed algorithm achieves the best
performance. Specifically, the Rank-1 and Rank-5 matching
rates of OUR subspace learning method (OURS) are 62.4%
and 88.4%, outperforming the second best DVR [9] by 22.9%

TABLE II
MATCHING RATE COMPARISON ON ILIDS-VID DATASET (IN %)

Fig. 3. Comparison results of CMC curves on iLIDS-VID.

TABLE III
MATCHING RATE COMPARISON ON PRID 2011 DATASET (IN %)

and 27.3%, respectively, and consistently higher for other
ranks.

2) PRID 2011: The comparison results for PRID 2011 [37]
dataset are shown in Table III and Fig. 4. Compared with
iLIDS-VID dataset, PRID 2011 dataset is less challenging with
relatively clean backgrounds and rare occlusions, therefore the
performance is generally much better than iLIDS-VID dataset
for most of the existing methods. Our method significantly
outperforms the state-of-the-art methods with 85.4% of Rank-1
which is better than the second-best AFDA [11] method and
with promising performance for other ranks.

3) SAIVT-SoftBio: The result for SAIVT-SoftBio [38]
dataset is shown in Tables IV and V. Since this dataset is
not widely evaluated, we only compared our method with
the reported methods, including LFDA [41], RankSVM [40],
PFDS [44], Fused [38], and AFDA [11]. The proposed method
has significant improvement on both subsets. For Cameras 3/8
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Fig. 4. Comparison results of CMC curves on PRID 2011.

TABLE IV
MATCHING RATE COMPARISON ON SAIVT-SOFTBIO

(CAMERAS 3/8) DATASET (IN %)

TABLE V
MATCHING RATE COMPARISON ON SAIVT-SOFTBIO

(CAMERAS 5/8) DATASET (IN %)

subset, Rank 1 matching rate of our method achieves 82.7%
which outperforms the second-best AFDA [11] by 39.7%,
while for the more challenging Cameras 5/8 subset with larger
viewpoint changes, the results of Rank-1 can still reach 61.5%,
which also significantly beats the state-of-the-art methods.

4) MARS: The ranking results and mAP on MARS [39]
dataset is reported in Table VI on provided CNN features,
where the Max/Avg means the Max/Avg pooling on a set of
feature vectors by maximizing/averaging each dimension to
generate a single feature vector. Specifically, we implement
our subspace learning on the images of each person under
each possible camera. To reduce the huge number of samples,
we simplify the samples for clustering by the following proto-
col: let |caj

i,t| be the number of the images in the tth tracklet of
the ith person under the jth camera, if |caj

i,t| > 10 000, which
exists in the junk and distractors samples, we conduct the max
pooling on each 100 sequential images before clustering, while
max pooling on ten sequential images if 160 < |caj

i,t| ≤ 10 000;
if 21 < |caj

i,t| ≤ 160, we cluster all the images; if |caj
i,t| ≤ 21,

we directly employ max/average pooling instead of clustering.

TABLE VI
MATCHING RATE COMPARISON ON MARS DATASET (IN %)

Fig. 5. Component analysis of recurring pattern prior component and
nonnegative sparse subspace learning on four benchmark datasets.

In order to verify the performance of our subspace learning
method comparing to the baselines, we evaluate the max or
averaging pooling, respectively, on each cluster of the fea-
ture vectors of the person images for our methods. From
the table we can see: CNN feature outperforms the state-of-
the-art features on MARS and our subspace clustering can
further improve the Rank-1 accuracy. It is also noted that our
method performs a slightly better Rank-1 accuracy but infe-
rior performance at other ranks. It may be because our method
is evaluated on the down-sampled data on video frame level
as mentioned above, while the baseline results are reported on
the original data. Despite of this, we still achieved competitive
performance.

D. Component Analysis

To justify the contribution of the components of our method,
we evaluate the recurring pattern prior Q and the nonnegative
sparse subspace learning in this section.

1) Recurring Pattern Prior: To evaluate the contribution
of recurring pattern prior (with Q in Fig. 5) in our model,
we compare our model to the model without recurring pattern
prior (the bars “without Q” in Fig. 5) by setting γ = 0 in (5).
The comparison results are reported in Fig. 5. The recurring
pattern prior can improve the matching rates by 3.60% in max-
imum and 2.17% in average, which justifies the contribution
of the recurring pattern prior component.

2) Nonnegative Sparse Subspace Learning: In order to
evaluate the contribution of the proposed nonnegative sparse
subspace learning method for multishot Re-ID, we evaluated
the XQDA without subspace learning directly on the fea-
ture spaces (LOMO feature for iLIDS-VID, PRID 2011, and
SAIVT-SoftBio and CNN feature for MARS) as the base-
line method. Specifically, the average pooling (the bars “Avg”
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TABLE VII
EVALUATION ON CNN FEATURES ON DATASETS ILIDS-VID,

PRID 2011, AND SAIVT-SOFTBIO

in Fig. 5) and the score level fusion (the bars “SLF” in
Fig. 5) are implemented for the images of a person. Noted
that, Avg means generating a single feature vector from a set
of feature vectors by averaging each dimension as we stated
in Section IV-C4. SLF means conducting the metric learn-
ing and distance calculation on the frame level, while fusing
all obtained distance values between two tracklets by a sim-
ple averaging fusion. Particularly, due to the large quantity
number of frames in each tracklet in MARS, we imple-
ment the score level fusion on the simplified/down-sampled
tracklets as described in Section IV-C4. As the result, the sub-
space learning and clustering can improve averagely 4.92%
comparing with average pooling, especially on iLIDS-VID
and SAIVT-SoftBio datasets with more complex environ-
ment, such as occlusions and large viewpoint changes, which
suggests that our approach is better at dealing with chal-
lenging image sequences than other methods. Meanwhile, it
can improve averagely 5.72% comparing with the score level
fusion, especially on MARS with large amount of images for
each tracklet.

3) Evaluation on CNN Features: It is noted that the results
of CNN+OURS+XQDA are worse than CNN+XQDA on
Rank-5 and Rank-20 although slightly better in mAP. We
further evaluate our method on CNN feature (CNNd in the
following) on the other three datasets iLIDS-VID, PRID 2011,
and SAIVT-SoftBio, where the down-sampling is not neces-
sary. Specifically, CNNd features for these three datasets are
directly extracted from the FC7 layer after RELU in AlexNet,
where the model weights are pretrained on ImageNet clas-
sification task. The final CNNd feature is 4096-D for each
person image. Noted that more sophisticated networks may
yield higher accuracy. We provide the comparison between
CNNd+OURS+XQDA and CNNd+XQDA on Table VII. For
CNNd+XQDA, the averaging pooling is conducted in the
same manner as on MARS. It is clear to see that, our subspace
learning and clustering method can improve the performance
on all the ranks on the three datasets. Compared with the
performance on MARS, it suggests that the worse results
than CNN+XQDA on some ranks come from down-sampling.
Even though, we still achieve slightly higher mAP on MARS.

E. Other Discussion

We have further assessed the proposed method with dif-
ferent metric learning algorithms as well as different feature
descriptors. First, we fix the feature representation (LOMO)
and evaluate three state-of-the-art metric learning algorithms,
including TDL [27], MFA [46], [47], and LFDA [41], [47]

Fig. 6. Comparison results of four metric learning algorithms on three
benchmark datasets.

Fig. 7. Comparison results of four features with different clustering methods
on iLIDS-VID.

on the first three datasets. The comparison results in Fig. 6
demonstrate the following.

1) Based on the proposed subspace learning method, the
performances with different metric learning methods sig-
nificantly beat the state-of-the-art methods we compared
in Tables II–V.

2) All four metric learning methods generally work com-
petitively to each other, which demonstrates the robust-
ness of the proposed subspace learning method.

Second, we evaluate our method with three additional
feature descriptors, including ensemble of localized fea-
tures [4], [48], HOG [30], and hist local binary pattern [47]
on iLIDS-VID while fixing the XQDA as the metric learning.
It is noted that, as the appearance representation method, the
feature descriptor does significantly affect the performance
of the Re-ID. In order to fairly demonstrate the contribution
of the proposed subspace learning method, we evaluate the
Re-ID with same feature descriptor by three different cluster-
ing methods, including OURS (nonnegative sparse subspace
learning and followed by NCut clustering), K-means (directly
utilizing K-means clustering on the features), and NCut (where
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affinity matrix is directly defined according to the Euclidean
distance matrix of the features). The comparison results are
reported in Fig. 7. From Fig. 7, we can see: 1) LOMO
feature descriptor significantly outperforms the other three
feature descriptors; 2) for any feature descriptor, our subspace
learning method can achieve considerable improvement; and
3) for each fixed feature descriptor, the matching rates signifi-
cantly decrease in K-means and NCut which indicates that our
subspace learning approach plays an important role for multi-
shot Re-ID. It is noted that the conventional clustering methods
cannot achieve satisfactory performance. The fact that our
subspace learning and clustering method outperforms either
the conventional K-means and NCut or the LOMO+XQDA
baseline validates its effectiveness for person Re-ID.

V. CONCLUSION

In this paper, we have presented a novel subspace learning
method for multishot person Re-ID. We propose to construct
the person data by a nonnegative sparse LRR, which can bet-
ter capture the global structure (by low-rankness) and local
linear structure (by sparseness) of the data simultaneously,
and ensures the nonnegative weights of the graph for future
clustering. Furthermore, we employed the internal image sta-
tistical prior to the representation to refine the low-rank affinity
matrix. Experiments on four challenging multishot person Re-
ID datasets demonstrate the promising performance of the
proposed method. In future work, we shall further explore the
robust spatial–temporal features for person sequence and more
intelligent scheme to remove the outliers.
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