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Adversarial-Metric Learning for Audio-Visual
Cross-Modal Matching

Aihua Zheng, Menglan Hu, Bo Jiang*, Yan Huang, Yan Yan, and Bin Luo

Abstract—Audio-visual matching aims to learn the intrin-
sic correspondence between image and audio clip. Existing
works mainly concentrate on learning discriminative features,
while ignore the cross-modal heterogeneous issue between audio
and visual modalities. To deal with this issue, we propose a
novel Adversarial-Metric Learning (AML) model for audio-
visual matching. AML aims to generate a modality-independent
representation for each person in each modality via adversarial
learning, while simultaneously learns a robust similarity measure
for cross-modality matching via metric learning. By integrating
the discriminative modality-independent representation and ro-
bust cross-modality metric learning into an end-to-end trainable
deep network, AML can overcome the heterogeneous issue with
promising performance for audio-visual matching. Experiments
on the various audio-visual learning tasks, including audio-visual
matching, audio-visual verification and audio-visual retrieval
on benchmark dataset demonstrate the effectiveness of the
proposed AML model. The implementation codes are available
on https://github.com/MLanHu/AML.

Index Terms—Audio-visual matching, Cross-modal learning,
Adversarial learning, Metric learning

I. INTRODUCTION

Vision and audition are two ways that humans exploit the
world in different modalities. The studies on both human
perception and neurology [1], [2] reveal the ability of humans
to relate the audio segment with corresponding visual image of
the same identity. Recently, there emerges an interesting topic
in audio-visual learning, which aims to recognize the identity
between the audio and visual cross-modality data, e.g., visual
facial images and speech audio clip, as shown in Fig 1. We
refer this topic as audio-visual data recognition in this paper to
distinguish it from the other audio-visual learning topics. There
are three common tasks in audio-visual data recognition, e.g.,
Audio-visual verification, Audio-visual matching, and Audio-
visual retrieval, as shown in Fig 1. Generally speaking, audio-
visual data recognition falls into two challenging categories:
A → V, which aims to response the given audio clip with
corresponding visual image(s) with the same identity as the
audio speech from the gallery, and vise versa in V → A
challenge.
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Fig. 1: Audio-visual matching, verification and retrieval in the
form of A → V challenge. Audio-visual verification aims to
verify whether the paired audio clip and visual image are from
the same identity. Audio-visual matching tries to match the
correct visual image against certain number of images for
the given audio clip, normally via a classifier. Audio-visual
retrieval ranks the similarity of the query against the k samples
in the gallery via the distance learning scheme. The V → A
challenge of matching, verification and retrieval tasks can be
defined in the same manner.

Audio-visual data recognition can be potentially used in
many applications in modern smart society, such as criminal
investigation, identity authentication, information retrieval, etc.
However, it encounters one main challenge due to the hetero-
geneous issue existing between audio and visual data.

For audio-visual matching, Nagrani et al. [3] first present the
audio-visual matching model by designing a two-stream deep
neural network of Seeing Voice and Hearing Faces (SVHF-
Net). They address the problem by first learning the voice
and facial features respectively and then formulating it as a
matching problem. Albanie et al. [4] propose to learn a joint
embedding for audio and visual modalities. They combine
curriculum learning and contrastive loss optimizing in a self-
supervised way for audio-visual verification, matching, and
retrieval. Wen et al. [5] consider more covariates of the
attributes information such as gender, ethnicity, identity, and
learn a shared representation among them instead of directly
relating audio clips and their images for audio-visual matching.
Nawaz et al. [6] propose a single stream network which takes
less cost on parameter training to learn the joint representation
of visual and audio information without pairwise or triplet
supervision for the three tasks (matching, verification and
retrieval).

Images usually contain more visual-specific information
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such as color, texture, etc., while audio segments include more
audio-specific information such as tone, amplitude. Despite the
great progress of the existing works on audio-visual learning,
the intrinsic heterogeneous issue between different modalities
has not been fully studied. This modality-specific information
poses a great challenge for learning discriminative feature
representation for cross-modal learning. Recent works [7]–
[12] indicate that adversarial learning provides an effective
technique to reduce the modality gap in heterogeneous data
representation. Herein, we propose to tackle the heterogeneous
challenge by learning discriminative representation between
audio and visual modalities via adversarial learning. To our
best knowledge, it is the first work to exploit and emphasize
adversarial learning in audio-visual data recognition.

Different from the original GANs [13] which aims to
generate fake images that have the same distribution as the
true images, we aim to learn a kind of distribution between
audio and image modality, to bridge the cross-modality gap be-
tween audio and visual domains. Specifically, for a modality-
specific feature such as audio-specific feature, we generate
its modality-independent feature via the generator to fool the
discriminator, and simultaneously train the discriminator to
distinguish whether the generated feature is audio or visual
modality feature. The modality-independent feature can be
obtained when both generator and discriminator reach optima.

Based on the modality-independent feature, one can achieve
audio-visual learning via some specific strategies for the
certain tasks. For instance, we utilize a fully connected clas-
sification layer for matching task, a standard multi-layer per-
ceptron (MLP) layer for verification task, or a distance learn-
ing scheme for retrieval. However, these strategies obviously
neglect the intrinsic relationship among samples. Herein, we
further propose to integrate deep metric learning [14]–[20] into
the adversarial learning framework, to obtain a more robust
similarity measure for audio-visual matching. Specifically, we
pursue to enhance the similarity between the positive pair
(the anchor/query audio feature and the corresponding image
feature), while enlarge the distance between the negative set
and the positive pair. This metric learning method has been
demonstrated to obtain a better metric embedding in training
data [19].

Based on the above observations, we propose a novel
Adversarial-Metric Learning (AML) framework for audio-
visual data recognition as shown in Fig 2. AML aims to
generate discriminative modality-independent representation
via adversarial learning, while simultaneously learns a robust
metric for audio-visual cross-modality matching and retrieval
in an end-to-end manner. Specifically, the proposed AML
consists of four modules: 1) Audio-visual sub-networks to
extract the voice and facial features respectively. 2) Adver-
sarial learning module which contains a generator and a
discriminator to learn a modality-independent representation.
3) Metric learning module to simultaneously learn the feature
embedding for audio-visual matching and retrieval. 4) Task-
specific module for specific task, such as matching, verification
and retrieval in audio-visual data recognition problem.

To our best knowledge, this is the first work to jointly
employ adversarial and metric learning for audio-visual cross-

modal matching although they have been used in some other
cross-modal learning problems [21]–[24]. The main contribu-
tions are summarized as follows:
• We propose to employ an adversarial learning mechanism

to explore the discriminative feature representation in
audio-visual learning. The proposed method can obtain
the desired modality-independent feature representation.

• We propose to incorporate metric learning into adversarial
learning to learn a robust feature embedding among
audio-visual modality-independent features.

• Comprehensive experiments on three audio-visual learn-
ing tasks, including matching, verification and retrieval
yield to a new state-of-the-art comparing to prevalent
methods on the benchmark dataset constructed from the
overlap of VoxCeleb [25] and VGGFace [26].

II. RELATED WORKS

Audio-visual learning aims to discover the intrinsic relation-
ship between audio and visual data. Audio-visual matching is
a new branch of audio-visual learning, and can be regarded
as a special cross-modal learning task. Herein, we will briefly
review the literature on general audio-visual learning, together
with specific audio-visual matching and the advances in com-
mon cross-modal learning as the related works.

A. Audio-Visual Learning

Audio-visual learning is a board research area and contains
various topics [27], including audio-visual separation and lo-
calization, audio-visual correspondence learning, audio-visual
generation and audio-visual representation learning. We briefly
highlight several representative tasks, such as vision aided
speech recognition [28], [29], object sound localization [30]–
[32], audio-visual generation [33]–[36], etc. Although con-
ventional speech recognition [37], [38] achieve remarkable
performance on isolating a single speaker from a noisy envi-
ronment in solely audio modality, recent efforts [28], [29] take
the advantage of the complementary visual information and
audio information to boost the performance of conventional
speech recognition. Object sound localization [30], [31] aims
to localize the sound source in the visual context. With the
increasing number of videos, various object sound localization
methods develop from supervised manner [30], [31] to unsu-
pervised learning [39]. Moreover, attention mechanism [40]
has been noted as an effective technique to emphasize the
sound-emitting objects in object sound localization. With the
blossom of the Generative Adversarial Networks (GANs),
there emerges an interesting topic named audio-visual genera-
tion, which aims to generate visual context from sound [41], or
vise versa [42], or both [43], [44]. In generating audio speeches
from videos, related works mainly focus on recovering audio
from lip movements [45], [46] or silent videos [47]. While
in generating images/videos from audio clips, talking face
generation [33], [34], [48], body motion generation [35], [36]
and image generation from audio data [49], [50] have attracted
increasing attention recently. More details and works on audio-
visual learning can be referred in the recent survey [27].
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Fig. 2: The pipeline of the proposed AML in the term of A → V challenge. We take a data tuple consists of a query audio
clip ai0, one positive image mi1 and k − 1 negative images as gallery. After obtaining the audio feature vi0 and the k image
features {fi1, .., fik}, we propose to learn the modality-independent feature representation {hi0, hi1, .., hik} via adversarial
learning. Meanwhile, we propose to learn a robust feature embedding for similarity measure via metric learning. Note that
adversarial learning and metric learning are jointly learned in a unified framework. The task-specific module is followed for
the specific audio-visual learning tasks, including matching, verification and retrieval. In practise, the metric learning module
is wiped for verification task since only one (negative or positive) sample in the gallery.

B. Audio-Visual Matching

To recognize the cross-modality audio and visual data,
Hoover et al. [51] present a method to associate faces with
audio segments in a video by detecting and clustering. They
first detect and cluster images and audio segments via VLAD
(vector of locally aggregated descriptors) [52] followed by
frame cluster assignment to the given voice cluster based on
majority principle. With the blossom of deep neural networks,
Arsha Nagrani et al. [3] first announce the audio-visual
matching mission based on a two-stream deep neural network,
which learns audio and visual features respectively followed
by a softmax layer for classification. Albanie et al. [4] propose
a self-supervised method to learn a joint embedding of audio
clips and facial images for cross-modal retrieval through
contrastive loss. Furthermore, they design a novel curriculum
learning strategy to obtain more information during training.
Kim et al. [53] propose a feature representation learning
method by computing the common information between audio
and visual modality to learn a co-embedding. Furthermore,
Wen et al. [5] consider more covariates of the attributes
information such as gender, ethnicity, identity, etc., and learn a
shared representation among them instead of directly relating
audio clips and images. Different from above two-stream
network based methods, Nawaz et al. [6] suggest a single
stream network to learn the joint representation of visual and
audio information with fewer parameter during training and

without pairwise or triplet information supervision. However,
these methods mainly concentrate on the audio and visual
feature representation, while neglecting the heterogeneous
issue between audio and visual modalities, which brings a
huge challenge in audio-visual cross-modal data.

C. Cross-Modal Learning

Cross-modal learning is a general research topic which
mainly focuses on learning the correspondence among mul-
timedia data, such as text, image, audio, video, etc. Repre-
sentative works include hashing transformation [54], [55],
adversarial learning [10], [21], [22] and both [56], [57].
Chen et al. [55] propose a dual cross-modal hash method
for image-text retrieval in three stages, which supervised the
second stage visual hash code learning by the learned text
hash code in the first stage, and optimized them together
via reconstruction in the last stage. Su et al. [58] propose to
explore the latent semantic relations among input images and
texts by computing a joint-semantics affinity matrix from the
neighborhood information and reconstruct the joint-semantics
structure maximally by the learned binary codes. Jiang et
al. [23] propose a novel adversarial learning network to learn
the view-invariant and consistent pixel-level representation for
RGB and depth images in salient object detection. Xu et
al. [22] propose to minimize the gap between modalities and
intra-class variation for image-text retrieval. Specifically, they
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project labeled data pairs into a shared nonlinear latent space
via adversarial learning. Li et al. [57] propose an unsupervised
hashing network to learn a shared representation and generated
robust hash codes simultaneously via a coupled cycle network.
It aggregates the advantage of generative adversarial network
and hashing transformation for image-text retrieval. Zhang et
al. [59] propose to utilize the generative adversarial model to
exploit the underlying manifold structure across modality in
an unsupervised way. Yu et al. [60] propose a semi-supervised
method to exploit semantic information of unlabeled data. To
obtain the optimal matrices across modalities, they utilize the
label graph to maintain the geometric structure among cross-
modal features and employ l2,1-norm for feature selection.
Song et al. [61] propose a memory network to store dis-
criminative features, followed by the learning network for
the common representation with the help of the memory
mechanism and adversarial learning. Xu et al. [12] propose
to solve the zero-shot image-text retrieval problem via adver-
sarial learning to maximize the consistency and correlation
between different modality features. Chi et al. [11] propose
to utilize two generative adversarial networks to learn image
and text common embedding respectively via generation and
reconstruction. Despite the widely applied adversarial learning
in other retrieval tasks, we first try to settle the audio-visual
learning via adversarial learning in this paper.

III. PROPOSED METHOD

In the sake of generality and simplicity, we only elaborate
the A → V challenge in audio-visual matching for methodol-
ogy description. The V → A challenge can be defined in the
same manner.
Problem Formulation. Given a data tuple consisting of an
audio modality clip ai0 as the query and k visual modality
images mi = {mi1, ..,mik} as the gallery, audio-visual match-
ing aims to discover the corresponding facial image(s) from
the gallery for the query voice audio. Specifically, i denotes
the i-th data tuple, and li ∈ {1, k} is the label, indicating
the current query ai0 matches the the li-th image mili . Note
that k = 1 indicates the verification task to verify whether
the audio-visual pair is consistent with the same identity. A
certain fixed number of k > 1 involves the matching task,
where k = 2 indicates the binary matching case, otherwise
the multi-way matching case. Retrieval task can be regarded
as a general case which queries the correct hit from a certain
number of k samples in the gallery based on the distance
learning scheme.

A. Overall Framework

As shown in Fig 2, our framework consists of four modules.
(1) Audio-visual sub-networks, with an audio branch and
k visual branches, to extract the audio-specific and visual-
specific features respectively. (2) Adversarial learning based
representation learning, with a generator and a discriminator,
to learn a modality-independent feature representation via
the min-max game between feature generator and modality
discriminator. (3) Metric learning based feature embedding,
to learn a robust distance metric for audio-visual learning. 4)

Task-specific module, to fulfill different tasks in audio-visual
learning, such as matching, verification and retrieval.

B. Audio-Visual Sub-Networks

Let A and V denote the audio and visual feature spaces
respectively. First, we obtain the audio-specific feature fa

i0 ∈
A and visual-specific features {fv

i1, ..,f
v
ik} ∈ V via the

audio-visual sub-networks, containing one audio branch and
k visual branches. The audio branch and visual branch con-
sists of different five-convolutional-layers respectively in our
framework. All the images are normalized to the size of
224*224*3. The image feature of each face image is extracted
via the corresponding visual branch with parameter θV . The
input of the audio branch is an audio clip that has been
resized to 224*125*1 after converting to a single-channel
audio spectrogram. The audio feature of each audio clip is
extracted by the audio branch with parameter θA.

C. Adversarial Learning based Representation

To eliminate the undesired impact of the heterogeneous
issue between audio and visual modalities, we propose to learn
modality-independent representation to mitigate the cross-
modality gap via adversarial learning (AL). AL consists of
a generator G and a discriminator D to beat each other with a
min-max game to find the latent feature space H. The G takes
fa
i0 and {fv

i1, ..,f
v
ik} as input, and aims to generate modality-

independent features {hi0, ..,hik} ∈ H, while the D provides
a modality classifier to discriminate the modality of audio and
visual features.
Generator. The generator G with parameter θG is constructed
with a standard MLP to learn two mapping functions {φ : V →
H} and {ψ : A → H},

hi0 = φ(fa
i0; θG), (1)

hij = ψ(fv
ij ; θG), j ∈ [1, k]. (2)

The φ and ψ aims to map audio-specific feature fa
i0 and

visual-specific features {fv
i1, ..,f

v
ik} to modality-independent

features respectively.
Discriminator. The discriminator D is designed as a FC
network, which is defined as a modality classifier with pa-
rameter θD to discriminate the original modality of feature
representation hij obtained from the generator. In order to
avoid the mode collapse and instability problem, we adopt the
weight clipping scheme1 during the discriminator training as
mentioned in WGAN [62]. The discriminator is trained by
minimizing,

Ldis = −
1

Mtrain

Mtrain∑
i=1

k∑
j=0

yij logD(hij ; θD), (3)

where yij represents the modality label of the j-th sample in
the i-th data tuple, D(hij ; θD) is the modality probability of
the output of generator. Mtrain denotes the number of training
data tuples.

1 URL: https://github.com/YadiraF/GAN
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After the adversarial learning, we can obtain modality-
independent representations {hi0, ..,hik} for both audio and
visual modalities.

To better demonstrate the advantage of adversarial learning
in the proposed AML, we use a 2D t-SNE [63] to visualize the
features of 50 identities before and after adversarial learning
as shown in Fig 3. Note that the metric learning is not into
consideration here. One can note that the distances between
audio and visual features become closer and better mixed
together after adversarial learning, which demonstrates that
adversarial learning can alleviate the undesired impact of
the heterogeneous issue existing between audio and visual
modalities.

Fig. 3: The visualization of the feature representation of 50
identities before and after the adversarial learning. Red and
blue points represent the audio and image features respectively.

D. Deep Metric Learning based Embedding

After obtaining the modality-independent features from
generator, we further propose to employ deep metric learning
(ML) method for better similarity measure learning. Inspired
by [19] which preserves the intra-class structure and inter-class
variation during learning, we propose to preserve the structure
between positive pair and the variation among negative set.
Specifically, we propose to employ the structured loss function
to pull the distance between the positive pair, i.e. hi0 and hi1,
while pushing the negative set {hi2, ..,hik} away from the
positive pair as shown in Fig 2. The optimization objective of
metric learning is defined as [19],

Lmetric =
1

2Mtrain

Mtrain∑
i=1

max(0,Ji)2, (4)

Ji = log
( ∑
j∈[2,k]

eλ−di0,ij +
∑
q∈[2,k]

eλ−di1,iq
)
+ di0,i1, (5)

where di0,i1 measures the Euclidean distance between hi0 and
hi1, di1,iq measures the Euclidean distance between hi1 and
hiq , and λ is a hyper-parameter which controls the margin of
the distance between the negative set and positive pair. Ji is
the distance that contains the similarity between positive pairs
and dissimilarities between negative sets and positive pairs.
From the Eq (4) and Eq (5), we encourage to minimize Ji

by enlarging the inter-class distances di0,ij and di1,iq while
minimizing the intra-class distance di0,i1.
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Fig. 4: The architecture of audio-visual matching, verification
and retrieval tasks. (a) Audio-visual matching, takes the fea-
tures of AL and ML as input and aims to predict the class
of the given audio clip in the k class gallery. k = 2 for the
binary case. (b) Audio-visual verification, is achieved via a
binary classifier to verify whether the input audio and image
features after adversarial learning are with the same identity.
(c) Audio-visual retrieval, utilizes the MLP layer to compute
the distance between the query sample and each gallery sample
and then ranks the query sample based on the distance.

E. Task-specific Module for Audio-visual Learning

Audio-visual Matching Classifier. After the adversarial learn-
ing and metric learning, one can directly compute the distance
between the given audio clip to each visual sample for
matching evaluation. Considering the nonlinear fitting ability
of neural networks, we design a fully connected network as
the position classifier on the modality-independent features
for the audio-visual matching. Specifically, we concatenate the
modality-independent features and feed them to the matching
classifier with parameter θCM

as shown in Fig 4. We can use
the commonly used cross-entropy loss [24] which is defined
as

Lcls = −
1

Mtrain

Mtrain∑
i=1

li logCM ({hi0, ..,hik}; θCM
), (6)

where CM denotes the audio-visual matching classifier to
compute the probability that the audio clip belongs to each
image. Note that, k = 2 for the binary matching case.
Audio-visual Verification Classifier. Verification task can
be regarded as the situation with only one sample in the
gallery. Therefore, we only conduct the adversarial learning
procedure while omitting the metric learning in our AML
framework for verification task. After the adversarial learning,
the verification task is fulfilled via a binary classifier with
parameter θCV

to discriminate whether the paired modality-
independent features are from the same identity. SSNet [6]
verifies the paired data by adjusting whether the distance
between the two features is smaller than an adaptive threshold.
Different from this linear transformation, we employ a non-
linear verification classifier for verification, shown in Fig 4.
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Specifically, the paired modality-independent features are fed
into the binary classifier after concatenated. The commonly
used cross-entropy loss [24] can be defined as

Lcls = −
1

Mtrain

Mtrain∑
i=1

li logCV ({hi0,hi1}; θCV
), (7)

where CV denotes the audio-visual verification classifier to
determine whether the paired data is consistent.
Audio-visual Retrieval Distance Learning. Audio-visual re-
trieval task aims to search the correct visual sample(s) from
the certain number of samples in the gallery for each query.

As the gallery size varies in the audio-visual retrieval
problem, a classifier such as in matching or verification is
not suitable after AL and ML. Herein, we design a distance
learning method to learn the similarity between query and
gallery. Different from the existing method [6] which directly
ranks the features in the gallery via Euclidean distance, we
design a MLP layer to compute the distance between the
query sample hi0 and each gallery sample hij because of its
nonlinear fitting ability. following the commonly used cross-
entropy loss [24], we define the loss function as

Lcls = −
1

Mtrain

Mtrain∑
i=1

k∑
j=1

li logCR({hi0 − hij}; θCR
),

(8)
where CR({hi0−hij}; θCR

) outputs the distance of hi0 and
hij and k is the number of the samples in the gallery.

F. Joint Learning Process

Our model integrates metric learning into adversarial learn-
ing to joint learn the modality-independent feature represen-
tation and feature embedding. Specifically, we update the
generator by minimizing,

Ltotal = βLmetric + γLcls, (9)

where β and γ are hyper-parameters. For simplicity, we
let θC = {θCM

, θCV
, θCR

}. The objective is optimized by
alternatively solving,

min
θV ,θA,θG,θC

(Ltotal(θV , θA, θG, θC)− Ldis(θ̂D)) (10)

max
θD

(Ltotal(θ̂V , θ̂A, θ̂G, θ̂C)− Ldis(θD)) (11)

where θ̂ indicates fixing the parameter. In each epoch, we first
update our discriminator for T steps by Ldis, then update our
generator by Ltotal. Similar to works [13], [21], we use the
following algorithm to optimize Ltotal and Ldis as shown in
Algorithm 1.

G. Implementation Details

We conduct all our experiments on NVIDIA GeForce
1080Ti graphic card. We first extract the audio and image
features with the same size of 10*10*32 via audio and visual
branches respectively, as the input to the generator. During
the adversarial learning, the generator applies a standard
multi-layer perceptron, which transforms the 3200 dimensional

Algorithm 1 Optimization process of AML

Require: Audio branch θA, visual branch θV , generator θG,
classifier θC , discriminator θD, hyper-parameters: λ, β,
γ, mini-batch: N , learning rate: rD, rG, the number of
training steps of the discriminator: T

1: for i < Mtrain do
2: Randomly select training pairs{ai0,mi}
3: (ai0 is the audio clip, mi = {mi1, ..,mik} are images)
4: end for
5: while not convergence do
6: Calculate the loss Ldis and Ltotal
7: for T steps do
8: Update parameter θD by ascending their stochastic

gradients
9: θD ← θD + rD∇θD 1

N (Ltotal − LDis)
10: end for
11: Update parameter θV , θA, θG, θC by descending their

stochastic gradients
12: θV ← θV − rG∇θV 1

N (Ltotal − LDis)
13: θA ← θA − rG∇θA 1

N (Ltotal − LDis)
14: θC ← θC − rG∇θC 1

N (Ltotal − LDis)
15: θG ← θG − rG∇θG 1

N (Ltotal − LDis)
16: end while
17: return Feature representation mapping function {φ :
V → H} and {ψ : A → H}

features to 128 dimensional ones for both audio and visual
modality. Then the discriminator further transforms them to
2 dimensional ones, indicating the probabilities belonging to
audio and visual modalities respectively. As for the metric
learning, we reproduce the method Lifted Struct [19] due
to its ability to preserve the intra-class structure and inter-
class variation, which can be referred in our released codes
on Github2. All the matching and verification classifiers, and
the retrieval distance learning scheme apply a single layer
fully connected network but with different sizes. Specifically,
the matching classifier receives (k + 1) ∗ 128 dimension
features and output k dimensional ones in the form of vectors
indicating the probability of probe belongs to each data
in the gallery. The verification classifier receives two 128
dimensional audio and visual features respectively and outputs
a 2 dimensional feature, determining whether the input audio
and visual features derive from the same identity or not. The
distance learning scheme in retrieval transforms a set of 128
dimensional features into 1 dimensional distances representing
their distances to the query. we initialize the weights of the
network by Glorot initialization [64]. During the training, the
batch size set to 50. And we adopt batch normalization by
Adam [65] to optimize the network. We set distinguishing
learning rates for audio-visual sub-networks, generator, task-
specific module and discriminator in AML, due to their diverse
convergence speeds. Specifically, we use a logarithmically
decaying learning rate strategy for audio-visual sub-networks,
generator and task-specific module, which decaying from 5e-3
to 5e-5, and set the learning rate as 5e-3 for the discriminator.

2 URL:https://github.com/MLanHu/AML
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The iteration is fixed as 50, 20, 100 for matching,verification
and retrieval respectively for the best performance. In addition,
we empirically set the hyper-parameters {λ, β, γ} to {1.0, 3.0,
2.0} for cross-modal matching and retrieval. In cross-modal
verification task, we set {λ, β, γ} to {0.0, 0.0, 2.0} as the
metric learning method demands more than one sample in the
gallery while there is only one (negative or positive) sample
in the gallery for verification problem.

IV. EXPERIMENTS

We have implemented the the proposed method on audio-
visual learning on three tasks, including audio-visual match-
ing, verification and retrieval to verify the performance of the
proposed AML comparing with the state-of-the-art methods.

A. Dataset

Following the protocol in [3]–[5], we evaluate the proposed
AML on the overlap of two large-scale benchmark datasets,
the speaker identification dataset VoxCeleb [25] and face
recognition dataset VGGFace [26]. VoxCeleb dataset [25]
consists of 153,486 audio segments of 1251 speakers, and the
VGGFace [26] consists of 995,705 aligned face images of
1251 identities. More information can be observed in Table I

TABLE I: Dataset information

VGGFace
Identities

Male 690
Female 561

Face images 995,705

VoxCeleb
Identities

Male 690
Female 561

Audio segments 153,486

TABLE II: Numbers of tuples during training and testing for
audio-visual matching.

Training Testing

Binary Multi-way Binary Multi-way

14130 2295 47100 7650

TABLE III: Comparison results of audio-visual matching
against state-of-the-art methods on both binary (k = 2) and
multi-way (k = 10) cases, where ’-’ indicates ’not available’,
’×’ indicates ’not capable’. (in %)

Method
Task Binary Multi-way

A → V V → A A → V V → A

SVHF-Net [3] 81.00 79.50 34.50∗ ×
DIMNet [5] 84.12 84.03 39.75 -

PINs [4] 84.00∗ - 31.00∗ -
SSNet [6] 78.00 78.50∗ 30.00 30.05∗

AML 92.72 93.33 43.45 39.35
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Fig. 5: Matching accuracy of different number of samples in
gallery from binary (k = 2) to multi-way (k = 10) cases in
both V → A and A → V challenges.

B. Evaluation on Audio-visual Matching

We compare our method on audio-visual matching task to
the prevalent methods SVHF-Net [3], DIMNet [5], PINs [4]
and SSNet [6] in both binary and multi-way cases. We
construct the training and testing sets in the same manner
as [3]–[5] for fair comparison. Specifically, we select 153
identities whose names start with ’C’, ’D’, and ’E’ for testing,
while the rest 942 identities whose names starting with ’F’ -
’Z’ for training. The gender and age distributions are balanced
in both training and testing sets. Table II illustrates the number
of data tuples we selected during training and testing. Taking
A → V challenge as an example, we randomly select fifteen
negative facial images for every paired data in binary while
fifty sets of data consisting of k− 1 negative facial images in
multi-way case. We randomly select data tuples before training
and fixed them throughout the training process.

Table III reports the matching accuracies in both V → A
and A → V challenges in both binary and 10-way cases. It
is clearly to see that, 1) AML yields a new state-of-the-art on
both binary and 10-way in either V→ A or A→ V challenge.
2) Comparing to the second-best method DIMNet [5] which
utilizes the attribute information, our AML still dominate by
large margins, which verifies the competency of AML in more
challenge scenarios.

Fig 5 demonstrates the performance of the proposed AML
against other methods with the number of samples in the
gallery k from 2 to 10. As can be seen that, 1) with the number
of the samples in the gallery (k) increasing, the challenge
of the matching consistently increases in both V → A and
A→ V challenges, which leads to the decreasing matching
accuracy. 2) The proposed AML outperforms the state-of-the-
art methods in all the different numbers of gallery in A →
V challenge. Note that the compared state-of-the-art methods
are either not available or not capable in V → A challenge,
we only demonstrate our results in V → A challenge.

3* indicates the approximate values we estimated from the limited results
provided by corresponding publications.
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Fig. 6: Qualitative results of audio-visual cross-modal matching of the proposed AML comparing to DIMNet [5], SVHF-Net [3]
in A → V challenge with k = 2. The shadowed images with the volume icons in the lower right corners represent the query
audio clips with corresponding identities. The facial images with the green ticked and the red crossed bounding boxes indicate
the correct and wrong matching results respectively.

Furthermore, we qualitatively demonstrate two matching
results of our proposed AML comparing with the state-of-
the-art methods DIMNet [5] and SVHF-Net [3] in A → V
challenge with gallery number k = 2, which is the only
scenario in the released SVHF-Net [3] codes. As shown in
Fig 6, due to the large inter-class similarity, both DIMNet [5]
and SVHF-Net [3] produce the wrong matching for query
(b) and (a) respectively, while our AML successfully hits
the correct matchings for both queries. This further indicate
the robustness of our AML on handling audio-visual cross-
modality matching.

C. Evaluation on Audio-visual Verification

Audio-visual cross-modal verification aims to verify
whether the input pair of audio clip and visual image belongs
to the same identity. Following the experimental protocol
in [4], we split the data in Voxceleb dataset [25] into three
sets: training set, seen-heard set and unseen-unheard set. First,
we select 901 identities and choose a part of samples (in the
same protocol as [4]) of each identity for training, while the
rest part of samples for testing. Since each identity in the
testing set appears in the training set, we name it as ”seen-
heard” set. Then, we further select 250 identities not existed
in the training set as the unseen-unheard testing set. Table IV
elaborates the data structure for verification in details.

TABLE IV: The data structure of the training set, seen-heard
and unseen-unheard testing sets respectively.

Training
Testing

seen-heard unseen-unheard

Identity 901 901 250

Data pair 423,004 18,020 30,496

We quantify the verification results on the standard metric,
the AUC (Area Under Curve) of the ROC (Receiver Operating
Characteristic) curve, which reflects the true positive and
false positive rates. The higher AUC, the better verification
accuracy. Note that AUC ⊆ [0.5, 1.0].

Table V reports the verification results comparing to the
state-of-the-art methods. One can note that AML outperforms
the prevalent methods SSNet [6] and PINs [4] especially
on the more challenging unseen-unheard testing set, which
verifies the effectiveness of the proposed adversarial learning
for audio-visual cross-modal learning.

TABLE V: Comparison results of audio-visual verification
against state-of-the-art methods on both seen-heard and
unseen-unheard cases on metric AUC (in %).

seen-heard unseen-unheard

PINs [4] 73.80 63.50
SSNet [6] 91.20 78.80

AML 92.30 80.60

D. Evaluation on Audio-visual Retrieval

Audio-visual cross-modal retrieval aims to retrieve the same
identity with the given query from the gallery in the other
modality. Compared to audio-visual matching task, audio-
visual retrieval is more general yet more challenging due
to the larger number of gallery. Different from the existing
methods [5], [6] which ranks the distance between the query
and each cross-modal samples in the gallery according to
Euclidean distance, we design a MLP layer to evaluate the
distance between the query sample and the gallery samples.
We evaluate the performance of AML, SSNet [6] and DIM-
Net [5] in both A → V and V → A challenges on audio-
visual retrieval task on the metric R@10. Table VI reports the
comparison results. Note that the data splitting protocols are
different in SSNet [6] and DIMNet [5] on retrieval task. We
follow the two protocols respectively while comparing with
corresponding method in Table VI.

To compare with SSNet [6], we follow the same the protocol
as mentioned in [4], where the data is split into training, seen-
heard and unseen-unheard testing sets in the same manner as
in verification as in Section IV-C. Specifically, we select each
audio clip in the testing set as the query and remain all the
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Fig. 7: Qualitative results of audio-visual cross-modal retrieval of the proposed AML comparing with DIMNet [5] in both A
→ V and V → A challenges. We demonstrate the gallery rankings from R@1 to R@10, where the results in green boxes
indicate the right hits.

TABLE VI: Comparison results of audio-visual retrieval
against SSNet [6] and DIMNet [5] in both A → V and V
→ A challenges on metric R@10 (in %).

Challenge
Method

SSNet AML DIMNet AML

V→A
seen-heard 50.00 55.75

64.05 65.35
unseen-unheard 13.20 16.03

A→V
seen-heard 36.27 47.83

87.58 88.23
unseen-unheard 8.70 11.39

visual images (901 identities for seen-heard testing set while
250 for unseen-unheard) as the gallery in A → V challenge,
vise versa in V → A challenge. Since there is no seen-heard
or unseen-unheard split in DIMNet [5], we only compare the
retrieval results in both A → V and V → A challenges.

Specifically, we select each audio clip in the testing set (153
identities) as the query and take all the visual images as gallery
in A → V challenge, vise versa in V → A challenge.

As shown in Table VI, generally speaking, the audio-
visual cross-modal retrieval task is much more challenging
comparing to both verification and matching tasks due to the
larger number of samples in the gallery, which results in
much lower accuracies with both our AML and SSNet [6]
especially in unseen-unheard scenarios. It is clear that AML
outperforms SSNet [6] in both A→ V and V→ A challenges
in either seen-heard or unseen-unheard case. Noted that the
improvement of our AML comparing to SSNet [6] on seen-
heard case in much higher than unseen-unheard case, the main
reason is that the evaluation on unseen-unheard set is a zero-
shot problem which is more challenging than seen-heard case.
DIMNet [5] achieves impressive performance on the retrieval
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TABLE VII: Ablation study on of proposed AML on audio-visual matching task in both binary (when k = 2) and multi-way
(when k = 10) cases in V → A challenge. ’X’ means the corresponding component is included. (in %)

Component
Task Binary (k = 2) Multi-way (k = 10)

(a) (b) (c) (d) (a) (b) (c) (d)

Adversarial Learning X X X X

Metric Learning X X X X

Accuracy 83.13 86.23 85.18 93.33 30.36 33.68 33.74 39.35

task due to the utilizing of attribute information. However, it
is still overshadowed by AML in both A → V and V → A
challenges, which indicates the contribution of the adversarial
and metric learning of AML on handling audio-visual cross-
modal retrieval task.

Fig 7 further demonstrates some quantitative results of our
AML on audio-visual retrieval task in both A → V and V →
A challenges comparing with DIMNet [5], which is the only
method that has released the codes on retrieval task. From
which we can see, even without any attribute information,
AML still can produce more correct hits in foregoing ranks in
the gallery than DIMNet [5], which verifies the effectiveness
of our method on audio-visual cross-modal retrieval task.

TABLE VIII: Comparison to different adversarial learning
methods on audio-visual matching task in V → A challenge
in both binary (k = 2) and multi-way (k = 10) cases.

Method
Accuracy

Binary Multi-way (k = 10)

GANs [13] 91.76 36.23

LSGANs [66] 90.45 35.79

WGAN [62] 93.33 39.35

E. Ablation Study
To evaluate the contribution of the two crucial components

in AML, e.g., adversarial learning (AL) and metric learning
(ML). We conduct the ablation study on cross-modal matching
task with four variants in both binary and multi-way cases in V
→ A challenge, as shown in Table VII. Note that, we conduct
experiments on three variants. Specifically, we conduct Ta-
ble VII (a) by removing both discriminator and metric learning
loss, while Table VII (b) and (c) by removing discriminator
and metric learning loss respectively. From which we can
see, 1) Both AL and ML play crucial role in audio-visual
task, comparing Table VII (b) and (c) by introducing AL and
ML respectively to the baseline as shown in Table VII (a).
2) Without both adversarial and metric learning, Table VII
(a) achieves impressive result (83.1%), which is even higher
than the state-of-the-art method SVHF-Net [3] as shown in
Table III. The main reason is the deeper network architecture
in our method. Specifically, our network further includes three
more fully connected layers which can thus extract more
discriminative features for classification. 3) By collaborating
AL and ML, our AML (as shown in Table VII (d)) significantly
boost the performance, especially for the more challenging
multi-way scenario, which verifies the contribution of joint
adversarial learning and metric learning.

Evaluation on Adversarial Learning. In this section, we
further investigate the effectiveness of the proposed AML
with different adversarial learning methods on audio-visual
matching task. Different from our adversarial learning, which
is trained based on WGAN [62] as presented in Section III-C,
we substitutively train the generator and discriminator by the
original GANs [13] and LSGANs [66] for comparison. Ta-
ble VIII compares the matching results on different adversarial
learning methods. From which we can see, the proposed AML
offers promising performance regardless the fashions of the

TABLE IX: Comparison on different metric learning methods
on audio-visual matching task in V → A challenge in both
binary (k = 2) and multi-way (k = 10) cases.

Method
Accuracy

Binary Multi-way (k = 10)

RankList [14] 88.14 34.18

Triplet [67] 91.02 36.46

Lifted Struct [19] 93.33 39.35
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Fig. 8: The average Euclidean distance between audio and
visual features before and after adversarial learning of all
identities in the dataset in V → A challenge.

generator and discriminator, which verifies the significance of
the adversarial learning in audio-visual learning.
Evaluation on Metric Learning. To further evaluate the
dependency of the proposed AML method on metric learning,
we compare the metric learning method, Lifted Struct [19],
to two state-of-the-art metric learning methods, RankList [14]
and Triplet loss [67]. Specifically, we construct k − 1 triplet-
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Fig. 9: Parameter analysis of {λ, β, γ} on audio-visual matching task in binary (k = 2) case in V → A challenge.

tuples for every negative sample when using triplet loss.
Table IX reports the comparison results with different metric
learning methods. From which we can see, all the three
metric learning methods perform comparably which verifies
the effectiveness of introducing the deep metric learning in
the audio-visual learning framework.
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Fig. 10: Demonstration of Ltotal and Ldis values during
training procedure.

F. Analysis on Heterogeneous Issue

To analyze the effectiveness of adversarial learning via solv-
ing the heterogeneous issue, we further evaluate the distance
between the cross-modal audio and visual features after the
adversarial learning. Specifically, we calculate the average
Euclidean distance between audio and visual features of the
same identity in the whole dataset before and after adver-
sarial learning respectively on all the three tasks, including
verification, matching, and retrieval in V → A challenge.
As visualized in Fig 8, after adversarial learning, the cross-
modality heterogeneous gap between audio and visual features
significantly drops, which demonstrates the effectiveness of
the proposed method on handling the heterogeneous issue for
audio-visual learning.

G. Parameter Analysis

There are three important hyper-parameters in our model,
the distance margin λ in Eq (5) and two balance hyper-
parameters β and γ in Eq (9). We empirically set {λ, β, γ} as
{1.0, 2.0, 3.0} for the best performance. In order to evaluate
the impact of these hyper-parameters, we analyze the perfor-
mance of our model on audio-visual matching task by fixing λ,
β, and γ respectively, while varying the other two parameters.
As shown in Fig 9, generally speaking, the accuracy slightly
varies with diverse combinations of the hyper-parameters,
which indicates that our model is not sensitive to these hyper-
parameters.

H. Analysis on Model Convergence and Complexity

In order to show the convergence of AML, we record the
values of the final loss Ltotal and the discriminator loss Ldis
across the every three batches in matching task when k = 2 as
shown in Fig 10. We can see that the final loss Ltotal decreases
vibrationally until reaching the convergence. The discriminator
loss Ldis first decreases since we first train the discriminator
and then it stabilizes in the following training procedure.

Furthermore, we analysis the complexity of our model, by
calculating the average running time of AML in A → V
challenge with k = 2. The average training and testing time
are 0.016s and 0.003s respectively, while 0.005s and 0.012s
in DIMNet [5] whose codes are released. Note that, we only
compare the training time of ID classifier without the gender
and nationality classifiers due to the limited codes releasing in
DIMNet [5], which in practice takes longer than 0.005s during
the training. Due to the existence of adversarial and metric
learning, the training of AML needs more time cost than
testing. Due to the lighter structure of our model with only five
convolution layers for face and voice feature extraction, while
thirteen in DIMNet [5], AML performs faster than DIMNet [5]
in the testing.

I. Limitation

We have also encountered a key limitation of the proposed
AML on audio-visual learning during the evaluation. As shown
in Fig 11, the AML may produce apparently incorrect results
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Fig. 11: The limitations of AML in audio-visual learning in A→ V challenge on (a) verification, (b) matching, and (c) retrieval
tasks. (a) The wrong verification results. (b) The wrong matching results in red boxes while the images in blue boxes indicate
the ground truth. (c) The retrieval results from R@1 to R@10 where right hits are highlighted in green boxes.

across the ages, genders or nationalities. For instance, As
shown in the fifth row in Fig 11 (a) on verification task,
AML assigns a young man’s image to an old man’s audio
clip. Similar cross gender/nationality/age mistakes also occur
in Fig 11 (b) and (c) on matching and retrieval tasks. The
main reason is the audio-visual sub-networks in AML only
focus on the speech and appearance features while ignoring
the high-level semantic attribute information. The lack of high-
level attribute information leads these intuitive mistakes. This
limitation inspires us to explore the attribute-driven audio-
visual learning framework in the future to better bridge the
heterogeneous issue among cross-modal data.

V. CONCLUSION

In this paper, we have presented a novel adversarial-metric
learning (AML) method for cross-modal audio-visual match-
ing. Considering the heterogeneous issue between audio and
visual data, we first propose to learn the modality-independent
representations for different modalities via adversarial learn-
ing. Meanwhile, we propose to learn a robust feature em-
bedding for cross-modal similarity measure. AML tackles the
challenge by generating discriminative feature representations
and learning a robust feature metric for cross-modal audio-
visual matching simultaneously. Comprehensive experiments
on three audio-visual learning tasks, including audio-visual
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matching, verification and retrieval comparing with the state-
of-the-art methods verify the effectiveness of the proposed
AML. Our future work will concentrate on exploiting the
common attributes between different modalities for audio-
visual learning.
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