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Abstract: Person re-identification (Re-ID) is the scientific task of finding specific person images of a person in a non-overlapping cam-
era networks, and has achieved many breakthroughs recently. However, it remains very challenging in adverse environmental condi-
tions, especially in dark areas or at nighttime due to the imaging limitations of a single visible light source. To handle this problem, we
propose a novel deep red green blue (RGB)-thermal (RGBT) representation learning framework for a single modality RGB person Re-
ID. Due to the lack of thermal data in prevalent RGB Re-ID datasets, we propose to use the generative adversarial network to translate
labeled RGB images of person to thermal infrared ones, trained on existing RGBT datasets. The labeled RGB images and the synthetic
thermal images make up a labeled RGBT training set, and we propose a cross-modal attention network to learn effective RGBT repres-
entations for person Re-ID in day and night by leveraging the complementary advantages of RGB and thermal modalities. Extensive ex-
periments on Market1501, CUHKO03 and DukeMTMC-relD datasets demonstrate the effectiveness of our method, which achieves state-

of-the-art performance on all above person Re-ID datasets.
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1 Introduction

Person re-identification (Re-ID) aims to match pedes-
trian images with the same identity across multiple non-
overlapping cameras. It has been a hot research topic
since the last decade with potential practical applications
like video surveillance and pedestrian retrieval for public
security. However, person Re-ID encounters many chal-
lenges, such as the cross-view changes of a person’s pose,
illumination, viewpoints, backgrounds clutter, occlusion,
etc.

Extensive efforts have been made in the past decade
to overcome these challenges. Early works dedicated to
either feature extraction!™3l or metric learningl34
schemes. Feature extraction based methods aim to learn
the discriminative features to maintain invariance of the
same person, and the distinction among different persons.
Metric learning based approaches mainly train a distance
measurement or a classifier to solve the intra-class dis-
crepancy and inter-class similarity. With the extensive
applications of deep learningl®, convolution neural net-
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works (CNNs) have been widely used in person Re-ID to
automatically learn more discriminative features(3: 6-16],
These methods mainly employ deep classification models
to learn discriminative feature representations for the
visual appearance of person images. Meanwhile, deep
metric learning methods are also widely implemented in
person Re-ID(17-24] by minimizing the inter-class diversit-
ies and maximizing the intra-class distinctions. Recently,
with the blossom of generative adversarial networks
(GANS), some researchers have tried to use the genera-
tion models to relieve the pose and camera style vari-
ations across the cameras in person Re-ID[25-28],

Other researchers have focused on the temporal in-
formation or the gait information2% 30 for video based
person Re-ID. Despite of the great progress on person Re-
ID, most of the existing single red green blue (RGB)-
modality Re-ID methods and benchmark datasets are
based on favorable lighting, which limits their capability
in real-life applications in the adverse environments, such
as poor illumination in bad weather or at nighttime.

Thermal infrared (TIR) cameras can capture infrared
radiation emitted by subjects with a temperature above
absolute zerol3!l. These cameras are insensitive to light-
ing conditions and have a strong ability to penetrate haze
and smog. Therefore, the advantage of thermal images is
that they are not affected by low illumination, illumina-
tion changes and shadows, as shown in Fig. 1.
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Fig.1 Advantage of TIR images compared to RGB images.
Due to the illumination change or background clutter, the same
person may appear differently under the visible RGB cameras,
while the TIR images attenuate the influence in these
challenging scenarios.

Recently, as the quality of TIR images has improved
and the cost of infrared cameras has reduced, TIR data
has been widely used in computer vision tasks to over-
come the limitations in conventional RGB environments,
such as RGB-thermal (RGBT) tracking3:32 and RGBT
object detection[33], which take advantage of the charac-
teristics of the two modalities to improve the perform-
ance of the corresponding tasks. Meanwhile, Nguyen
et al.34 proposed a RGBT dataset, which contains RGB
and thermal infrared image pairs for pedestrian recogni-
tion. This dataset has been widely used for cross-modal-
ity person Re-ID[35737],

Although TIR data can relieve the challenge in ad-
verse conditions in a conventional RGB single modality,
most of the surveillance environments are based on single
visibility only, which results in the lack of TIR data re-
sources for the RGBT Re-ID task. Therefore, how to util-
ize the advantage of the thermal infrared modality for the
single RGB modality Re-ID is still an open problem.

In recent years, many researchers employ GANs in
cross-modal generation to supplement the single modal
information. For instance, Zhang et al.38] used the image
translation method to generate thermal images in thermal
infrared tracking. Inspired by these works, by training on
existing RGBT datasets, we propose to use the generat-
ive adversarial network to translate the labeled RGB per-
son images to thermal infrared ones. The labeled RGB
images and the synthetic thermal images consist of the
labeled RGBT training set, which makes use of the com-
plementary information from both visible and thermal
modalities. Specifically, we employ CycleGANBI which
was proposed to learn mappings between unpaired do-
mains for the cross-modal generation.

After obtaining the synthetic RGBT training dataset,
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we can learn both RGB and thermal representations with
the input of a single RGB-modality query during the test.
The forthcoming issue is how to effectively fuse the in-
formation from both modalities. The intuitive approach is
to concatenate the representations from each modality.
However, different modalities may contribute unequally
in different scenarios. Recently, attention models/4% have
drawn much attention and been successfully applied to all
kinds of visual mechanisms, such as pedestrian
countinglll, action recognition?, video summarization/*3]
and object detection4. In our task, we propose to em-
ploy a channel-spatial attention networkl*® to learn more
discriminative RGBT representations to further boost the
performance.

Based on the above discussion, we propose a novel
deep RGBT representation learning framework for single
RGB person re-identification. First, we synthesize the
thermal person images via CycleGANBY for RGB person
images. Then, we learn the RGBT representation based
on the synthetic RGBT data. Finally, we employ the at-
tention network to improve the representation of the net-
work and balance information between the two modalit-
ies. By exploiting multi-modal representation with the
proposed method, it can relieve the illumination and
background clutter in conventional RGB Re-ID tasks
while making full use of the complementary information
from both RGB and thermal modalities without addition-
al modality resources. The contributions of this paper can
be summarized as follows:

1) We propose a deep RGBT representation learning
framework for single RGB-modality person Re-ID. By
transferring the RGB query images to TIR ones, our
method can take the advantages of both RGB and
thermal modalities without additional modality resources
in RGB person Re-ID.

2) We propose to employ the channel-spatial atten-
tions in our network to automatically learn the import-
ant information when fusing RGB and thermal represent-
ations for robust RGB person Re-ID.

3) Extensive experiments on prevalent RGB person
Re-ID datasets, including Market150118], DukeMTMC-re-
IDE] and CUHKO3[®l, show the promising performance of
the proposed method especially in adverse scenarios.

2 Related work

2.1 RGB person re-identification

Person Re-ID has been attracting more attention in
recent years. Early approaches focused on extracting
hand-crafted features. Representative descriptors include
histograms of oriented gradients (HOG)!, local maximal
occurrence (LOMO)B! and local binary patterns (LBP)[E.
Meanwhile, metric learning based methods emerged for
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learning the optimized subspace to minimize the cross-
view gap in person Re-ID, such as keep it simple and
straightforward metric (KISSME)[4, cross-view quadratic
discriminant analysis (XQDA)B! and top-push(20l. The de-
velopment of CNNs accelerates the recent progress in per-
son Re-ID. Chen et al.[6l proposed CNN structures to ex-
tract characteristic features with identification loss and
verification loss. Zhao et al.[47l designed a deep CNN net-
work named as spindle net to fuse global body features
and body region features for person Re-ID. Su et al.[4l
used a pose-driven deep CNN model to leverage the hu-
man part cues to alleviate the pose variations and learn
robust features of global and local information. Sun
et al.[¥9 proposed a part-based network part-based convo-
lutional baseline (PCB) which learns more discriminative
feature representations in the part level. Chang et al.l!9]
proposed a semantic level network that factorizes the
visual appearance of a person. Ding et al.l!3] proposed a
feature mask network to re-weight different parts of high-
level and low-level features.

Some researchers integrated the idea of metric learn-
ing into the deep CNNs for person Re-ID. Yi et al.l7 first
combined the metric learning method (cosine distance)
with deep CNN. Chen et al.?% designed a quadruplet loss
leading to large inter-class variation and smaller intra-
class variation than triplet loss. Yao et al.24 improved
the performance by computing the person classification
loss on each part separately. Zhu et al.[23] proposed a net-
work to learn the distance metric by designing different
objective functions for hard and easy negative samples.
Yuan et al.bl proposed a fast-approximated triplet
(FAT) loss to preserve the effectiveness of triplet loss.

Recently, many researchers paid attention to GAN-
based methods for person Re-ID. Zheng et al.l8l proposed
to generate unlabeled samples with a simple semi-super-
vised pipeline on the original training dataset, and adop-
ted the deep convolution generative adversarial network
(DCGAN) for data generation.

Person transfer generative adversarial network (PT-
GAN)[2] is proposed to address the problem of poses vari-
ation in person Re-ID where the model is trained with
rich pose variations which are generated via transferring
pose instances. Ge et al.l27] proposed feature distilling gen-
erative adversarial network (FD-GAN) to learn pose-un-
related person features with pose guidance. Wu et al.[!4]
used adversarial learning to address the view discrepancy
by optimizing the cross-entropy view confusion objective
in person Re-ID. However, person Re-ID on a single RGB
modality faces big challenges with illumination changes
especially for dark lighting conditions in the severe
weather or night-time.

2.2 Multi-modal person re-identification

Recently, with the development of multi-modal vision,
multi-modal person Re-ID has gained much attention.

Barbosa et al.’2l proposed a pattern analysis and com-
puter vision (PAVIS) dataset, which contains two groups
of RGB and depth person images. Munaro et al.l3 pro-
posed a BIWI dataset, which consists of 50 different per-
sons in RGBD data. Nguyen et al.34 proposed a RegDB
dataset which contains 4 120 RGB and thermal person
image pairs for person recognition.

Based on the above RGBD person Re-ID datasets,
Pala et al.l’¥ combined clothing appearance with depth
data for person Re-ID. Mogelmose et al.[53] proposed a tri-
modal (RGB, depth, thermal) person Re-ID to combine
RGB, depth and thermal features. Xu et al.l’] proposed a
distance metric using RGB and depth data to improve
RGB-based person Re-ID. John et al.5] combined RGB-
height histogram and gait features of depth information
for person Re-ID.

Wu et al.b8 proposed a kernelized implicit feature
transfer scheme to estimate the Eigen-depth feature from
RGB images implicitly when the depth device was not
available. Paolanti et al.’9 combined depth and RGB
data with multiple k-nearest neighbor classifiers based on
different distance functions. Ren et al.l[0 exploited a uni-
form and variational deep learning method for RGBD ob-
ject recognition and person Re-ID. However, most of ex-
isting surveillance systems are based on single RGB cam-
era networks, and thus how to utilize the advantages of
the thermal infrared modality in single RGB-modality
person Re-ID is still an open question.

2.3 Cross-modal generation

Generative adversarial networks (GANSs)61 have
achieved great success recently, especially in image gener-
ationl62: 63, image editingl64 and image-to-image transla-
tionB9 651, Conditional GANs (cGAN)62] have been pro-
posed based on a selected input variable. With the rise of
cross-modal simulation research, in recent years cross-
modal image generation has attracted much attention. Xu
et al.l66] proposed a method to reconstruct thermal im-
ages from the associated RGB data and learn cross-mod-
al deep representations for detection. Zhang et al.[38] used
the generative adversarial network of style transfer to
generate thermal infrared images from visible images to
alleviate the thermal tracking problem in weak illumina-
tion. Cross-modal generation has also performed well in
other areas. Luo et al.[67l combined binocular images with
monocular images to generate depth modality images of
monocular images. Qiao et al.[68] proposed a novel global-
local model to generate images from texts. Chen et al.[69]
exploited conditional GANs to achieve the generation of
audio-images. Zhou et al.l’"0l enabled arbitrary-subject
talking face generation by learning disentangled audio-
visual representations. The above progress on cross-mod-
al generation provides another way to make use of the
advantages of the thermal infrared modality in person
Re-ID with a single RGB modality.
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3 Proposed approach

3.1 Overview of our approach

Our proposed framework is shown in Fig.2. We aim to
leverage the thermal information to boost the traditional
RGB Re-ID in challenging scenarios. There are two main
parts in our approach, including 1) thermal data genera-
tion networks, which transfer the RGB images into TIR
ones via CycleGANP and 2) attentive RGBT Re-ID
network, which utilize the channel attention (CA) and
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(a) Thermal data generation network
Fig. 2
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the spatial attention (SA)“% to highlight the meaningful
information of input RGB-TIR image pairs for the Re-ID
task. We shall elaborate the details of each module in the
following two subsections.

3.2 Thermal data generation network

3.2.1 Network architecture

Image-to-image translation has been extensively re-
searched Representative translation
CycleGANDBIL

known, pix2pix(63 requires the paired input data. Due to

in recent years.

methods include pix2pix[67], etc. As we
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Framework of the proposed approach: (a) Thermal data generation network, generating a large TIR person image dataset.

Both TIR and RGB data are used as input while training the generation model. After translating RGB data into TIR data, we acquire
the RGB data together with the generated TIR data for future Re-ID task. (b) Attentive RGBT Re-ID network, learning RGBT
representation based on both RGB and generated TIR data for Re-ID task. Colored figures are available in the online version.
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Fig. 3
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the low quality RGB images in paired RGBT datasets
RegDBB4, pix2pix[6° tends to generate blurring low qual-
ity data as shown in Fig.3. Therefore, we employ
the more advanced unpaired generation network CycleG-
ANBI for better RGB to TIR transformation.

CycleGANBY is an effective method in image transla-
tion between two domains when the paired images are
not available. Based on generative adversarial networks
(GANs)BU CycleGANBY consists of two generators and
two discriminators, which mutually map an image from a
source domain to a target domain with the cycle consist-
ency loss. The generator in CycleGANBY contains two
convolutions, six residual blocks and two fractionally-
strided convolutions as the generator. The image generat-
or G takes the encoded RGB person image features as in-
puts, and aims to decode new TIR person images. The
discriminator is a convolutional PatchGANI™, which dis-
tinguishes the decoded TIR image patches as real or fake.
Let « be an image from source RGB domain X and y be
an image from the target thermal infrared domain Y. Our
target is to learn the mapping functions between RGB
domain X and thermal domain Y. First, the adversarial
loss is defined as the objective function,

,CGAN(G, Dy, X, Y) = EyN;D(y) [logDy( Y )} +
Eyrp(o|log(l — Dy (G(x)))] (1)

where the generator G is to generate images G(z) that
could transfer the style from source RGB domain X to
thermal domain Y. The discriminator Dy tries to
distinguish whether the generated thermal images G(x)
are real or fake ones.

Additionally, the main idea of CycleGANBY is to in-
troduce a cycle consistency loss, which maps the target
domain Y back to source domain X. Therefore, unlike the
conventional generative adversarial networks which only
contain one generator, CycleGANBY includes another
generator F'to map Y — X. The cycle consistency loss is
defined as

Leye(G,F) = E, [||F(G(z)) —=||,] +
Ey [IIF (F(y))—yll,] - (2)

The cycle consistency loss makes the reconstructed
images closer to the input images. In the same manner as
the minimizing-and-maximizing game in traditional ad-
versarial learning, the final objective function of CycleG-
ANBY is defined as

G*, F* :argmGinmgx [Loan (G, Dy, X, Y )+
Lean(F,Dx,Y, X) + Meye(G, F)]. (3)

Fig. 3 demonstrates several generated thermal samples
in RGB dataset Market150118]. Some person images in
the RGB modality are disturbed by background and illu-
mination, especially as Person 2, Person 4 and Person 6

highlighted in red boxes. For instance, the third image of
Person 2 captured outdoors is significantly disturbed by
the background clutter compared with the first two in-
door images. Similar background changes are also ubi-
quitous for other person images such as Person 4 and
Person 6. While the corresponding generated TIR images
can overcome these issues, compared with the pix2pix
generation method, CycleGAN achieves more realistic
synthesizing with much better visualized and more de-
tailed appearance information.

3.2.2 Implementation details

We shall elaborate the data and training details to
transfer the RGB person images into TIR ones in this
section.

Data preparation. To transfer the RGB person im-
ages into TIR ones, the first requirement is the training
data with both RGB and TIR person images. Currently,
there are only two RGB-IR person Re-ID datasets,
SYSU-MMO01™ and RegDBB4. SYSU-MMO01[" is the
prevalent RGB-NIR (near infrared) cross-modal dataset
which captures with six individual non-overlapping cam-
eras including four RGB ones and two NIR ones.
However, NIR data is sensitive to the illumination and
contains less information than TIR data, thus this data-
set is not suitable for our work. RegDB[B4 contains a
large number of RGB-TIR image pairs which are cap-
tured by a binocular RGB-TIR camera set. Therefore, we
train our cross-modal generation model on RegDBB4 with
its TIR data in our paper.

As shown in Table 1, RegDBB4 contains 4 120 RGB-
TIR image pairs of 412 identities under different lighting
conditions. Each identity contains 10 different RGB-TIR
image pairs. To make the generation of our method bet-
ter, we choose high-quality person TIR images in differ-
ent environments which have different poses in RegDB
dataset, amounting to 2 154 TIR high-quality images for
training. In order to relieve the influence of the unclear
boundary in high temperatures, we select some data con-
taining the challenge of unclear boundary conditions to
train our generation network. The purpose of our ap-
proach is to integrate the generated thermal infrared in-
formation to the existing Re-ID datasets, such as Marker-
15018, CUHKO03, and DukeMTMC-reIDB® datasets.
We select 2 154 RGB person images from these datasets
for training, which contains complex background and dif-
ferent poses. The generator is to learn more details about

Table 1 Datasets used for training the generation model and
Re-ID task. We test our models at three single-modal datasets.

Number of images

Types Datasets
RGB IR
Multi-modal dataset RegDB 4120 4120
Market1501 32217 -
Single-modal dataset ~CUHKO03 13 164 -

DukeMTMC-relD 36 411 -
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single-modal RGB data. For testing, we translate three
RGB datasets to thermal infrared style, these amounts to
total of about 10K images.

Training details. We train our generation network
from scratch, initializing the weight from a Gaussian dis-
tribution with zero mean and standard deviation of 0.02.
We empirically set A = 10 in (3), and use the Adam
method[™ to optimize the model with a batch size
of 1. We use the same network architecture as in CycleG-
ANBY. The input images have been resized as 128 X
128 pixels. We train CycleGANBY for 30 epochs with a
learning rate of 0.000 2. In the first 20 epochs, we keep
the same learning rate and decay the rate to zero in the
next 10 epochs.

3.3 Attentive RGBT Re-ID network

3.3.1 Cross-modal convolution module

After obtaining the TIR data, the next step is to fuse
the multi-modality information[™l. To leverage the TIR
information to complement the conventional RGB Re-ID
task, this section elaborates our cross-modal convolution
module which aims to learn both RGB and TIR person
features. We first encode each modality to a feature map
of size H x W x C, where W and H indicate the feature
dimensions, and C' denotes the number of channels. As
shown in Fig.2, unlike the common convolution opera-
tion taking 3-channel RGB data as inputs, we input 4-
channel RGBT data, including three channels RGB data
Irap and one channel thermal data I

I =IrgB +alr (4)

where o is the balance parameter indicating the
weight/contribution of the generated thermal data, and
we empirically set this to 1 in this paper. “+”7 is
operation of concatenation. We utilize the ResNet-50(7
as our backbone. We keep the layers of ResNet-50[7 till
the Pooling-5 layer as the base network and change the
dimension of the fully connected layer to N, which
indicates the number of identities in the training dataset.
We add a new embedding layer followed by linear and
batch normalization[", and then randomly crop it into a
256 x 128 rectangular image, each of which is flipped
horizontally with 0.5 probability. The model has an
additional data loader for TIR data to obtain the
generated TIR images. It outputs the ID prediction logits
D to calculate the cross-entropy loss.

Since the label of the generated TIR images are
known, we calculate the difference between ID prediction
logits P and the real labels. The cross-entropy loss is used
to optimize the network, and formulated as

Lia(an) =~ > logp (bla) (5)

where n is the number of synthetic images in a training
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batch. p is the predicted probability of the input image a;
belonging to identity b;. In general, the contributions of
the generated thermal images and RGB images are
different in different scenarios. To learn the diverse
contribution of each modality, we further propose to
employ the channel and spatial attention mechanisms to
emphasize the discrimination.

3.3.2 Channel attention module

The convolutional block attention modell45! aims to
produce a weighting map to carry out attention computa-
tion across the feature maps. In this way, the channel at-
tention module will be oriented toward more important
channels of the RGB-T feature.

Given an input RGB-T person image, we first obtain
the feature map M from the first convolution layer of
ResNet-50. The framework of the attention module is
shown in Fig.2. In particular, the network which embeds
the channel attention module can be denoted as

M =A,(M)® M (6)

where ® denotes the weighting operator. A. is the
channel attention module. The attention map A is
expected to focus higher on a person region contrary to
the background. M’ indicates the channel attention
features.

The channel attention module exploits the channel re-
lationship of features by choosing the more meaningful
channels of an RGB-T feature map. One can achieve the
attention map via aggregating the input feature maps. A
common way of aggregation is to use average-pooling to
learn the extent of the input object. To better select the
discriminative feature and preserve more texture informa-
tion, we further introduce a max-pooling operation in this
paper.

Both average-pooling and max-pooling#5 descriptors
are forwarded to a convolution block to achieve the chan-
nel attention map. Finally, we use the element-wise sum-
mation to merge the output features. The objective func-
tions can be defined as

A (M) :MAvg + Myjax = 0 (CQ( ReLU (ClAvg( M)))-I—
Co(ReLU (CiMax(M)))) (7)

where M denotes the feature of the image after different
layers, o denotes the sigmoid functions, C; and Cs are
two different convolution layers.

3.3.3 Spatial attention module

To capture the spatial relationship of features, we fur-
ther employ the spatial attention module to emphasize
the informative part of the features, as the complement-
ary information to the channel attention. The spatial at-
tention module in the network can be denoted as

M= A, (M) &M 8)
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where M’ and M" indicate features after the channel
attention module and final attention features respectively.
A is the spatial attention module.

Unlike channel attention, we concatenate two
descriptors to generate an efficient descriptor and then
forward to a convolution layer to compute the spatial at-
tention map. The spatial attention is computed as

As (M) = MAvg,Max -
o (C™*7(Avg (M) + Max (M))) (9)

where o denotes the sigmoid function, and M indicates
the feature of the image after different layers.
C™ Tindicates the kernel size of the convolution layer.
Fig.4 demonstrates several samples enhanced by the
channel-spatial attention map.

3.3.4 Implementation details

The backbone of our attentive RGBT Re-ID network
is the standard ResNet-50[75. The Re-ID network is
trained with cross-entropy loss. The learning rate is set to
0.1 and then reduced to 0.01 at the 60th epoch. For the
attention module, we use convolution layer with a kernel
size of 7. The kernel size of spatial attention is 7x7.

We train our model in 90 epochs with an adjustable
learning rate which will decrease while the epochs in-
crease. We set the dropout to 0.5 to prevent overfitting.
We use stochastic gradient descent (SGD) with the mo-
mentum of 0.9 and weight decay of 0.000 5 to fine-tune
the network. All input images are resized to 256 x 128
with horizontal flipping during training.

4 Experimental results

To verify the effectiveness of our proposed method, we
evaluate the method on three large-scale person Re-ID
benchmark datasets, including Market1501[8], DukeMT-
MC-reIDBl and CUHKO3[6l. Performance is evaluated by
the cumulative matching characteristic (CMC) and mean

Original Baseline CSA

average precision (mAP).

Original Baseline CSA

Fig. 4 Visualized feature maps of corresponding person images
from the Market1501 dataset(!8]. The results of baseline and CSA
are achieved via ResNet-50 and ResNet-50 with the channel-
spatial attention respectively on the original RGB data.

4.1 Datasets

Market1501[18] consists of 12 936 images of 751 identit-
ies for training and 19 281 images of 750 identities for
testing from 6 camera views. There are on average 17.2
images per identity in the training set. In testing, 3 368
images from 750 identities are used as queries to retrieve
the matching persons in the dataset.

DukeMTMC-reIDBl is a subset of tracking dataset
DukeMTMCI for image-based person Re-ID. The data-
set contains 16 522 images of 702 identities for training
collected from 8 cameras and 2 228 query images from the
other 702 identities. The evaluation metrics of the data-
set is the same as that of Market1501[18].

CUHKO3[6 contains 14 097 training images of 1467
identities captured from two cameras where the scenario
is the Chinese University of Hong Kong (CUHK) campus.
Image samples of CUHKO03 from 767 identities are selec-
ted for training, and the remaining 700 identities for test-
ing.

4.2 Comparison with  state-of-the-art
methods

We first compare the performance of our method with
the recent state-of-the-art Re-ID methods including some
recent methods on three benchmark datasets.

4.2.1 Comparison on Market1501 dataset
Table 2 reports the comparison results on Market1501
datasets/’8l. As we can see, our method beats the state-of-

Table 2 Experimental comparison of the proposed approach
with state-of-the-art methods on Market150108) (in %)

Market1501

Methods

Rank-1 mAP References
Bow+KISSMEL['8] 44.4 20.7 ICCV2015
ReRankl 77.1 63.6 CVPR2017
OIM Lossl78l 82.1 60.9 CVPR2017
MSCANI=23] 76.3 53.1 CVPR2017
DCA[3] 80.3 57.5 CVPR2017
DCGANIE] 78.0 56.2 ICCV2017
k-reciprocall9] 77.1 63.6 CVPR2017
OL-MANS[2 60.7 - ICCV2017
SVDNet/[83] 82.3 62.1 ICCV2017
PA®4 81.0 63.4 ICCV2017
JLMLI[™ 85.1 65.5 1JCAI2017
DSRI80] 82.7 61.2 CVPR2018
DeformGANIBI 80.6 61.3 CVPR2018
Pose-transfer!(26] 79.8 58.0 CVPR2018
FMN[3] 86.0 67.1 PRL2019
Ours 86.5 76.2
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the-art methods on both Rank-1 and mAP, comparing to
the prevalent methods, such as online instance matching
(OIM) Lossl™l, k-reciprocal, joint learning multi-loss
(JLML)™, and deep spatial feature construction
(DSR)BY. although they devote to design complicated
networks architecture or various loss for better perform-
ance. Furthermore, our method outperforms other GAN
based Re-ID methods including deep convolutional gener-
ative adversarial networks (DCGAN)[™] DeformGAN[s!]
and Pose-transfer(26l, which aim to synthesize person im-
ages with various poses and image styles. This indicates
that the t complementary advantages from different mod-
alities play a more important role than the cross-view
pose variation and style adaption in person Re-ID.
4.2.2 Comparison on DukeMTMC-reID dataset

The evaluation results of our method on DukeMTMC-
reID dataset® is shown in Table 3. Our method consist-
ently outperforms the state-of-the-art methods including
either metric learning based methods, e.g., Bow+KISS-
ME[!8] and OIM Loss[™, or GAN based methods, e.g.,
DCGANBI, similarity preserving generative adversarial
networks (SPGAN)B5 and Pose-transfer26l. Consistent
with the results on Market1501[!8], our method signific-
antly improves the mAP metrics by 9%, which verifies
that our method can distinguish more challenging situ-
ations at the first rankings.

Table 3 Experimental comparison of the proposed approach
with state-of-the-art methods on DukeM TMC-reIDB! (in %)

Table 4 Experimental comparison of the proposed approach
with state-of-the-art methods on CUHKO3[6 (in %)

CUHKO03

Methods

Rank-1 mAP References
OIM Lossl™ 44.4 20.7 CVPR2017
MSCANI=25] - 74.2 CVPR2017
DCA[23] - 74.2 CVPR2017
PAB4 85.4 - ICCV2017
OL-MANSI[2 - 61.7 ICCV2017
JLMLI™ 83.2 - IJCAI2017
k-reciprocall’ 61.6 67.6 CVPR2017
DCSLIBs 80.2 - I1JCAI2016
E:‘jﬁi?ﬁgg‘ﬁ;ﬁﬁmre 86.7 83.8 1CCV2017
Ours 87.6 84.1

DukeMTMC-re-1D

Methods

Rank-1 mAP References
Bow+KISSME[8] 25.1 12.2 ICCV2015
LOMO+XQDAP] 30.8 17.0 CVPR2015
OIM Loss(™ 68.1 47.4 CVPR2017
SVDNet/83] 67.6 45.8 ICCV2017
DCGANE 67.7 47.1 ICCV2017
Verif+Identif(84] 68.9 49.3 ICCV2017
SPGANI8] 41.1 22.3 CVPR2018
Pose-transfer(26] 68.6 48.0 CVPR2018
Ours 69.2 55.0

4.2.3 Comparison on CUHKO03 dataset

Table 4 shows the results of our method with the
state-of-the-art methods on the CUHKO3 dataset(fl. Note
that CUHKO3I! contains two folds, one of which is named
as detected, where the person images/bounding boxes are
obtained by pedestrian detector, while the other one by
handcraft named as labeled. We test our method on the
handcraft one labeled comparing it to the state-of-the-art
methods. Our method achieves promising performance
with 87.6% and 84.1% on Rank-1 and mAP respectively.
It seems that our method has not improved as much as
on the other two datasets Market1501[18] and DukeMT-
MC-reIDBl. The main reason is the limited challenges in

@ Springer

the CUHKO03 dataset®l, which contains few background
clutters and illumination changes. In other words, our
method can better improve the person Re-ID perform-
ance in more challenging scenarios.

4.3 Qualitative examples

Fig.5(a) demonstrates two ranking results of corres-
ponding queries on the Market1501 dataset[!8l, CUHKO03
dataset(f] and DukeMTMC-relD datasetl® respectively.
Benefitting from the thermal information generated from
the RGB modality, our method can overcome the chal-
lenges of background clutter (especially for Query (i), (ii)
and (vi)), pose changes (especially for Query (i) to (iv)
and (vi)), occlusions (especially for Query (iv) and (v)),
and huge illumination changes (especially for Query (ii)
and (vi)).

4.4 Ablation study

To verify the contribution of each component in our
method, we evaluate several variants on the three data-
sets in this section, as shown Fig. 6. It is clear to see that:
1) By introducing the channel and spatial attention
(CSA) or the TIR generation module, we can improve the
rank-1 and especially the mAP accuracies, which verify
the contributions of both components. 2) By integrating
both CSA and TIR generation modules, we can further
boost the performance which verifies the effectiveness of
the proposed method. 3) TIR generation contributes more
on Market1501[18 while CSA plays a more important role
on the other two datasets DukeMTMC-reID and
CUHKO36l. The reason is that the images of
Market1501118] consist of different background and occlu-
sion and the complexity of the dataset is high, and TIR
data could reduce the impact of these factors. The atten-
tion network can select discriminative regions of images
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Fig. 5 Qualitative examples of the proposed method; (a) Ranking results of the proposed method on three benchmark person re-
identification datasets, where the left column indicates the query images, and the following ten columns are the corresponding top-10
hits obtained by our method; (b) Ranking results of the proposed method comparing with the baseline on Market1501 dataset[!8l. The

green and the red boxes indicate the right and the wrong hits respectively.

Ablation study Table 5 Evaluation on CSA attention module comparing with
90 SE-block[87 on Market1501[18]
851
— Module Rank-1 mAP
O\c 80
> 75+ +CSA 83.4 61.0
3170 +CSA+TIR generation 86.5 76.2
E 65t +SE-block 81.8 60.1
& 60 + .
55 +SE-block+TIR generation 82.0 71.2

Marketl 501 DukeMTMC-reID

CUHKO03
m TIR Generation
Baseline+CSA = TIP Generation+CSA

Baseline

Fig.6 Ablation study of the variants of our method on
Market150118], DukeMTMC-reID® and CUHKO03!6]

and important channels of feature maps for different
modal data in three datasets.

Fig.5(b) illustrates our method is better than the
baseline especially in some challenges such as back-
ground clutter, pose changes on Market1501(18l. We also
compare our CSA module with the widely used SE-
block®” based on ResNet-50 on Market1501. As shown in
Table 5, our attention module outperforms the SE-block.

4.5 Evaluation on backbones

To evaluate the generality of our method, we further
evaluate our method with different backbones, including
ResNet-101[7) ResNet-34(75, Res2Net-50881 and SeNet87,
besides ResNet-50[73. Table 6 reports the results of our
method with various backbones. Our CSA module is
more suitable to the ResNet network and could achieve
better performance. It is clear to see that, our method
achieves promising performance on all the backbones.

Furthermore, our TIR generation module and CSA mod-
ule can boost the performance on each backbone, which
verifies the contribution of the proposed method.

ResNet-101[7] slightly outperforms ResNet-50175 by
deeper convolution layers which could extract more high-
level features. The remaining three backbones are over-
shadowed since Res2Net-50 and SeResNet-50 contain a
large number of parameters leading to overfitting and
more computation, ResNet-34 is shallow network which
performs generally.

4.6 Parameter analysis

The important parameter in our method is « in (4),
which balances the weight of RGB and thermal modalit-
ies during Re-ID as shown in Fig.7. The larger «, the
higher contribution of thermal information. We analyze
the impact of a by varying 0.2, 0.5, 0.8, 1.0, 1.2, 1.5, 2.0,
and observe that: 1) Our method with different weights
consistently outperforms the baseline, which validates the
effectiveness of generated TIR information. 2) Our meth-
od achieves the best performance in the range 0.8 < a <
1.2, which indicates that the generated TIR information
contributes more or less the same as the RGB informa-
tion. 3) A larger weight on TIR information may decline
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Table 6 Evaluation on backbones with various components on Market1501[18], DukeMTMC-reIDI8l and CUHKO3I6. The top three

results are highlighted in red,

and blue, respectively

Market1501 DukeMTMC-relD CUHKO03
Backbones Methods
Rank-1 mAP Rank-1 mAP Rank-1 mAP
Baseline 82.8 59.9 63.8 43.0 72.5 66.0
+ CSA 83.4 61.0 68.0 47.6 79.4 72.5
ResNet-50
+ TIR generation 85.5 66.0 67.3 47.1 77.8 T74.2
+ TIR generation + CSA 55.0
Baseline 83.5 61.9 68.7 48.9 80.5 75.5
+ CSA 84.8 64.2 69.6 50.3 84.2 77.3
ResNet-101
+ TIR generation 86.4 68.8 69.9 49.4 82.8 79.5
+ TIR generation + CSA 87.4 78.2 70.6 87.8 84.3
Baseline 75.4 51.4 55.8 32.9 63.0 56.7
+ CSA 78.2 54.3 57.3 34.2 70.2 60.8
ResNet-34
+ TIR generation 79.0 56.8 60.1 37.6 68.5 63.2
+ TIR generation + CSA 82.5 72.3 61.0 45.6 78.8 74.4
Baseline 76.0 61.2 56.2 33.6 63.6 57.7
+ CSA 78.2 65.5 58.1 36.0 71.1 61.9
Res2Net-50
+ TIR generation 76.8 62.1 60.3 37.9 70.5 65.1
+ TIR generation + CSA 81.2 68.6 62.1 46.8 80.2 75.3
Baseline 79.1 66.8 65.1 45.3 69.0 63.7
+ CSA 81.1 68.2 66.5 46.1 75.2 67.8
SeResNet-50
+ TIR generation 80.1 67.2 66.1 45.8 72.5 65.2
+ TIR generation + CSA 82.0 71.2 67.8 52.3 82.3 77.0
88 1 5 Conclusions
86 — ——— In this work, we have proposed a RGBT representa-
— . . . . . .
gal . tion learning network for person re-identification. It util-

Accuracy (%)
~J ~J [ee] o0
(@) o0 (=] (38

~
N

72 1 1 1 1 1 1 )
0.2 0.5 0.8 1.0 1.2 1.5 20

—a—Rank-1 ==~ mAP

Fig. 7 Evaluation with different weights of the generated
thermal data on Market-1 501 dataset['s]

the overall performance due to less appearance informa-
tion in TIR data compared to RGB data. In this work,
we set a to 1 to balance the channel weights of the gener-
ated thermal and visible in the input. Higher «, lower il-

lumination and more background clutters.

@ Springer

izes the generated model to obtain TIR data to solve
hard backgrounds in Re-ID datasets. Benefiting from the
thermal modality, it can learn more discriminative fea-
ture representation with both RGB and synthesised TIR
information for person Re-ID. Furthermore, we have util-
ized a cross-modal attention network to adaptively integ-
rate the multi-modal information for Re-ID. Our pro-
posed framework achieves state-of-the-art performance on
person Re-ID without additional computational cost. In
the future, we will investigate more modality information
to improve the robustness of single RGB modality based
Re-ID tasks.
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