
Let’s Play Music:
Audio-driven Performance Video Generation

Hao Zhu1,2, Yi Li2,3,4, Feixia Zhu1, Aihua Zheng1, and Ran He 2,3,4,∗
1Anhui Provincial Key Laboratory of Multimodal Cognitive Computation,

School of Computer Science and Technology, Anhui University
2Center for Research on Intelligent Perception and Computing (CRIPAC)

National Laboratory of Pattern Recognition (NLPR), CASIA, Beijing, China
3School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
4Center for Excellence in Brain Science and Intelligence Technology, CAS, Beijing, China

Email: haozhu96@gmail.com, yi.li@cripac.ia.ac.cn, emmazfx@163.com, ahzheng214@ahu.edu.cn, rhe@nlpr.ia.ac.cn

Abstract—We propose a new task named Audio-driven Perfor-
mance Video Generation (APVG), which aims to synthesize the
video of a person playing a certain instrument guided by a given
music audio clip. It is a challenging task to generate the high-
dimensional temporal consistent videos from low-dimensional au-
dio modality. In this paper, we propose a multi-staged framework
to generate realistic and synchronized performance video from
given music. Firstly, we provide both global appearance and local
spatial information by generating the coarse videos and keypoints
of body and hands from a given music respectively. Then, we
propose to transform the generated keypoints to heatmap via
a differentiable space transformer, since the heatmap provides
more spatial information but is harder to generate directly from
audio. Finally, we propose a Structured Temporal UNet (STU)
to extract both intra-frame structured information and inter-
frame temporal consistency. They are obtained via graph-based
structure module, and CNN-GRU based high-level temporal
module respectively for final video generation. Comprehensive
experiments validate the effectiveness of our proposed frame-
work.

I. INTRODUCTION

Given a music audio of a proper instrument, professionals
can distinguish which video of a certain person is playing this
music, since they have the taught expert knowledge to link
the relationship between the music and the corresponding per-
formance actions. Herein, we raise a novel task in this paper:
how to generate a performance video of a person playing the
given arbitrary music of a specific instrument? We name this
task as audio-driven performance video generation (APVG),
which has widely potential applications such as concert video
generation, instrumental teaching, and VR synthesis. It is a
brand-new but challenging task since the extreme hardness to
guide the informative motion details such as body and fingers
from the heterogeneous low-dimensional audio information.

Prevalent face or body generation models employ keypoints
or heatmap to guide the generation [1], [2], [3], [4], [5],
[6]. Specifically, the heatmap achieves more impressive per-
formance by offering more spatial information [4], [1], [2],
[3]. However, keypoints are much easier to predict from audio
[5], [6] since the heatmap is generally sparse and tends to

∗ corresponding author

introduce blurry and jittery generation. In order to utilize the
advantages of both keypoints and heatmap, we propose to
transform keypoints to the heatmap via a differentiable space
transformer inspired by [7], then use the informative heatmap
to guide the body generation in the performance videos.

Furthermore, conventional works leverage keypoints as a
condition to guide the audio-driven video generation [8],
[6], which have ignored the rich structure information in
the coordinates layout of the keypoints. In order to explore
the local structure information during the audio-driven body
generation, we further utilize Graph Convolutional Network
(GCN) [9], which is one of the prevalent method to encode
discrete features with intrinsic structure, to discover the intra-
frame structured information from feature blocks.

The key issue of AVPG is to generate temporally smooth
performance frames. Conventional video generation schemes
either lack of temporal information [3] or leverage compu-
tational optical flow to discover the temporal information
[10]. UNet [11], which utilizes skip-connections to pass the
features to the corresponded decoder layer, has been noted as
a prevalent architecture with promising performance in image-
to-image tasks [12], [13]. However, the conventional UNet
cannot capture the temporal information, which is crucial in
video generation. Recently, GRU (Gated Recurrent Unit) [14]
has been drawn increasing attention in computer vision tasks
due to its ability of providing long term memory of previous
frames. Therefore, we propose to concatenate UNet in adjacent
frames by propagating high-level feature of current frame
to next frame via CNN-GRU to preserve the inter-frame
temporal consistency during generation. Conventional GRU
leverages FC layers to capture the temporal information while
destroying the spatial information in original image space.
CNN-GRU replaces the FC layer by Conv layer to preserve the
spatial information in high-level features and achieves better
performance in practice [6].

Based on above discussion, we propose a multi-stage
approach to capture both intra-frame spatial structure and
inter-frame temporal consistency for audio-driven performance
video generation. The overall architecture and the pipeline
of our method is illustrated in Fig. 1. To the best of our
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Fig. 1: The pipeline of our proposed model. It contains three main steps: (1) Keypoint and Heatmap Prediction (KHP) which
predicts the keypoints from the given music audio clips via Keypoints Predictor (KP), and then transforms the predicted
keypoints into corresponding heatmap via Differentiable Landmark Transformer (DLT). (2) Coarse Video Generator (CVG)
which generates the coarse video from given audio for further refinements. (3) Final Performance Video Generation (FPVG),
which integrates the graph represented intra-frame structure information from predicted keypoints via GCN module and temporal
information via CNN-GRU module. The representations concatenated by the generated coarse video and the predicted heatmap,
the given audio via the proposed Structured Temporal UNet (STU). We finally feed the pair of each generated video frame
and corresponding audio segment into the Audio Video Discriminator for judgement.

knowledge, this is the first work exploring the audio-driven
performance video generation (APVG) task. The main contri-
butions of this work can be summarized as:
• We propose an effective multi-stage adversarial gener-

ation model to achieve the APVG task, which casts a
new challenging problem for audio-visual computation
and provides a baseline framework for related researches
and potential applications.

• We propose to transform the predicted keypoints to
corresponding heatmap by utilizing a differentiable land-
mark transformer (DLT) to provide more precise local
spatial information, followed by the concatenation with
the coarse video generated by the given music clips, to
provide global appearance information for APVG.

• We propose an Structured Temporal UNet (STU) for
the high-quality performance video generation in APVG,
which can simultaneously capture the intra-frame struc-
ture information via graph-based representation on the
predicted keypoints and inter-frame temporal consistency
via CNN-GRU connected UNet.

II. RELATED WORK

With the development of Generative Adversarial Networks
(GAN) [15], many works leverage this idea to generate im-
ages/videos [13], [10] or to assist other tasks [16], [17]. Audio-
visual generation [18], as one of the generative tasks, consists
of audio guided visual generation [19], [20], [21], [22] and
visual guided audio generation [23], [24]. Although APVG is

a new task in audio-visual generation, there are some similar
tasks such as: music-driven pose motion synthesis, talking face
generation and human pose transfer.

A. Music-driven Pose Motion Synthesis

Given the audio music, music-driven pose motion synthesis
aims to predict a sequential structure of the body followed
rendering or avatar animation to produce the final motion
videos. [25] explored the relationship between the music
and motion by training a music-motion matching quality
rating function. [26] proposed a real-time GrooveNet based
on Conditional Restricted Boltzmann Machines (FCRBM)
and Recurrent Neural Networks (RNN) to generate dance
movement from music. [27] proposed to leverage an auto-
regressive encoder-decoder network to generate choreography
system from music. [28] proposed to generate keypoints of the
body from audio, followed by the avatar animation. Recently,
Zhuang et al. [29] leveraged global and local feature to shift
the WaveNet [30] from speech generation to the pose motion
synthesis. Lee et al. [31] decompose a dance into dance units,
and proposed a network to learn how to reorganize these units
via given music. However, these methods mainly synthesize
the keypoints or skeletons to describe the body motion then
generate the motion video by the renderer, while our APVG
task directly generates the body motion videos from music.

B. Talking Face Generation.

Given a audio clip, talking face generation aims to syn-
thesize a realistic talking face video with lip synchronization
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(a) Keypoint and Heatmap Prediction (KHP) (b) Coarse Video Generation (CVG)
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Fig. 2: The pipeline of our proposed (a) Keypoint and Heatmap Prediction (KHP), and (b) Coarse Video Generation (CVG).

of facial motion over the entire video speech. Earlier works
synthesized talking face for a specific person [8], [32], while
most recent methods focus on the synthesis for arbitrary
identity [20], [21], [6]. [20] proposed to disentangle the audio-
visual representation into word-related and identity-related
representation. [21] introduced mutual information approxi-
mation to capture high-level coherence between audio and
visual modalities. [6] transferred audio to facial landmarks and
then generating attention and motion masks on the landmarks
for final video frames. However, the task of synthesizing the
global body motion, together local finger motion from the
given audio, is more challenging and complex.

C. Human Pose Transfer

Human pose transfer aims to generate the image of a person
in arbitrary poses. This task was first proposed by Ma et al.
[4] which leveraged the coarse-to-fine scheme to synthesize
the target person from the heatmap obtained from 18 key-
points. Balakrishnan et al. [12] divided pose transfer problem
into several sub-tasks and synthesized the target foreground
and background separately to adapt the complex background
scenes. UNet based architecture is a prevalent approach for
pose transfer task, while hard to apply for non-aligned objects.
Siarohin et al. [33] introduced deformable skip connections to
GAN to handle the non-aligned input and output. Pumarola et
al. [34] further proposed a fully unsupervised pose generation
scheme by mapping the original pose image back from the
generated one via a bidirectional generator. However, they
mainly devoted to synthesize the high quality image of a
person in different poses while lacked of temporal information.

III. APPROACHES

Given an audio sequence A{1:n} (n denotes the number of
the audio clip) which contains the music of a proper instru-
ment, our purpose is to synthesize a high-quality performance
video V hq . Our method consists of three parts: Keypoint and
Heatmap Predictor (KHP), Coarse Video Generation (CVG),

and Final High-quality Video Generation (FHVG) As shown
in Fig 1, we shall elaborate each part in this section.

A. Keypoint and Heatmap Prediction: KHP

To take both advantage of keypoints (easy to predict) and
heatmap (with more spatial information) during the body
motion generation, we propose to first predict the keypoints
from the given audio via Keypoint Predictor (KP), and then
transform the predicted keypoints into corresponding heatmap
via Differentiable Landmark Transformer (DLT) for further
video generation. Based on the prior experiments that, peo-
ple act in different motion templates while playing different
instruments, we consider two parts features in keypoints
prediction: (1) instrument-related feature, to determine the
approximate position of predicted keypoints by feeding the
average keypoints from the training set into the keypoints
predictor. (2) motion-related feature, to predict more precise
positions extracted from Motion Encoder (1D-CNNs) on the
current audio clip. We concatenate these two features and feed
them to LSTM and FC layer to predict the keypoints.

Then, we transform predicted keypoints Kpred to corre-
sponded heatmap Hpred via the DLT inspired by [7]. Hpred

is first filled with the scalar value 0, then calculated with the
following equation:

Hpred =

W∑
i=0

H∑
j=0

P∑
s=0

α ∗max(0, 1− |Hpred
i −Kpred

sx |)

∗max(0, 1− |Hpred
j −Kpred

sy |),

(1)

where W , H , and P denote the width and height of the image
and number of keypoints respectively. Furthermore, sx and sy
denote the x-axis and y-axis coordinate of s-th keypoint and
α = 1 is an intensity factor. The real heatmap Hreal can be
obtained in the same manner. The full pipeline is illustrated
as Fig. 2 (a).
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Fig. 3: Illustration of our proposed STU. In the t-th time step, we first extract Fhq
{t} from V coarse and Hpred, then fuse F t

1

and Fhq
{t−1} by CNN-GRU which produces F̂hq

{t}. Second, we use Kpred to construct adaptive graph Gm via F̂hq
{t}, then pass

Gm to the GCN to extract motion-related information. Finally, we extract audio feature via decoder to concatenate with the
first layer of decoder, then fuse all the extracted features of same level and propagate to higher resolution layers.

During training stage, we first apply L2 loss between pre-
dicted keypoints Kpred and real keypoints Kreal in Cartesian
coordinate space:

LKpts
Coor =‖ Kpred

{1:P} −K
real
{1:P} ‖2, (2)

We calculate the second loss in visual space with L1 loss:

LKpts
V is =‖ Hpred −Hreal ‖1 . (3)

By applying the two losses in (Eq. (2) and Eq. (3)), we can
obtain the loss of the predicted keypoints in both Cartesian
coordinate space and spatial visual space which improve the
keypoints prediction and facilitate the further video generation.

B. Coarse Video Generation: CVG

Despite of the local spatial information, the global appear-
ance information, which can maintain the context of the video,
is also crucial in generation. Therefore, we propose a coarse
video generator (CVG) to simultaneously generate the general
body appearance within each frame and smooth transition
between adjacent frames from give music clip.

As shown in Fig. 2 (b), CVG consists of an AudioEncoder,
an ImageEncoder, and an ImageDecoder. AudioEncoder pro-
cesses audio sequence A{1:n} into audio features F a

{1:n} then
feed to LSTM to obtain temporal information. ImageEncoder
contains the top five layers of pretrained VGG network [35]
and two additional convolution layers. In order to improve the
continuity in the motion, we feed previous generated frame
to the ImageEncoder to extract image feature F v

{t−1}. Finally,
we concatenate F a

{t} and F v
{t−1} along with a random variable

z to ImageDecoder to obtain the current coarse video frame
V coarse
{t} .

Since we only expect the coarse video generation at this
stage, we simply employ L1 loss between the real video
frame V real

{t} and the generated coarse video frame V coarse
{t}

for reconstruction:

Lvid
coarse =

1

n

n∑
t=1

‖ V real
{t} − V

coarse
{t} ‖1 . (4)

The output coarse videos can provide the general appear-
ance information for the final high-quality video generation.
Therefore, concatenate generated V coarse and Hpred to feed
to the next stage.

C. Final High-quality Video Generation: FHVG

To capture both intra-frame structure information and inter-
frame temporal consistency, we propose a Structured Tempo-
ral UNet (STU) by leveraging the middle level information
(the predicted keypoints Kpred and generated coarse video
V coarse) for final high-quality video generation, as shown in
Fig. 3.

Firstly, we employ UNet [11] as our basic network, which
is a prevalent network in image-to-image translation due to
its ability of propagating context features from lower layers
to higher resolution layers. However it ignores inter-frame
temporal consistency, and suffers a jitter problem while syn-
thesizing videos [10]. Herein, we propose to further tempo-
rally propagate a high-level feature between adjacent frames
through the gated unit, then obtain the fused feature similar as
GRU [36], but replacing the FC layers by CNNs to preserve
spatial information. We refer to it as CNN-GRU in our paper.

Furthermore, conventional UNet only contains CNNs to
extract features in spatial-level, while neglecting the intrinsic
structure information. Therefore, we propose to explore the
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(a) Baseline: left hand (b) Baseline: right hand (c) Baseline: body

(d) Ours: left hand (e) Ours: right hand (f) Ours: body

Fig. 4: Visualization of cello keypoints, where X-axis and Y-axis denote each sample and the 1-D PCA feature respectively.
The red line and green line indicate the PCA features of predicted and ground truth keypoints respectively.

intra-frame structured between the motion components (the
feature blocks located by the predicted keypoints) via GCN
due to its ability of encoding the discrete features with the
intrinsic structure.

The graph of motion components can be represented as
Gm = (V, E ,A), where V, E ,A denote the nodes, edges,
and adjacency matrix of the graph respectively. The nodes
of the graph are the feature blocks F̂hq

{t} located by keypoints
coordinates, and the edges are connected in the same manner
as performed in OpenPose [37]. Then we feed Gm into GCN
to aggregate this intra-frame local features to preserve the
structure relationship during final generation.

Finally, we feed the keypoints, the heatmap concatenated
coarse video, together with the given audio into the pro-
posed STU to capture both intra-frame structure and temporal
consistency for final video generation. An additional Audio-
Video Discriminator is introduced to distinguish whether the
given audio and video are paired. The STU and Audio-Video
Discriminator therefore formed as a GAN [15], STU tries to
fool the discriminator while the discriminator attempts to find
the unpaired audio and video frames. The adversarial loss is:

LG
hq = E[log(D(G(A, V coarse,Kpred), A)], (5)

and discriminator is trained with:

LD
hq =E[log(D(V real, A)]+

E[log(D(G(A, V coarse,Kpred)), A)].
(6)

Instead of simply using L1 loss in coarse video generation,
we use perceptual loss [38] to capture high-level differences
between the generated and real videos:

Lperc
hq =

1

n

n∑
i=1

‖ ψ(V real
{i} )− ψ(V hq

{i}) ‖1, (7)

where ψ denotes the output of different VGG-19 layers.

IV. EXPERIMENTS

We evaluate our model on Sub-URMP [39] dataset to
demonstrate the effectiveness of our proposed method for
APVG task, followed by a detailed ablation study on each
component and comparing our STU against other state-of-the-
art video-to-video generation models.

A. Dataset and Implementation Details.

Sub-URMP [39] dataset consists of 13 instrument cat-
egories. Each category includes the performance videos of
music clips recorded by 1 to 5 different people. In our
experiments, we choose cello and trombone categories which
contain 8000+ frames per person in the training set. We crop
each frame into a square and resize to 256*256. Audios are
extracted into Constant-Q transform (CQT) features [40] at the
sampling rate of 44100Hz and hop length of 256 while each
feature has a size of 84*87.

We adopt Adam optimizer with the learning rate starting
from 0.001 and then gradually decreasing to 0.000125 during
training. All the parameters in networks are initialized with
Kaiming initialization [41].

B. Ablation Study

We first evaluate the contribution of each component in
our method. We evaluate the qualitative result by the preva-
lent metrics: Peak Signal to Noise Ratio (PSNR), Structure
Similarity Index Measure (SSIM) [42]. Table I reports the
ablation study result, from which we can see, (1) All the three
components, KHP, CVG and STU play important roles in our
method. (2) By removing the GCN model (d) or CNN-GRU
module (e) from STU, both PSNR and SSIM increase, which
indicates their contributions.

C. Evaluation on Keypoints Predictor (KP)

To evaluate the performance of our keypoints prediction.
We calculate the L2 distance between the predicted keypoints
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Fig. 5: The generation examples of our model. Note that the results of vid2vid [10] was with the size of 144*256, which was
resized into 256*453 for better formatting.

TABLE I: Quantitative evaluation of the proposed performance
video generation. (Ours = Baseline + KHP+ CVG + STU, STU
= GCN + CNN-GRU. )

Methods Cello Trombone
PSNR SSIM PSNR SSIM

(a) w/o CVG 15.073 0.306 13.563 0.206
(b) w/o KHP 15.191 0.465 14.753 0.305
(c) w/o STU 15.767 0.536 14.656 0.362
(d) w/o GCN 16.253 0.551 15.572 0.395
(e) w/o CNN-GRU 16.437 0.548 15.519 0.395
Ours 17.073 0.563 15.910 0.397

and the real keypoints of the proposed KP together with its
two variants As reported in Table II, the distance increased
after removing the average condition (avg. condition) or the
differentiable landmark transformation (DLT), which verifies
the contribution of each component. We further notice that
the distance of trombone videos is much larger than that of
cello, the reason is that OpenPose [37] fails more frequently
to detect the ground truth keypoints on Trombone videos than
on Cello ones, which affects the final video generation.

TABLE II: Evaluation different components in keypoints pre-
diction. (Ours = Baseline + avg. condition + DLT)

Methods Mean Keypoints Distance
Cello Trombone Mean

Baseline 0.164 0.598 0.381
+ avg. condition 0.151 0.427 0.289
+ DLT 0.152 0.490 0.321
Ours 0.117 0.392 0.254

Fig. 4 visualizes the turbulence between our predicted
keypoints and the ground truth comparing to the baseline. It is
clearly that our keypoint predictor can predict smoother and
preciser keypoints than baseline (without average condition
and the differentiable transformation). Note that the extremely
large or small ground truths indicate the failure detection of
OpenPose [37].

D. Evaluation on Structured Temporal UNet (STU)

As the first task of performance video generation, we
leverage the predicted heatmap (transformed from landmark)
as input and compare our proposed STU (video-to-video) with
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Fig. 6: The quality of generation with different experimental setting.

TABLE III: Quantitative evaluation of the proposed perfor-
mance video generation with state-of-the-arts.

Methods Cello Trombone
PSNR SSIM PSNR SSIM

EBDN [3] 13.553 0.246 12.358 0.225
vid2vid [43] 13.284 0.331 9.600 0.204
Ours 17.073 0.563 15.910 0.397

other state-of-the-art video generation methods, EveryBody
Dance Now (EBDN) [3] and vid2vid [43]. As reported in
Table III, our STU significantly beats the state-of-the-art video
generation methods in all metrics. Fig. 5 further demonstrates
two comparison examples on cello and trombone categories
respectively. From Fig. 5, we can find that our predicted
heatmap are more synchronized with the motions of ground
truth and our synthesized coarse video contains the basic
texture and the poses. The final generated high-quality video
has the comparable quality to the ground truth.

E. User Study

We further provide a user study together with two examples
to demonstrate the effectiveness of our model in Fig. 6 and
Fig. 7. We first randomly select 12 video sets, each of which
contains three videos generated by our method, our method
without CNN-GRU and our method without GCN, then invite
participants to vote on realistic and synchronism. Clearly, (1)
our model achieves the highest rating than other variants in
both realistic and synchronization. (2) Both the realistic and
synchronization w/o CNN-GRU in Cello gain much lower
rating than in Trombone. That means the CNN-GRU plays
more important roles in Cello video generation by capturing
the temporal consistency in slower motion videos (Cello). (3)
GCN turns to play more important role in Trombone since
the fast motion in videos (Trombone) affect less to keypoints
prediction.

Fig. 7: User study of our model and its variants on both
realistic and synchronization (Sync).

V. CONCLUSION

In this paper, we propose a novel multi-stage model for
audio-driven performance video generation. To achieve this
task, we first generate both global coarse video and local
heatmap as middle information for final video generation.
Then, we propose to transform keypoints to heatmap via
a differentiable transforming function, since heatmap offers
more spatial information while hard to generate from audio.
Finally, a Structured Temporal UNet (STU) is designed to cap-
ture both intra-frame structured information via GCN module,
and inter-frame temporal consistency via CNN-GRU based
UNet module. Comprehensive experiments demonstrate the
effectiveness of the proposed model.
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