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Viewpoint-Aware Progressive Clustering for
Unsupervised Vehicle Re-Identification

Aihua Zheng , Xia Sun , Chenglong Li , and Jin Tang

Abstract— Vehicle re-identification (Re-ID) is an active task
due to its importance in large-scale intelligent monitoring in
smart cities. Despite the rapid progress in recent years, most
existing methods handle vehicle Re-ID task in a supervised
manner, which is both time and labor-consuming and limits their
application to real-life scenarios. Recently, unsupervised person
Re-ID methods achieve impressive performance by exploring
domain adaption or clustering-based techniques. However, one
cannot directly generalize these methods to vehicle Re-ID since
vehicle images present huge appearance variations in differ-
ent viewpoints. To handle this problem, we propose a novel
viewpoint-aware clustering algorithm for unsupervised vehicle
Re-ID. In particular, we first divide the entire feature space
into different subspaces according to the predicted viewpoints
and then perform a progressive clustering to mine the accurate
relationship among samples. Comprehensive experiments against
the state-of-the-art methods on two multi-viewpoint benchmark
datasets VeRi-776 and VeRi-Wild validate the promising perfor-
mance of the proposed method in both with and without domain
adaption scenarios while handling unsupervised vehicle Re-ID.

Index Terms— Viewpoint-aware, progressive clustering, vehicle
Re-ID, unsupervised learning.

I. INTRODUCTION

VEHICLE re-identification aims to identify a specific vehi-
cle in non-overlapping camera networks. It is a crucial

task in modern society with potential applications in artificial
transportation, smart city and public security, to name a few.
Similar to the person Re-ID task, vehicle Re-ID faces common
challenges such as illumination and viewpoint changes across
cameras, background clutters, and occlusions. Besides, vehicle
Re-ID dramatically suffers from the challenges of large intra-
class discrepancy and inter-class similarity. This is because
different vehicles might present exactly similar appearance
while the same vehicle might present totally different features,
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Fig. 1. Major challenges and clustering in different feature spaces in vehicle
Re-ID. As shown in (a), different vehicles with the same viewpoint have higher
visual similarity than those same vehicles with different viewpoints. These
examples demonstrate that vehicle Re-ID greatly suffers from the challenges
of large intra-class discrepancy and inter-class similarity. In (b), the same
color represents the same viewpoint, and the same shape represents the same
identity. The global-based method tends to prioritize connections between the
same viewpoint (as shown with the same color) even for the different identities
(as shown with the different shape) instead of the same identity samples from
different viewpoints. Our method can correctly connect the samples from the
same identity with different viewpoints (solid black line) through progressive
clustering of view-based division (dashed line).

as shown in Fig. 1. Therefore, one cannot directly deploy
person Re-ID models to achieve satisfactory performance in
vehicle Re-ID.

With the blossom of deep learning techniques and its pow-
erful learning ability on large labeled data, various supervised
learning architectures [1]–[9] have been proposed and achieved
remarkable performance for vehicle Re-ID. Despite great
progress, supervised learning-based methods require numerous
annotations to train the deep models, which are time and
labor-consuming and significantly limit real-life applications
of vehicle Re-ID.

Domain adaptation, which transfers the learned information
from the source domain (labeled data) to the target domain
(unlabeled data), has been widely explored in the past decade
as one of unsupervised learning manners in both person
Re-ID [10]–[13] and vehicle Re-ID [14], [15]. However,
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they still require large annotations in the source domain. In
addition, when the style gap between the two domains is too
large, these transfer learning methods are also limited.

Different from domain adaptation-based methods, we study
the problem of vehicle Re-ID in the target-only unsupervised
learning framework, which does not rely on any labeled data
in the source domain. As one of the target-only unsupervised
methods, clustering-based methods have been widely explored
in the related computer vision tasks [15]–[20]. Recent efforts
on clustering-based methods in person Re-ID are to assign
pseudo labels for samples by clustering algorithms and then
use these labeled samples to train Re-ID models [15], [17],
[18], [21].

However, one cannot directly apply these techniques to
vehicle Re-ID. One of the key reasons is large viewpoint
variations of vehicles, which bring big challenges to clustering
algorithms. As shown in Fig. 1 (a), by directly calculating
the cosine similarity between vehicle images, we can see
the similarity between the same vehicle images with different
viewpoints is even lower than that between different vehicles
in the same viewpoint, which is referred to as the similarity
dilemma of vehicles in this paper. Due to the inter-instance
similarity and intra-instance discrepancy caused by large
viewpoint variations of vehicles, the accuracy of clustering
algorithms is significantly affected. As shown in Fig. 1 (b), in
the global-based feature space, the same viewpoints with dif-
ferent identities will be clustered preferentially than different
viewpoints with the same identity, resulting in the extremely
degraded performance of vehicle Re-ID.

To handle this problem, we propose a novel viewpoint-
aware progressive clustering framework (VAPC) for robust
unsupervised vehicle Re-ID. In Fig. 1 (a), we observe
that vehicle images from different viewpoints of the same
ID are more similar than vehicle images from different
viewpoints of different IDs, e.g., image pairs {ID1 (front),
ID1 (front_side)} are more similar than {ID1 (front), ID2
(front_side)}. Therefore we can divide the vehicles into dif-
ferent view-based feature spaces. After clustering within the
same viewpoint, the same ID from different viewpoints can
be correctly classified according to the degree of similarity, as
shown in Fig. 1 (b). In addition, the vehicles in each viewpoint
space exclude the effects of large viewpoint variations. When
only performing the clustering between samples of the same
viewpoint, the comparison of different viewpoints with the
same ID is excluded, which further reduces the intra-class
differences and simplifies the clustering task. Therefore, we
propose a viewpoint-aware progressive clustering framework,
which can be regarded as three parts. First, considering
the extreme viewpoint changes of the vehicle, we design
a viewpoint-aware network, which can be pre-trained using
viewpoint annotations [22], to predict viewpoints of vehicle
images as the prior information. Second, feature extraction is
crucial to the performance of clustering. To extract the discrim-
inative feature of each sample, it is necessary to train an initial
model with strong feature extraction capabilities. In this paper,
we use a self-supervised manner to learn the discriminative
feature of each sample. Without the ground truth labels in
the target-only unsupervised learning, we treat each sample as

Fig. 2. t-SNE [24] distance distribution with and without noise selection on
VeRi-776 [1]. The same shape and color represent the same identities belong
to the same cluster, where red ones indicates the noise samples that are not
clustered (with pseudo label as −1).

a category and force the network to learn the discriminative
feature of each sample via the repelled loss [17], [23], which
we call the recognition stage. Third, we design a viewpoint-
aware progressive clustering algorithm to handle the problem
of the similarity dilemma discussed above. Specifically, we
first perform clustering in each vehicle image set with the same
viewpoint and then cluster them by comparing the similarity
of clusters across different viewpoints. In this way, we can
distinguish small gaps between different identities in the same
viewpoint, and mine the same identity samples with large gaps
between different viewpoints.

We use the clustered results to train the Re-ID network in a
supervised way after progressive viewpoint-aware clustering.
However, the clustering performance of different viewpoints
significantly relies on the clustering results from the same
viewpoint. Therefore, we introduce the k-reciprocal encod-
ing [15], [20], [25] as the distance metric to feature comparison
of the same viewpoint due to its powerful ability in mining
similar samples.

In addition, recent methods [15], [19], [20] achieve remark-
able performance on target-only unsupervised person Re-ID.
They directly employ the prevalent Density Based Spatial
Clustering of Applications with Noise (DBSCAN) [26] to
obtain pseudo labels. The key idea of DBSCAN [26] is to
cluster the tightly distributed samples while regarding the oth-
ers as noise. However, they all discard noisy samples (the hard
positive and hard negative samples with pseudo labels assigned
as -1). We argue that it is hard to deal with various challenges
(illumination, occlusion, and camera offset) in real scenes by
merely learning close simple samples. As shown in Fig. 2 (a),
only learning closely distributed samples leaves noise samples
to form feature embeddings with unclear boundaries. It is
more important to learn the discriminative embeddings by
mining hard positive samples, which has been proven in a
large number of machine learning tasks [27]–[32]. To this end,
we propose a noise selection method to mine hard positive
samples from noise samples. Specifically, we classify each
noise sample into a suitable cluster by the similarity between
the noise sample and other clusters. After noise selection,
Fig. 2 (b) pulls the noise samples closer to the samples with
the same identity, which improves the generalization ability of
the model to deal with more challenging scenarios.
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Based on the above discussion, VAPC focuses on address-
ing unsupervised vehicle Re-ID through a viewpoint-aware
progressive clustering framework. We alleviate the impact
of vehicle similarity dilemmas on clustering by transforming
global comparisons into progressive clustering based on view-
point. To improve the clustering quality of the same viewpoint
cluster, we introduced k-reciprocal encoding [15], [20], [25]
as a distance metric for DBSCAN [26] clustering. In order to
deal with outlier noise samples, we propose a noise selection
method to improve the generalization ability of the model
further. The major contributions of this work are summarized
as follows.

• We propose a novel progressive clustering method to
handle the similarity dilemma of vehicles in unsupervised
vehicle Re-ID. To our best knowledge, this is the first time
to employ the viewpoint-aware progressive clustering
algorithm to achieve unsupervised vehicle Re-ID.

• We designed a noise selection scheme to mine the hard
positive samples with the same identity while considering
their relationship to the hard negative samples, which
significantly improves the discriminative ability of our
network.

• Comprehensive experimental results on two benchmark
datasets, including VeRi-776 [1] and VeRi-Wild [33]
demonstrate the promising performance of our method
and yield to a new state-of-the-art for unsupervised vehi-
cle Re-ID.

II. RELATED WORKS

Since most vehicle Re-ID methods are in a supervised
fashion, we briefly review the progress in supervised vehicle
Re-ID and recent advances in unsupervised person/vehicle
Re-ID.

A. Vehicle Re-ID

Most existing deep vehicle re-identification methods follow
a supervised setting. Pioneer vehicle Re-ID methods [3], [4],
[34] focus on discriminative feature learning. Lou et al. [34]
by mining similar negative samples, the features learned by
the model are more robust. He et al. [4] proposed an efficient
feature preserving method, which can enhance the perception
ability of subtle differences. Some works introduce [5]–[7],
[35]–[37] additional attribute information, such as color or
type, to improve the discrimination of the deep feature for
vehicle Re-ID. Temporal path information is also auxiliary
information and has been widely employed [38], [39], to
improve the robustness of vehicle Re-ID, especially for the
vehicles with a similar appearance from the same manufacture.
To handle the viewpoint variation issue, in person Re-ID,
Lin et al. [40] propose to use more fine-grained information to
describe individual persons and learn the matching probability
of all patch between a camera pair [41] to guide fine matching
to eliminate the influence of viewpoint variation. In vehicle
Re-ID, Zhou et al. [5], [6], and Liu et al. [7] employ GAN to
infer multi-view information from a single-view of the input
image in either image or feature level to boost the performance
by integrating the input and generated images or features.

Chu et al. [42] separate the Re-ID into similar and different
viewpoint modes and learn the respective deep metric for each
case. In the case of a known 3D bounding box for the vehicle
image, Sochor et al. [43] calculated orientation information
through 3D coordinates and added it to the feature map
to improve performance. Despite the significant progress on
vehicle Re-ID, these supervised deep learning-based methods
require extensive training data, which is expensive in both time
and labor-consuming.

B. Unsupervised Person/Vehicle Re-ID

Along with the great achievement on person Re-ID, unsu-
pervised person Re-ID offers more challenges, which has
attracted more and more attention recently. Recent advances
of unsupervised person Re-ID methods generally fall into two
categories. 1) The domain adaption based methods [10]–[13],
[44], [45], which aims to transfer the knowledge in the labeled
source domain to the unlabeled target domain. Although the
domain adaption based methods make impressive achievement
in unsupervised Re-ID by exploring domain-invariant features,
they still require a large amount of label annotation in the
source domain. Furthermore, the huge diversity in different
domains limits their transferring capabilities. 2) The target-
only based methods [17], [18], [46], which fulfill the unsu-
pervised task by dividing the unlabeled samples into different
categories based on specific similarity. Lin et al. [17] treat
each image as a single category and then gradually reduces
the number of categories in subsequent clusters. Lin et al. [46]
propose a framework that mines the similarity as a soft con-
straint and introduces camera information to encourage similar
samples under different cameras to approach. In addition, the
work related to video surveillance [47], [48] infers pseudo-
labels based on an idea that samples with the same identity
shoule be close to each other.

To the best of our knowledge, there are few works on
unsupervised vehicle Re-ID. Peng et al. [14] propose to use a
style GAN to generate vehicle pictures in the source domain
more like the target domain. They assume that the source
domain contains more viewpoints than the target domain for a
better generation. Song et al. [15] introduce the theoretical
guarantees of unsupervised domain adaptive Re-ID based
on and use a self-training scheme to iteratively optimize
the unsupervised domain adaptation model. However, it only
focuses on unsupervised domain adaptation, not target-only
unsupervised learning. Bashir et al. [49] employ clustering
and reliable result selection with embedded color information
to iteratively fine-tune the cascade network. However, despite
the annotation on color information, this method requires a
specific number of identities, which is hard to be known in
real-life scenarios.

III. PROPOSED APPROACH

The pipeline of the proposed framework is shown in Fig. 3,
which includes three parts: 1) viewpoint prediction, which
identifies the viewpoint information through a viewpoint pre-
diction network on input data, 2) recognition stage, which
learns the discriminative feature for each sample using the
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Fig. 3. The overview of our method framework. We first predict each viewpoint, and then the viewpoint-aware unlabeled training set is input to the CNN
model for feature extraction, which can be divided into different directional feature clusters. Then we will go through a recognition stage to make each sample
feature extracted by the network more identifying. We design a clustering method that divides direction and period. In the first period, we use DBSCAN [26]
to generate initial clusters (colored background) within the same viewpoint. For the noise samples found in the clustering process, we design a noise selection
method to select. After noise selection, the noise will be merged with the initial cluster or generating a new cluster (white background). In the second period,
comparing the distances of all different viewpoints, clusters smaller than the distance threshold τ will be merged. The network is iteratively trained based on
the final clustering results.

TABLE I

IMPORTANT NOTATIONS USED IN THIS PAPER

repelled loss, and 3) progressive clustering, which uses the
two-period algorithm to handle the problem of the similarity
dilemma in clustering. For better understanding, we list the
important notations used in this paper as in TABLE I. The
detailed optimization process is shown in Algorithm 1.

A. Viewpoint Prediction

Due to the extreme viewpoint changes in vehicles, there
are relatively small inter-class differences between differ-
ent vehicles. We argue that global comparison in previous
unsupervised clustering methods [15], [17], [18] tends to
group the different vehicles with the same viewpoint into the
same cluster. Therefore, this global comparison scheme cannot
guarantee the promising performance for target-only unsuper-
vised vehicle Re-ID without any label supervision in network
training. To handle this problem, we propose to introduce a
viewpoint prediction model to identify the vehicle’s viewpoint
information during the forthcoming clustering.

In specific, we use a viewpoint prediction network to predict
the viewpoint of each unlabeled vehicle image xi in training
set {X | x1, x2, . . . , xN }. We train our viewpoint prediction
model on VeRi-776 [1], which contains all the visible view-
points of the vehicle. Following the viewpoints annotation
in previous work [22], we divide vehicle images into five
viewpoints, e.g., f ront, f ront_side, side, rear_side, rear .
Furthermore, we have additionally labeled 3000 samples in
VeRi-Wild [33] data to fine-tune the model to improve the
robustness of the viewpoint prediction. We use the commonly
used cross-entropy loss Lη to optimize the viewpoint classifier
W (xi | θ),

Lη = −�N
i yv log (W (xi | θ)) , (1)

where yv is a one-hot vector of the ground truth of corre-
sponding viewpoint labels.

B. Recognition Stage

After the viewpoint prediction, we can obtain viewpoint-
aware unlabeled training set Xv = {xv

1 , xv
2 , . . . , xv

N }, and the
current training set can be regarded as the clusters divided
according to the viewpoint. For example, VeRi-776 [1] falls
into five different viewpoint clusters. For each image in
Xv , we assign a unique index-label yind = {1, 2, 3, . . . , N}
to indicate the category of each sample. In order to learn
the discriminative feature, one can achieve this objective by
directly using triplet loss [27], [50] or cross-entropy loss via
classification. However, the learning driven by these losses,
which mainly calculate the similarity among each batch, will
become inefficient and difficult to converge with the dataset’s
scale growth. Herein, we employ the more efficient repelled
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loss [17], [23], [51], which calculates the feature similarity
between the current sample and all the training samples at
once.

It is equipped with a key-value structure to store the features
of all training samples, and the index-label yind is stored in
the key memory. The yind will not change during the entire
training process. We calculate the feature similarity between
the i -th image in the v-th viewpoint f v

i and all the samples,

p(yp|xv
i ) = exp(

(
M[i ]T f v

i /β
)

∑N
j=1 exp(

(
M[ j ]T f v

i /β
) , (2)

where M[i ] denotes the i -th slot of the value memory M . β
is a hyper-parameter to control the softness of the probability
distribution over classes, which is set to 0.1 followed by [17].
N indicates the number of clusters. yp is the pseudo label, and
we initialize yp = yind . We maximize the distance between
samples by assigning each sample to its own slot,

Lα = − log(p(yp|xv
i )). (3)

During the back propagation, the feature memory is updated
by the formula M[yi ] ← 1

2 (M[yi ] + f v
i ). At the recognition

stage, M[yi ] stores the features of each training sample. At the
subsequent progressive clustering stage, the pseudo label yp of
each sample will be redistributed according to the clustering
results, while each slot stores the features of each cluster.

C. Progressive Clustering

Without any identification information, we propose a pro-
gressive clustering algorithm for unsupervised vehicle Re-ID.
It mainly contains three aspects, two-period algorithm to
avoid the similarity dilemma caused by the extreme viewpoint
changes of vehicles, the k-reciprocal encoding to re-metric the
distance for more robust clustering, and clustering with noisy
sample selection to deal with outliers that are difficult to be
clustered in real scenes.

The First Period: Through the recognition stage, the
model learned more recognizable identity features of
each image. The features obtained from the training set
F∗ = {F1, F2, Fv , . . . , FV },

Fv = { f v
1 , f v

2 , . . . , f v
Nv
}, (4)

where Fv and Nv represent the feature set and the number
of samples in the v-th viewpoint. We compare the similarity
of all features Fv belonging to the same viewpoint cluster
to obtain the distance matrix D(Fv , Fv ), v = 1, 2, . . . , V .
D represents the scoring matrix of Euclidean distance di j =
� fi − f j�2. There is no doubt that the same vehicle with
the same viewpoint has the highest similarity and thus tends
to be clustered together (assigned to the same pseudo label)
with the highest priority. For the distance matrix under each
viewpoint, we obtain pseudo labels by the prevalent cluster
algorithm DBSCAN [26], which can effectively deal with
noise points and achieve spatial clusters of arbitrary shapes
without information of the number of clusters compared to
the conventional k-means [52] clustering.

The Second Period: In the second period, we compare the
distance between different viewpoint clusters. We take the

shortest distance between features in two clusters as a measure
of the distance between clusters. Considering that we have no
idea whether the current sample has positive samples (with
the same identity) in other viewpoints, we comprehensively
compare the distance between all different viewpoint clusters,

D∗ = {D(F1, F2), . . . , D(Fm , Fn)} , m �= n. (5)

We argue that the higher similarity, the more likely the
same identity. Thus adopt a progressive strategy to merge the
clusters between different viewpoints gradually. Therefore, We
first calculate a rank list R,

R = argsort (D∗), (6)

where R finds the most similar clusters among all different
viewpoints. We set a strict distance threshold τ , and merge
clusters from different viewpoints only when the distance of
the candidates in R∗ is less than τ , i.e,

R∗ = R[1 : C(d = τ )], (7)

where C = {ci , c j } is the last sample pair in different clusters
with distance less than τ . Intuitively, due to the style diversity
of different datasets, we expect the setting of τ to be irrelevant
to datasets. In our method, after the recognition stage, we
ascending sort the calculated D∗, and set the distance value
between the ti -th lowest sample pair as the threshold τ . The
distance threshold is only calculated after the recognition stage
and then fixed in the whole training process. We alternately
execute the above two periods during each iteration. The model
learns the features of vehicles from the same viewpoint while
continuously mining the features of vehicles with the same
identity from different viewpoints.

Distance Metric by k-Reciprocal Encoding: Clearly, more
positive samples in the same-viewpoint cluster in the first
period, higher clustering quality at different viewpoints in the
second period, which in turn will benefit the performance in
the next iteration. Note that the clustering method significantly
relies on the distance metric. We propose introducing the
widely used k-reciprocal encoding [15], [20], [25] as the dis-
tance metric for feature comparison. For the sample xv

i in Xv ,
we record its k nearest neighbors with index-labels Kk(xv

i ),

for all indexes ind ∈ Kk(xv
i ), if

∣∣∣Kk(xv
i ) ∩ K k

2
(xv

ind )
∣∣∣ �

2
3

∣∣∣K k
2
(xv

ind )
∣∣∣, xv

i ’s mutual k nearest neighbors set Gi ←∣∣∣Kk(xv
i ) ∪ K k

2
(xv

ind )
∣∣∣. In this case, all reliable samples similar

to xv
i are recorded in Gi . Then distance di j of the sample pair

in the same viewpoint distance matrix, D(Fm , Fn), m = n
reassigns weight by,

d̃i j =
{

e−di j i f j ∈ Gi ,

0 else.
(8)

For each image pairs (xv
i , xv

j ) at the same viewpoint, we
get a new distance matrix DJ (Fm , Fn), m = n for clustering,
it can be calculated by,

dJ (xv
i , xv

j ) = 1−
∑Nv

l=1 min(d̃il , d̃ j l))∑Nv
l=1 max(d̃il , d̃ j l))

, (9)

where Nv is the total number of samples in viewpoint v.
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Algorithm 1 The Viewpoint-Aware Progressive Clustering
Method (VAPC)
Require: Unlabeled training set X = {x1, x2, x3, . . . , xN };

Recognition stage epoch Er ; Set the distance of the most
similar ti -th sample pair as the distance threshold; CNN
model M̃ ; index-label yind = 1, 2, 3, . . . , N .

1: Viewpoint prediction: X → Xv , V = 5.
2: Recognition stage:
3: for i < Er do
4: Train CNN model M̃ with X and yind according to

Eq. (3).
5: end for
6: Calculate threshold τ .

Ensure: Best CNN model M̃
7: Progressive clustering stage:
8: First period:
9: for i < V do

10: Calculate distance matrix: D(Fi , Fi ).
11: Re-metric distance by Eq. (9) to obtain DJ (Fi , Fi ).
12: Use DBSCAN to obtain clustering results.
13: end for
14: Mine noise samples according to Eq. (11).
15: Second period:
16: Compare feature sets at the different viewpoint to obtain

distance matrix D(Fm , Fn), m �= n.
17: Select the clusters need merged from different viewpoints

through Eq. (6) and Eq. (7).
18: Retrain CNN model M̃ with X and yp according to Eq. (3).
19: Evaluate on the test set → performance P .
20: if P > P∗ then
21: P∗ = P .
22: Save the best model M̃ .
23: end if

Clustering With Noisy Sample Selection: Our viewpoint-
aware clustering strategy avoids comparing different view-
points of vehicles during the first period of clustering, which
alleviates the intra-class gap and reduces the difficulty of
clustering to a great extent. However, due to the complexity
of the real scene, some hard samples are still difficult to
cluster and then regarded as noises. The reason is, although
DBSCAN [26] can generate clusters for data of any spatial
shape, it uses two parameters eps and min Pts to define the
density conditions that need to be meet when forming clusters
in the training set, which tends to cluster the samples with
small intra-class gaps and treat the samples with larger intra-
class gaps as noises, as shown in Fig. 4. We observe that these
noises usually derive from two situations which are shown as
P1 and P2 in Fig. 4. In P1, due to occlusion, misalignment
of the bounding box, or deviation of the viewpoint prediction,
samples with the same identity but far from the already formed
clusters (the blue cluster as shown in Fig. 4) will be regarded
as noise. In P2, some samples deriving from the same identity
fail to form into the same cluster since they cannot meet the
density condition due to large intra-class differences.

The basic idea is to mine positive samples from noise
samples. To achieve this objective, we first use set Sn to collect

Fig. 4. Illustration of noise selection. Samples in the same color belong
to the same cluster except the red color is for noisy samples (pseudo label
is −1). P1, P2 represent two different noise situations. After noise selection,
we reconstruct the cluster for the noise samples by comparing each noise and
other clusters. Hp1 and Hp2 represent different sets of hard positive samples,
and Hn represent set of hard negative samples.

all the indexes of noise samples. For each member si in Sn ,
we find k̃ nearest neighbors of si in same viewpoint feature set
Fv and define the indexes of them as top_k̃(si ). The nearest
one in top_k̃(si ) is top_1(si ). In this way, we can establish
a correlation for each noise sample and recorded it in the
correlation set T ,

T = {(s1, top_1(s1)), (s2, top_1(s2)), . . . , (sn, top_1(sn))},
(10)

where the similarities ranked in descending order. Then we
judge which situation the noise belongs to based on top_1(si ).
If top_1(si ) belongs to a cluster, it corresponds to the first
situation P1, recorded in set Hp1. Otherwise, top_1(si ) is a
noise sample, it belongs to the second situation P2, recorded in
set Hp2 . For P1 caused by outlier noise samples (best viewed
in Fig. 4), we expect noise samples to be classified into clusters
with the same identity. For P2 caused by a large intra-class
gap, we expect that noise samples with the same identity to
be clustered together to form a new cluster.

Directly merge noise samples is not reliably caused by
hard negative samples. We take a more reliable approach as
follows. Inspired by k-reciprocal encoding, if (si , top_1(si ))
belong to the same identity, their neighbor image sets should
be similar, which also means that they should be located in
each other’s k̃-nearest neighbors. Therefore, we calculate the
k̃-nearest neighbor image sets of the top_1(si ). If si appears
in top_k̃(top_1(si )), si is regarded as a reliable hard positive
sample and will be merged with top_1(si ). Otherwise, the
noisy sample si will be treated as a hard negative sample and
recorded in set Hn, which is divided into new clusters to learn
its discriminative feature further. Formally, we construct:

Hp1 =
{
(si , j) | j = top_1[si ], j /∈ Sn, si ∈ top_k̃[ j ]

}
,

Hp2 =
{
(si , j) | j = top_1[si ], j ∈ Sn, si ∈ top_k̃[ j ]

}
,

Hn =
{
(si ) | j = top_1[si ], si /∈ top_k̃[ j ]

}
. (11)

For Hp1 , we assign si the same pseudo-label as the
j . For Hp2 , we first create a new cluster Csi containing
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si and j , which also means that si and j are assigned
the same new unique pseudo-label. Then, we search for
noise samples belonging to Csi , for index ind ∈ Csi ,
Csi ←

∣∣∣top_k̃[ind] ∩ Sn

∣∣∣. For Hn, each item is treated as a
separate cluster by assigning a new unique pseudo-label. Note
that we process noises in order of similarity in the correlation
set T , and when one noise is merged, it will not be merged
with other clusters.

IV. EXPERIMENTS

We evaluate our proposed method VAPC on two bench-
mark datasets VeRi-776 [1] and VeRi-Wild [33], which
contain 5 and 4 view-points respectively. We compare our
method with the prevalent domain adaption based unsuper-
vised, and target-only methods without domain adaption for
evaluation.

A. Datasets and Evaluation Protocol

VeRi-776 [1] is a comprehensive vehicle re-identification
dataset providing rich attributes information such as color, type
and temporal path. It contains 776 different vehicles captured
in 20 cameras, yielding more than 49,357 images and 9,000
tracks. The training and testing sets contain 37,728 images of
576 vehicles and 11579 images of 200 vehicles. Both training
and testing sets contain 5 common visible viewpoint situ-
ations, including f ront, f ront_side, side, rear_side, rear .
Following the protocol in [1], we only return the match-
ings from the different cameras for the query vehicles as
the results. We use the mean average precision (mAP) and
cumulative matching characteristic (CMC) at Rank-1, Rank-5
and Rank-20 as the measurement metrics.

VeRi-Wild [33] is a large-scale vehicle Re-ID dataset,
containing more than 400 thousand images of 40 thousand
vehicle IDs captured by 174 cameras in the surveillance
system. It contains complex backgrounds, various viewpoints,
and illumination variations in real-world scenes. The training
set contains 277,797 images of 30,671 vehicles. After the
viewpoint prediction of the training set, VeRi-Wild contains
4 viewpoints, f ront, f ront_side, rear_side, rear , respec-
tively containing 110204, 52716, 64968, 49909 images. Due
to hardware limitations, we use all the training data in the
recognition stage, and each viewpoint in the clustering stage
takes 10,000 images, respectively. While the testing set con-
sists of three subsets, test-3000, test-5000 and test-10000, with
different testing sizes. Following the protocol in [33], the
match rate protocol on VeRi-Wild is that all the references
of the given query are in the gallery. We use mAP, Rank-1
and Rank-5 as the evaluation metrics.

VehicleID [53] is another large-scale vehicle Re-ID dataset,
it includes 110,178 real scene images of 13134 types of
vehicles as a training set. 111,585 images of 13,113 vehicles
were used as a test set. In this article, to compare the results
of other existing unsupervised domain adaptation methods,
we also use the VehicleID dataset as the source domain for
supervised training.

B. Implementation Details

We use ResNet50 [55] as the backbone by eliminating
the last classification layer. All experiments are implemented

on two NVIDIA TITAN Xp GPUs. We initialize our model
with pre-trained weights on ImageNet [56]. For the viewpoint
prediction network, we set the batch size as 32 and the learning
rate as 0.001, with a maximum of 20 epochs. If not specified,
we use stochastic gradient descent with a momentum of 0.9
and the dropout rate as 0.5 to optimize the model. For the
Re-ID feature extraction network, we resize the input images
of VeRi-776 [1] and VeRi-Wild [33] as (384,384). The batch
size is set to 16. The learning rates at the recognition stage
is set to 0.1 and divided by 10 after every 15 epochs, and
set to 0.001 in the clustering stage. We only use a random
horizontal flip as a data augmentation strategy. Following the
protocol in [25] we set k to 20.

C. Comparison With State-of-the-Art Methods

We compare our method with the state-of-the-art unsuper-
vised Re-ID methods on VeRi-776 [1] and VeRi-Wild [33] in
both target-only and domain adaption scenarios, as shown in
TABLE II.

Compared With the Target-Only Method: We first compare
our method with three state-of-the-art target-only unsupervised
methods OIM [23], Bottom [17] and AE [54]. Generally
speaking, our method (VAPC_TO) outperforms the three state-
of-the-art target-only methods by a large margin by exploring
the intra-class relationship. OIM [23] devotes to extracting
discriminative features efficiently, which ignores the intra-
class relationship, thus results in stumbling performance. Bot-
tom [17] designs a bottom-up clustering strategy by merging
the fixed clusters during each step. However, each clustering
may produce the wrong classification, and more clustering
steps, more clustering errors. Especially on the VeRi-776 [1],
almost all visible viewpoints are included, which brings greater
clustering challenges. Each clustering step only focuses on the
same viewpoint and cannot bring more samples of different
viewpoints together. Our method effectively alleviates this
problem and brings greater improvement. AE [54] clusters the
samples via a similarity threshold and constrains the cluster
size by embedded a balance term into the loss. However, due to
the similarity dilemma of vehicles, where the same viewpoints
of different identities may have higher similarities, it is difficult
to set an optimal similarity threshold for clustering. In addi-
tion, more and more samples meeting the similarity threshold
are treated as the same identity during the training, especially
on larger scaled dataset VeRi-Wild [33], it will cause more
severe data imbalance in each cluster and damage the feature
representation. Therefore the performance of AE [54] on
VeRi-Wild [33] declines comparing with Bottom [17].

We further use t-SNE [24] to visualize the feature space
distribution of our method compared to the three state-of-
the-art target-only methods, as shown in Fig. 5. Compared
with ours, the distribution between the points is sparser in
OIM [23] and Bottom [17], while more points of different
colors gathering in AE [54]. our method presents a better
feature distribution, which demonstrates that VAPC_TO can
successfully cluster more images of vehicles with the same
identity and effectively improve the feature representation for
unsupervised vehicle Re-ID.
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TABLE II

COMPARISON WITH THE STATE-OF-THE-ART OF TARGET-ONLY Re-ID AND DOMAIN ADAPTIVE Re-ID METHODS ON VeRi-776 [1] AND
VeRi-WILD [33]. “src” DENOTES THE SOURCE DOMAIN/DATASET, WHERE “N/A” AND “VEHICLEID” INDICATE THE TARGET-ONLY AND

DOMAIN ADAPTIVE METHODS ON VEHICLEID DATASET [53] RESPECTIVELY. “VAPC_TO”, “VAPC_DT” AND “VAPC_DA” INDICATE

OUR VAPC IN TARGET-ONLY, DIRECT TRANSFER AND DOMAIN ADAPTION RESPECTIVELY

Fig. 5. Visualization for features extracted by target-only method, OIM [23], Bottom [17], AE [54] and our method. 37 identities with 2000 images in the
gallery of VeRi-776 [1] are used. Each point represents an image, and each color represents a vehicle identity.

Compared With Unsupervised Domain Adaptation: To evi-
dence the effectiveness of our method on unsupervised vehi-
cle Re-ID, we further evaluate our method in the domain
adaption fashion. Following the protocol in [15], we use
VehicleID [53] as the source domain and employ repelled
loss [17] for supervised training, replacing the recognition
stage in III-B. We compare our method in the domain adap-
tion fashion (VAPC_DA) with three state-of-the-art unsuper-
vised domain adaptation methods, including SPGAN [44],
ECN [51] and UDAP [15], as shown in the lower half part in
TABLE II.

SPGAN [44] considers the style change among different
datasets and trains a style conversion model to bridge the style
discrepancy between the source domain data and the target
domain. However, due to the huge gap between the vehicle
datasets in the real scene, e.g., the diverse viewpoints, reso-
lution and illumination, it is challenging to obtain the desired
translated image, which is crucial in SPGAN [44], and thus
results in poor performance for vehicle Re-ID. ECN [51]
joins the source domain for model constraints while using
the k-nearest neighbor algorithm to mine the same identity
in the target domain. The setting of the k value not only
has a greater impact on the experimental results, but the
most similar top k samples are always at the same viewpoint.
UDAP [15] uses source domain data to initialize the model and
theoretically analyzes the rules that the model needs to follow

when adapting to the target domain from the source domain.
It achieves satisfactory results on vehicle Re-ID due to the
strengthening of the constraints on the target domain training.
The target domain feature extractor has stronger learnability
while obtaining the source domain knowledge. However, it
relies on global comparison, which may cause more clustering
errors, especially on VeRi-Wild [33] dataset presents much
smaller inter-class differences than VeRi-776 [1]. In addition,
we evaluate our method in the “Direct Transfer” fashion by
training on the source domain and directly testing on the
target domain indicated as (VAPC_DT) in TABLE II. First
of all, by leveraging the information in the training data,
VAPC_DT generally outperforms VAPC_TO, which verifies
the knowledge of the source domain during the training
improves the vehicle retrieval ability of the model. The
only exception is the rank-1 score on VeRi-776 [1]. The
main reason is the huge gap between VehicleID [53] and
VeRi-776 [1] datasets, e.g., VeRi-776 has lower resolution
and more viewpoints, which results in poor generalization
performance. Even though VAPC_DT significantly boosts the
mAP score on both VeRi-776 [1] comparing to the target-only
fashion (VAPC_TO). Second, VAPC_DT is even significantly
superior to the domain adaption methods SPGAN [44] and
ECN [51], and comparable to UDAP [15] on mAP, which
proves the robustness of our method for unsupervised vehicle
Re-ID.
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Fig. 6. t-SNE [24] distance distribution with and without a two-period
strategy on VeRi-776 [1]. The different color boxes indicate different clusters
while the samples with the same shape representing the same identity. The
red circle marks the false clustered samples.

Note that our method in target-only fashion (VAPC_TO)
even surpasses most unsupervised domain adaptation methods
such as SPGAN [44] and ECN [51], and works comparably to
UDAP [15]. This further verifies the promising performance
of our method while handling unsupervised vehicle Re-ID
especially without prior annotation information or source data.

D. Ablation Study

In this section, we will thoroughly analyze the effectiveness
of three critical components in the VAPC framework, including
the two-period (tP) clustering strategy based on viewpoint
prediction, k-reciprocal encoding (kR) and noise selection
(NS), as reported in TABLE III.

Quantitative Study: One of the key contributions of our
progressive clustering is the two-period clustering on both the

TABLE III

RESULTS EVALUATED ON THE VeRi-776 [1] AND TEST-3000 SET OF
VeRi-WILD [33]. TP REPRESENTS OUR FIRST PERIOD AND SECOND

PERIOD CLUSTERING STRATEGY, kR MEANS DISTANCE METRIC

BY k-RECIPROCAL ENCODING, NS MEANS NOISE SELECTION

same and different viewpoints for vehicle Re-ID. As shown in
TABLE III (b), without dividing the viewpoints and removing
the two-period (tP) strategy, we cluster all training samples
directly after the recognition stage, both mAP and rank scores
significantly drop, -7.5% in Rank-1 and -5.4% in mAP on
VeRi-776 [1], while -3.6% and -2.7% on VeRi-Wild [33]
test-3000. Which verifies the effectiveness of the progressive
clustering for unsupervised vehicle Re-ID. Similar phenom-
enons happen to the k-reciprocal encoding (kR) and the noise
selection (NS), as shown in TABLE III (c) and TABLE III (d).
By removing the corresponding components, both mAP and
rank scores significantly decline, which evidences the role
of each component. Without any of the three components,
the baseline (as shown in TABLE III (e)) results in stumble
performance on both datasets due to the inability to cope with
the various challenges brought about by the extreme viewpoint
changes of vehicles. By integrating all the three components,
our method, as shown in TABLE III (a) achieves promising
results for unsupervised Re-ID.

Qualitative Study: To further understand the contribution
of the three components, we visualize the results of differ-
ent variants as discussed in Table III in terms of sample
distribution or ranking list, as shown in Fig. 6 to Fig. 8.
From Fig. 6 (a), we can see that more hard negative samples
(different identities with highly similar appearance) with the
same viewpoints tend to cluster without a two-period cluster-
ing strategy. Our method successfully gathers vehicle images
with diverse viewpoints, even with large appearance differ-
ences due to the viewpoint and illumination changes. This
further evidence the effectiveness of the proposed two-period
clustering strategy, which can distinguish small gaps between
different identities in the same viewpoint and mine the same
identity samples with large gaps between different viewpoints.
The role of k-reciprocal encoding is to mine samples sharing
the most similar features despite appearance differences. As
shown in Fig. 8 (a), the result without k-reciprocal encoding
tends to split the same identity with difference appearance
caused by viewpoint and illumination changes into individual
clusters, while it can merge them into one single cluster after
introducing the k-reciprocal encoding, as shown in Fig. 8
(b). Fig. 7 demonstrates the qualitative comparison of ranking
results of three queries with or without noise selection. Clearly,
after introducing the noise selection scheme, our method can
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Fig. 7. Examples of ranking results with and without noise selection on VeRi-776 [1]. For each query, the top and the bottom rows show the ranking result
without and with noise selection, respectively. The green and red boxes indicate the right and the wrong matchings, respectively.

Fig. 8. t-SNE [24] distance distribution with and without distance metric
by k-reciprocal encoding on VeRi-776 [1]. The different color boxes indicate
different clusters while the samples with the same shape representing the same
identity.

hit more correct matchings in the earlier rankings and can
remove the false matchings with a similar appearance as the
queries.

E. Analysis of Clustering Quality

Clustering quality is a crucial factor in clustering-based
methods for vehicle Re-ID. Therefore, we measure the clus-
tering quality via Adjusted Mutual Information (AMI) [57]
on our method compared to the state-of-the-art methods. AMI
measures the distribution of ground truth and pseudo labels
generated by clustering through mutual information. A larger
AMI means the closer distribution of the ground truth and
pseudo labels, which in turn means better clustering quality.
We compare our method with Bottom [17], k-means [52]
and DBSCAN [26] which also allocate pseudo labels during
clustering.

As illustrated in Fig. 9, the classic clustering algorithm
k-means [52] and DBSCAN [26] work stumblingly in the

Fig. 9. The performance of clustering quality (AMI) on VeRi-776 [1]. Each
step represents an iteration of progressive clustering and retraining the model.

global comparison fashion. Furthermore, k-means [52] spec-
ifies the number of clusters, which makes the change of
samples in the cluster relatively stable. However, due to global
comparison, a large number of samples with the same view-
point and different identities appear in the same cluster, which
makes model training continue to decline. DBSCAN [26]
is sensitive to noise; therefore, a large number of noise
samples under various challenges in real scenes deteriorates
the clustering quality. Bottom [17] causes the final collapse
due to the accumulation of the number of clustering errors
each step. Since clustering based on viewpoint division greatly
simplifies the clustering task, and the strategy progressively
merges different viewpoints and gradually gathers vehicles
of the same identity from different viewpoints, our method
continues to improve with training.

F. Investigation of Viewpoint Prediction

Viewpoint prediction is a prerequisite component in our
framework, as discussed in III-A. To investigate the influence
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Fig. 10. The performance along with different error rate viewpoint predictors
on VeRi-776 [1].

of viewpoint prediction in our method, we have trained a
series of classifiers with different accuracy rates for viewpoint
prediction. The experimental results are shown in Fig. 10. As
expected, the Re-ID accuracy of VAPC_TO decreases as the
accuracy of the viewpoint classification classifier decreases.
When the accuracy of the viewpoint classifier drops to 0.5,
the accuracy of Rank-1 drops from 76.2% to 70% (-6.2%)
on VeRi-776 [1]. Even though our method with only 0.5
viewpoint classifier accuracy still outperforms the most unsu-
pervised algorithms, as shown in TABLE II. We can see that
a robust viewpoint classifier can significantly improve the
performance of our algorithm. And due to our more reasonable
clustering strategy and effective noise processing, we can also
perform well on a poor viewpoint classifier.

G. Parameter Analysis

There are two essential parameters in our methods, ti denoting
the distance of the ti -th sample pair as the threshold for
combining different viewpoint clusters as explained in III-C
Eq. (7), and k̃ in Eq. (11), indicating the judgment condition
when selecting noise as explained in III-C. We shall evaluate
the impact of these two parameters in this section.

The Impact of the Number ti : As shown in Fig. 11 (a), we
vary ti from 0 to 4000 to calculate the distance threshold τ and
test the model performance. ti = 0 means only the same view-
point clustering. bigger ti , larger threshold τ . A large ti will
harm the model performance. For example, when ti > 3500, a
substantial performance drop can be observed. This is because
the over large ti may cause too many clusters of different
viewpoints to be merged at one time, which resulting in a
large number of incorrect classifications. However, over small
ti selects a few correct clusters, which also leads to poor
performance. For the comprehensive performance of ti on
VeRi-776 [1] and VeRi-Wild [33], we set ti to 1200.

The Impact of the Number k̃: Fig. 11 (b) reports the analysis
on k̃ during the noise selection. As discussed in III-C, k̃
plays the role of limiting noise combined with clusters or
other noises. The larger k̃, the weaker limitation. The larger k̃
declines the performance on VeRi-Wild [33], while remaining

Fig. 11. Parameter and method analysis. (a) The impact of ti in progressive
clustering. (b) The impact of the number of k̃ in noise selection.

stable on VeRi-776 [1]. The reason is VeRi-Wild [33] has a
smaller inter-class difference compared to VeRi-776 [1]. When
k̃ increases, the constraint of judging whether the two clusters
are merged is weakened, which increases the error rate. Based
on the results on Fig. 11 (b), we set k̃ = 2 for the best balance.

H. Complexity Study

Complexity Analysis: The computation complexity of base-
line is O(nlogn), therefore the computation complexity of the
first period is O(V N̄v log(N̄v )), where V , N̄v represent the
total number of viewpoints and average number of images
per viewpoint, respectively. For k-reciprocal encoding, most of
the computation costs focus on pairwise distance computing
and ranking process is O(V N̄v

2 + V N̄v
2
log(N̄v )). For noisy

sample selection, the computation complexity is O(N). For
the second period, the computational complexity of sorting all
samples and traversal is O(Nlog(N) + N2).

Running Time Study: In our framework, each step mainly
includes feature extraction, progressive clustering and 2 epochs
of model training. We evaluate the relationship between
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Fig. 12. Evaluation of accuracy and training steps on VeRi-776 [1]. The
color box indicates the time required to obtain the best model. Each step
represents an iteration of progressive clustering and retraining the model.

TABLE IV

AVERAGE RUNNING TIME OF EACH PART IN ONE STEP ON VeRi-776 [1].
tP REPRESENTS OUR FIRST PERIOD AND SECOND PERIOD CLUSTER-

ING STRATEGY, kR MEANS DISTANCE METRIC BY k-RECIPROCAL

ENCODING, AND NS MEANS NOISE SELECTION

accuracy change and running time in steps, as shown in
Fig. 12. Although our method introduces more computation on
progressive clustering comparing to the baseline, our method
takes fewer steps (about 5.29 hours to step 13) than the base-
line (about 7.04 hours to step 29) to achieve the best results.
The main reason is that the two-period (tP) clustering strategy
and k-reciprocal encoding (kR) can mine more samples with
the same identity from different viewpoints in the early stage
of model training. And, the noise selection (NS) further can
enhance the generalization ability of the model. In addition, we
further evaluate the average running time of each part in one
step as shown in the TABLE IV, which is tested on an 8-core
Intel(R) Xeon(R)@2.10GHz CPU platform. From which we
can see, although introducing progressive clustering brings
more cost on the running time in a single step. It can help the
model reach the best results at early steps (as shown in Fig. 12)
with even less total running time. This further evidences the
benefit of the proposed progressive clustering while handling
the inter-instance similarity and intra-instance discrepancy
caused by large viewpoint variations among vehicles.

V. CONCLUSION

In this paper, we propose a viewpoint-aware progressive
clustering method to solve the unsupervised Re-ID problem
of vehicles. We analyzed the similarity dilemma of vehicle
comparison, and it is first time to explored the progressive
clustering by dividing the training set into different subsets

according to the viewpoint. In addition, we propose a noise
selection strategy to solve the noise problem generated in the
clustering process. Extensive experimental results demonstrate
the effectiveness of the proposed methods in unsupervised
Vehicle Re-ID.

Our method is based on the observation that images of
vehicles from adjacent views normally share a large degree of
common appearance thus the adjacent views can be merged
based on similarity. Therefore, it is more suitable for the real-
life multi-view scence. In the other words, it is still challenging
to deal with the scenario with only two large discrepancy
viewpoints, such as front and rear. In addition, due to the
diverse similarity among the viewpoints, it is a bit crude to
merge all the different viewpoints of the same ID by a fixed
empirical similarity threshold. In the future, we will further
explore a more effective method to deal with these more
challenging situations.
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