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Abstract
Vehicle re-identification has gradually gained attention and widespread applications. However, most of the existing methods
learn the discriminative features for identities by single-feature channel only. It is worth noting that visual cognition of the
human eyes is a multi-channel system which usually seeks a sparse representation. Therefore, integrating the multi-view
information in sparse representation is a natural way to boost computer vision tasks in challenging scenarios. In this paper, we
propose to mine multi-view deep features via Laplacian-regularized correlative sparse ranking for vehicle re-identification.
Specifically, first, we employ multiple baseline networks to generate features. Then, we explore the feature correlation via
enforcing the correlation term into the multi-view Laplacian sparse ranking framework. The original rankings are obtained
by the reconstruction coefficients between the probe and gallery. Finally, we utilize a re-ranking technique to further boost
performance. Experimental results on public benchmark VeRi-776 and VehicleID datasets demonstrate that our approach
outperforms state-of-the-art approaches. The Laplacian-regularized correlative sparse ranking as a general framework can
be used in any multi-view feature fusion and will obtain more competitive results.
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Introduction

With the great progress of computer vision [1, 2], vehicle
re-identification (Re-ID) has recently drawn much more
attention due to its potential applications such as intelligent
transportation, urban computing and intelligent monitoring.
The vehicle Re-ID aims to identify the same vehicle across
non-overlapping cameras, where the license plate of the
vehicle is scarcely possible to be identified due to motion
blur, challenging camera view, etc. In addition to person
Re-ID, vehicle Re-ID has particular challenges: different
identities, especially from the same manufacturer, may have
similar colors and types.

The research on visual cognition of the human eyes
shows that the human visual system is a multi-channel
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system [3] and usually seeks a sparse representation [4]. The
neuroscientists at Vanderbilt University have discovered that
color cognition is processed with isolation and other com-
prehensive visual attributes [3]. Inspired by this, many res-
earchers used multi-view theory in computer vision tasks
such as 3D shape recognition task [5], face alignment [6],
visual recognition [7], pose prediction [8], and cross-view
classification [9]. Meanwhile, Ravello et al. [4] have disco-
vered that brain cognition will produce a sparser code while
preserving important information, based on which many
researchers developed this sparse mechanism theory in
image decomposition [10], image compression [11], visual
tracking [12, 13], facial expression recognition [14], etc.

The recent dramatic increase in different kinds of
deep learning networks extracts discriminative feature
representation for Re-ID. However, most of the existing
methods focus on single-view representation learning. It
is worth mentioning that visual cognition of the human
eyes is a multi-channel system [3]. Generally speaking,
different views from the same identity usually contain
complementary information. Therefore, compared with
single-view learning, multi-view learning can exploit more
expressive representation. A comprehensive survey of
multi-view learning refers to [5].
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Some researchers have also discovered that visual
cognition of the human eyes seeks a sparse representation
for the incoming image [4]. And many algorithms based on
sparse ranking in single processing have been proposed for
computer vision task in the past years [15–17]. The main
idea of sparse ranking is to approximately transform input
data to the weighted linear combination of a small number
of basis vectors from the dictionary. These basis vectors
thus contain high-level patterns in the input data, while the
coefficients consist of the sparse representation of the input
data. Not only will this method simplify learning tasks and
reduce the complexity of learning models, but it can also
be used in multi-tasks learning since the multiple views are
assumed to have the same sparsity pattern in their sparse
representation vectors.

In this paper, we propose to explore the multi-view
deep feature correlation based on the sparse ranking
framework for vehicle Re-ID. Specifically, we mine the
correlation between multiple feature space via correlative
sparse ranking by enforcing the correlation constraint into
the multi-view sparse ranking framework. Furthermore,
we introduce a Laplacian regularization to preserve
the local manifold structure. It can be regarded as a
general framework for multi-view feature fusion for any
existing networks. Furthermore, inspired by the satisfactory
performance of the re-ranking techniques in person Re-
ID, we further utilize the Expanded Cross Neighborhood
(ECN) [18] based on the re-ranking technique to boost the
performance of the proposed method.

A preliminary version of this work appeared in [19]. In
this work, apart from using correlative sparse representation
to fuse multi-view features, we further consider enforcing
a graph Laplacian regularization into the multi-view sparse
ranking framework to preserve the local manifold struc-
ture. In addition, more comprehensive experiments have
been implemented, including more baseline networks, more
experimental demonstration, and more evaluations on addi-
tional larger vehicle re-identification dataset: VehicleID.

RelatedWork

Inspired by the human visual system, we propose to
mine multi-view deep features via Laplacian regularized
correlative sparse ranking for vehicle re-identification in
this paper. Therefore, we briefly introduce the related works
on vehicle Re-ID and multi-view learning in this section.

Vehicle Re-Identification

Along with the blossom of person Re-ID [20–22], vehicle
re-identification has drawn much attention recently. Several
vehicle re-identification datasets have been collected to

boost the research. Liu et al. [23] proposed a big dataset
VeRi-776 for vehicle Re-ID, and extracted the Fusion
of Attributes and Color features (FACT). Liu et al. [24]
proposed a large surveillance-nature dataset (VehicleID)
and explored Coupled Clusters Loss to measure the distance
of arbitrary two input vehicle images. Yang et al. [25]
designed CompCars dataset for vehicle model classification
which can also be used for vehicle Re-ID task. Liu et al.
[26] learned a structured feature embedding for vehicle Re-
ID and captured nearly 1 million vehicle images to build the
Vehicle-1M dataset.

Deep learning is an active method on vehicle re-
identification; most of the existing methods focus on
designing of effective network architectures for vehicle
Re-ID. Zapletal et al. [27] learned a linear classifier on
color histograms and histograms of oriented gradients by
vehicle 3D bounding boxes. Zhang et al. [28] designed
a classification-oriented loss and triplet sampling method
based on the triplet-wise network. Kanacı et al. [29]
proposed to transfer the vehicle model representation for
more fine-grained Re-ID tasks via a so-called cross-level
vehicle recognition method. Zhu et al. [30] proposed a
shortly and densely connected convolutional neural network
to combine the advantages of VGGNet and DenseNet to
improve Re-ID performance.

Furthermore, some works tried to integrate other aux-
iliary information such as the spatio-temporal information
into the vehicle Re-ID process [31, 32]. Considering that
vehicles have specific attributes such as color and type, Liu
et al. [33] designed a progressive searching scheme which
employed the appearance attributes of the vehicle for coarse
filtering. Li et al. [34] designed a unified vehicle Re-ID
framework combining identification, attribute recognition,
verification, and triplet tasks. Zhou et al. [35] proposed a
conditional generative network to generate cross viewpoint
vehicle images and combine them with input vehicle images
to improve the performance of vehicle re-identification.

Multi-View Learning

Multi-view sparse ranking, which learns the shared latent
representation for multi-view data, is one of the active
research topics in multi-view learning and has been
widely explored in the past decade. Jia et al. [36] exploit
multi-view learning with structured sparsity to address
human pose estimation. Liu et al. [37] proposed multi-
view Hessian discriminative sparse ranking to improve the
image annotation performance. Han et al. [38] designed a
framework of sparse unsupervised dimensionality reduction
to find a low-dimensional optimal consensus representation
for image classification. Yu et al. [39] used sparse ranking to
choose as few basic images as possible from the codebook
and described similar Web images by fully distinct sparse
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codes to obtain completeness results. Wu et al. [40]
proposed a sparse multi-modal hashing approach, which
can jointly learn multi-modal dictionary. Lan et al. [41]
considered sparse representation to fuse feature for multi-
cue visual tracking.

Meanwhile, many researchers tried to use multi-view
learning to solve 3D or other visual recognition tasks. Yang
et al. [5] proposed a novel network structure combining
multi-view networks to solve the viewpoint-based 3D shape
recognition task. Chen et al. [42] designed a deep fusion
scheme to combine region-wise features from multiple
views for 3D object detection. Rubino et al. [43] presented a
novel approach to combine dual space fitting and non-linear
optimization to recover objects 3D position.

The Proposed Approach

Overview

Given a probe vehicle image, the proposed approach
regarding the vehicle Re-ID consists of the following three
steps as shown in Fig. 1.

(a) Multi-view deep feature learning: We design multiple
deep learning–based subnetworks to extract the multi-
view features.

(b) Feature fusion via Laplacian-regularized correlative
sparse ranking: We propose to explore the correlation

between the multi-view feature spaces via Laplacian-
regularized correlative sparse ranking, which enforces
the consistency between the sparse coefficients of the
multi-view features and preserves the local manifold
structure. The original ranking results are obtained
according to the reconstruction coefficients between
the probe and gallery.

(c) ECN-based re-ranking: The final ranking results are
achieved via ECN based on the re-ranking technique.

We shall elaborate the procedure in the following three
subsections.

Multi-View Deep Feature Learning

Inspired by the human visual system, deep learning builds
hierarchical layers of visual representation to extract the
high-level features of an image. We exploit K arbitrary deep
learning network to generate the multi-view features for
vehicle Re-ID as shown in Fig. 1a.

Furthermore, we extract K feature vectors X1, X2, and
XK . For the gallery with N images, K feature matrices
U1 = [

u1
1, · · · , u1

N

]
, U2 = [u2

1, · · · , u2
N ], and UK =[

uK
1 , · · · , uK

N

]
are generated in the same manner, where u1

i ,
u2

i , and uK
i represent the feature vector of the ith gallery

image hi from the kth subnetworks respectively.
In this paper, we design three subnetworks to gener-

ate multi-view deep features: ResNet-50-based attribute
aggregated subnetwork (Rattr ), GoogleNet-based attribute

Fig. 1 Overall architecture of the proposed method
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aggregated subnetwork (Gattr ), and ResNet-50-based view-
point embedded subnetwork (Rview). We shall elaborate the
architectures of the three subnetworks as follows.

ResNet-50-Based Attribute Aggregated Subnetwork (Rattr )

Inspired by the attribute aggregated network in person Re-
ID [44], we encode ten color attributes (yellow, orange,
green, gray, red, blue, white, golden, brown, black) and nine
type attributes (sedan, suv, van, hatchback, mpv, pickup,
bus, truck, estate) into the ResNet-50 deep framework,
as shown in Fig. 2a. Color and type are the most
recognizable appearance information. For the sake of
attribute recognition, here we attach M + 1 fully connected
(FC) layers in the end, including a ID classification and
M attributes, where M is the sum of the number of

attributes (colors and types). Specifically, for the FC layer
for ID classification, the number of output nodes equals the
number of training vehicle identities C; while each of the
FC layers for one attribute (color or type) links B output
nodes corresponding to the B discriminant results.

For loss computation, we use the softmax classification
loss function to optimize vehicle identity discrimination
in vehicle ID classification branch, and the total vehicle
ID loss is calculated by cross entropy loss function
as: LID = − ∑C

c=1 f (c)log(p(c)), where C is the
vehicle identity and f (c) represents the vehicle ID ground
truth. The attribute probability can be predicted in the
same manner with cross entropy loss function LAttj =
− ∑B

jb=1 f (jb)log(p(jb)), where f (jb) denotes the ground
truth of vehicle attribute, and B = 2 indicates the binary
discriminant results (“yes” or “no”) for attribute j . Finally,

Fig. 2 The architecture of the subnetworks
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we extract 2048 dimensional features from the pool layers
of the subnetwork.

GoogleNet-Based Attribute Aggregated Subnetwork (Gattr )

GoogleNet-based attribute aggregated subnetwork (Gattr ) is
constructed in the same manner as Rattr shown in Fig. 2b.
The only difference is that we replace the ResNet-50 in
Rattr with GoogleNet.

ResNet-50-Based Viewpoint Embedding Subnetwork
(Rview )

As shown in Fig. 2c, we encode five viewpoint information
(front, left front side, left side, left side, left rear side,
rear) of the vehicle into the ResNet-50 deep framework
[18]. The backbone of this subnetwork is the first three
blocks of ResNet-50, we split the view classifier branch
with three convolutional layers of 5 × 5, 3 × 3, and 5 × 5
respectively and one fully connected layer from the first
block of ResNet-50. The classifier is used to predict a
probability distribution over the corresponding view values.
And then we copy the fourth block of ResNet-50 five times
as the equivalent view units to extract high-level features.
We shall weigh the five view softmax prediction scores
of the view classifiers to the corresponding units with the
element-wise multiplication. Then, we use the manner of
element-wise sum to fuse these high-level features. Finally,
we exploit two fully connected layers to embed the fused
feature. And the softmax classification loss function is used
to classify the vehicle ID by the cross entropy loss function
LID = −∑C

c=1 f (c)log(p(c)) for model training, where C

is the number of the vehicle images and f (c) represents the
ground truth of vehicle ID.

It is worth mentioning that the VehicleID dataset contains
incomplete attribute information and no view labels, so we
only select Rattr and Gattr without attribute aggregation
during implementation. As for Rview, we train the view
predictor on the VeRi-776 dataset with view annotation then
directly apply to the VehicleID dataset.

Feature Fusion via Laplacian-Regularized
Correlative Sparse Ranking

After obtaining the multi-view deep features of the vehicle,
we propose a Laplacian-regularized correlative sparse
representation to bridge the multi-view features generated
from three subnetworks as shown in Fig. 1b.

Model Formulation

In this subsection, based on their close latent correlations,
we shall present the detailed formulation of the multi-view

feature fusion problem via a sparse ranking framework due
to its robustness to noise.

Sparse Reconstruction The main idea of sparse ranking is
to represent an input vector approximately as the weighted
linear combination of a small number of basis vectors from
the dictionary. These basis vectors thus capture high-level
patterns in the input data, while the coefficients consist of
the sparse representation of the input data. According to
this principle, for each query sample, we calculate sparse
representation αk under the kth channel, where Xk ≈
U kαk , for k = 1, · · · , K , where K is the number of the
views and K = 3 in this paper. The reason why we only
evaluated on three networks (view) is that more views will
introduce higher computational complexity without distinct
improvement in accuracy. Therefore, three views can keep
the balance between accuracy and efficiency. The process
above can be converted into a �1-norm sparsity constraint
regularized least squares problem:

min
αk

‖Xk − U kαk‖2
2 + λk‖αk‖1, (1)

where λk controls the trade-off between the �2-norm
reconstruction error and the �1-norm sparsity constraint of
the coefficients under the kth view. And U k is the feature
matrix of the kth view.

Multi-ViewCorrelation To explore the correlations of multi-
view features, it is natural to punish the diversity between
sparse coefficients from arbitrary two corresponding views,
that is minimizing the Euclidean distance ‖αk − αl‖2

2 for
k, l ∈ 1, . . . , K to find the collaborative representation from
multi-views of the same vehicle. Thus, the correlative sparse
ranking model can be formulated as:

min
αk

K∑

k=1

{‖Xk − U kαk‖2
2 + λk‖αk‖1}

+μ
∑

k,l

‖αk − αl‖2
2, s.t.∀α1, α2, · · · , αK � 0, (2)

where μ is the trade-off parameter to balance the sparse
reconstruction error and the pairwise correlation constraints.

Laplacian Regularization Note that the local geometrical
structure of the data plays an important role in data analysis
[45–47], We further enforce Laplacian regularization
as a smooth operator to preserve the local manifold

structure. That is minimizing βk
∑

i,j

(
αk

i − αk
j

)2
Wk

ij for
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k ∈ 1, . . . , K . Thus, the Laplacian-regularized correlative
sparse ranking model can be formulated as:

min
αk

K∑

k=1
{‖Xk − U kαk‖2

2 + λk‖αk‖1︸ ︷︷ ︸
sparse reconstruction

+ βk
∑

i,j

(
αk

i − αk
j

)2
Wk

ij

︸ ︷︷ ︸
Laplacian regularization

}+

μ
∑

k,l

‖αk − αl‖2
2

︸ ︷︷ ︸
Multi-view correlation

s.t.∀α1, α2, · · · , αK � 0,

(3)

where βk is the trade-off parameter to balance the
sparse reconstruction error and the Laplacian regularization
constraints; Wk

ij is the distance of ith and j th vehicle
features of the kth view.

At last, the final Laplacian-regularized correlative sparse
representation vector for one query to all gallery images is
expressed as:

α = ∑K
k=1 αk .

Model Optimization

Due to the non-negativeness of αk , Eq. 3 can be written as
follows:

min
αk

K∑

k=1

{

‖Xk−U kαk‖2
2 + λkαk1 + βk

∑

i,j

(
αk

i −αk
j

)2
Wk

ij

}

+μ
∑

k,l

‖αk − αl‖2
2, s.t. ∀α1, α2, · · · , αK � 0,

(4)

where 1 denotes the vector with all elements as 1. To solve
Eq. 4, we convert it to an unconstrained form as:

min
αk

K∑

k=1

{

‖Xk − U kαk‖2
2 + λkαk1+βk

∑

i,j

(
αk

i − αk
j

)2
Wk

ij

}

+μ
∑

k,l

‖αk − αl‖2
2 + ψ(α),

(5)

where ψ(αk
i ) equals 1 if αk

i ≥ 0, and 0 otherwise. αk
i

denotes the representation coefficient of gallery image hi to
the query sample from the kth subnetwork. In this paper, we
utilize the accelerated proximal gradient (APG) approach
[48] to optimize efficiently. We denote:

F = min
αk

‖Xk − U kαk‖2
2 + λkαk1

+βk
∑

i,j

(
αk

i − αk
j

)2
Wk

ij + μ
∑

k,l

‖αk − αl‖2
2,

J = ψ(α). (6)

Obviously, F is a differentiable convex function and J is
a nonsmooth convex function. Therefore, according to the
APG method, we obtain:

αk(r +1) = min
αk

ξ

2
‖αk −Ωk(r +1)+ ∇F(Ωk(r + 1))

ξ
‖2

2 +J (αk),

(7)

where ξ is the Lipschitz constant, r indicates the current
iteration, and αk(r + 1) denotes the sparse representation
coefficients of the query image at the (r + 1)-th iteration
based on the kth subnetworks. Ωk(r + 1) = αk(r) +
ρ(r−1)−1

ρ(r)
(αk(r) − αk(r − 1)), where ρ(r) is a positive

sequence with ρ(0) = ρ(1) = 1. Equation 7 can be solved
by:

αk(r + 1) = max(0, Ωk(r + 1) − ∇F(Ωk(r + 1))

ξ
). (8)

where ∇F(Ωk(r + 1)) can be calculated as:

∇F(Ωk(r + 1)) = 2U kT
U kΩk(r + 1) − 2U kT

Xk

+λk1 + 2βkΩk(r + 1)(D − W)T

+4μ(KΩk(r + 1)−
K∑

l

Ωl(r + 1)). (9)

Algorithm 1 summarizes the whole optimization procedure.
Figure 3 shows the convergence curve of our LCSR method.

After obtaining the Laplacian-regularized correlative
sparse representations α for each query image, we exploit
α = ∑K

k=1 αk to aggregate them as a representation
coefficients matrix A ∈ RQ×N , where Q represents the
number of query image and N represents the number

864 Cogn Comput (2021) 13:859–872



maxIter

V
al

u
e 

o
f 

o
b
je

ct
iv

e 
fu

n
ct

io
n

Fig. 3 Convergence curve of our LCSR method

of gallery image. The entry αq,i in A denotes the
representation coefficient of a gallery image hi to the
query image q. Then, the original distance between two
vehicle images q and hi can be calculated by d(q, hi) =
1/αq,i . Therefore, the initial ranking to query sample
q is M(q, N) = {hq

1 , h
q

2 , · · · , h
q
N }, where d(q, h

q
i ) <

d(q, h
q

i+1).

ECN-Based Re-Ranking

The initial ranking directly compares the distance between
the two images, and ignores the correlations among similar
images. In order to enhance retrieval performance, here we
calculate the distance by averaging the expanded neighbors
of probe and gallery image pairs, that is the ECN distance,
as shown in Fig. 1c.

Formally, given a probe image q and a gallery set G with
N images G = {h1, h2, · · · , hN }, we can acquire the initial
ranking M(q, N) = {hq

1 , h
q

2 , · · · , h
q
N }. We first define the

top l samples of the query q as M(q, l):

M(q, l) = {hq
i |i = 1, 2, · · · , l}, l ≤ N . (10)

Then, M(h
q
i , p) contains the top p neighbors of each

element in set M(q, l):

M(h
q
i , p) = {M(h

q

1 , p), · · · , M(h
q
l , p)}. (11)

The final expanded neighbors of q are defined as the
multi-set E(q, R):

E(q, R) = {M(q, l), M(h
q
i , p)}, R = l + l × p. (12)

In the same manner, we can obtain the expanded neighbors
of each gallery image as E(hi, R). Finally, the ECN [18]
distance between the query image q and any gallery image
hi is calculated as:

ECN(q, hi)= 1

2R

R∑

j=1

{d(E(q, R){j}, hi) + d(E(hi, R){j}, q)},

(13)

where E(q, R){j} and E(hi, R){j} indicate the j th
expanded neighbor of query q and the ith image hi

respectively. We exploit the ECN(q, hi) to acquire the final
ranking. In practice, l = 4, p = 12 as discussed in the
section “Parameter Analysis.”

Experiments

We evaluate our method on the two recent public benchmark
datasets VeRi-776 [23] and VehicleID [24] for vehicle
re-identification, and compared these with twelve state-
of-the-art methods. Besides, we have annotated the view
information for both VeRi-776 and VehicleID datasets.

Experiment Setting

Parameters

During the deep feature extraction, we resize all training
images into 256×256 pixels and extract randomly 224×224
patches to data augmentation. We train our models using
stochastic gradient descent (SGD) with a batch size of 16,
momentum of 0.9, and weight decay of δ = 0.0001. The
learning rate is set to 0.1 at the beginning and changed to
0.01 in the last few epochs. λ = 0.118, β = 0.048, and
μ = 0.5 in Eq. 3.

Evaluation Metric

Following the evaluation protocol of re-identification work
[31, 33], the mean average precision (mAP), and Rank1 and
Rank5 accuracies are utilized to evaluate the performance
of re-identification in the camera network.
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Compared State-of-the-Art Methods

The specifications of the compared methods are described
as follows:

1. .LOMO [49]. Local Maximal Occurrence Represen-
tation (LOMO) is a local feature descriptor coping
with illumination variations and viewpoint changes.

2. BOW-CN [50]. Bag-of-Word-based hand-crafted
features for vehicle Re-ID.

3. GoogLeNet [51]. Pre-trained on ImageNet [52] and
then fine-tuned on the CompCars dataset for semantic
feature representation of vehicles.

4. FACT [23]. Fused Appearance features including
color, texture and shape.

5. FACT+Plate-SNN+STR [33]. FACT [23] with
additional plate verification and spatio-temporal
relations (STR) based on Siamese Neural Network
(SNN).

6. NuFACT [53]. The null space-based FACT [23]
to integrate the multi-level appearance features of
vehicles and high-level attribute features.

7. Siamese-Visual [31]. Siamese-CNN with only visual
information.

8. Siamese+Path-LSTM [31]. Siamese-CNN together
with Path LSTM with visual-spatio-temporal path
information.

9. VAMI [35]. Generating multi-viewpoint features of a
vehicle from single-viewpoint feature.

10. C2F-Rank [26]. Exploring structured feature embed-
ding and a novel coarse-to-fine ranking loss to boost
the performance of vehicle re-identification.

11. CLVR [29]. The structured information of vehicle
identity and vehicle model class to construct Cross-
Level Vehicle Recognition method.

12. SDC-CNN [30]. The short and dense connection
mechanism which can improve the ability of feature
embedding.

Evaluation on the VeRi-776 Dataset

VeRi-776 [23] dataset contains 51,035 images of 776
vehicles captured by 20 cameras in real-world traffic
surveillance environment. Due to different viewpoints,
illuminations, resolutions, and occlusions, VeRi-776 is a
challenging dataset for vehicle Re-ID. Specifically, there
are 37,778 images of 576 vehicles for training, 11,579
images of 200 vehicles for testing, and 1678 for query.
Each vehicle is captured by 2–18 cameras along a circular
road. Furthermore, each vehicle image is annotated with
corresponding attributes, e.g., type and color.

Quantitative Result

We evaluate the performance of the proposed method
when compared with the state-of-the-art methods on
VeRi-776 dataset and report the quantitative results in
Table 1. Although the mAP of Siamese+Path-LSTM [31]
is comparative with our LCSR, it is worth noting that it
has utilized additional spatio-temporal path information,
even though the Rank1 and Rank5 accuracies of our LCSR
are significantly higher (without any path information).
Furthermore, the ECN re-ranking technique can further
boost the performance, especially on mAP and Rank1. Note
that Rank5 slightly declines. The reason might be, on VeRi-
776 dataset, the high accuracy in Rank1 (91.29%) implies
that most of the top-1 matching is the right hit which has less
probability to remove the right hit out of top-5 matchings
after re-ranking, which will not change the accuracy of
Rank5. However, when the top-1 matching is the wrong hit,

Table 1 The mAP, Rank1, and Rank5 comparisons on VeRi-776 dataset (in %)

Method mAP Rank1 Rank5 Reference

(1) LOMO [49] 9.64 25.33 46.48 CVPR2015

(2) BOW-CN [50] 12.20 33.91 53.69 ICCV2015

(3) GoogLeNet [51] 17.89 52.32 72.17 CVPR2015

(4) FACT [23] 18.49 50.95 73.48 ICME2016

(5) FACT+Plate-SNN+STR [33] 27.70 61.44 78.78 ECCV2016

(7) Siamese-Visual [31] 29.48 41.12 60.31 ICCV2017

(8) Siamese+Path-LSTM [31] 58.27 83.49 90.04 ICCV2017

(6) NuFACT [53] 48.47 76.76 91.42 TMM2018

(9) VAMI [35] 50.13 77.03 90.82 CVPR2018

(12) SDC-CNN [30] 53.45 83.49 92.55 ICPR2018

LCSR 59.58 91.29 95.47 Ours

LCSR + ECN 63.66 92.61 94.00 Ours

The top three results are highlighted in red, green, and blue, respectively
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the right hit, which has high probability (95.47%) within
top-5 matching, may be removed from the top-5 matchings
which will decline the accuracy of Rank5.

Qualitative Result

An example of the qualitative results of our method is
demonstrated in Fig. 4, where Fig. 4a, b, and c demon-
strate the ranking results with GoogleNet-based attribute
aggregated subnetwork Gattr , ResNet-50-based attribute
aggregated subnetwork Rattr , and ResNet-50-based view-
point embedding subnetwork Rview, respectively. Figure 4d
is the ranking results of our Laplacian-regularized correla-
tive sparse ranking framework from which we can observe
that, by correlatively learning the multi-view deep features,
our method can improve the ranking to the single-view
method.

Evaluation on the VehicleID Dataset

VehicleID [24] dataset contains 221,763 images of a total of
26,267 vehicles captured in real-world traffic surveillance
environment. Due to illuminations, resolutions, and same
appearance of different vehicle identities, VehicleID is also

a challenging dataset for vehicle Re-ID. It is divided into
the training set with 110,178 images of 13,134 vehicles,
and the testing set with 111,585 images of 13,133 vehicles
specifically. Following the protocols, we use three different
testing sets for re-identification task, which contains 800,
1600, and 2400 vehicles.

It is worth mentioning that the VehicleID dataset contains
incomplete attribute information and no view labels, besides
each image only has the front or the back viewpoint;
therefore we only select Rattr and Gattr without attribute
aggregation during implementation. As for Rview, we train
the view predictor on VeRi-776 dataset with view annotation
then directly apply to the VehicleID dataset.

Quantitative Result

The quantitative results of the proposed method on
VehicleID dataset when compared with the state-of-the-art
methods are reported in Table 2. The results consistently
demonstrate the promising performance of the proposed
method. The Rank5 accuracies of our method are worse
than those of SDC-CNN [30], but with significantly higher
mAP and Rank1, which are more competitive metrics with
the meaning of more true hits in the front ranks. Again,

Fig. 4 Example of our method (LCSR) on VeRi-776 dataset. The green and red boxes indicate the right hits and the wrong hits respectively
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Table 2 The mAP, Rank1, and Rank5 comparisons on VehicleID dataset (in %)

Test size 800 1600 2400 Reference

Method mAP Rank1 Rank5 mAP Rank1 Rank5 mAP Rank1 Rank5

(1)LOMO [49] − 19.76 32.01 − 18.85 29.18 − 15.32 25.29 CVPR2015

(2)BOW-CN [50] − 13.14 22.69 − 12.94 21.09 − 10.20 17.89 ICCV2015

(3)GoogLeNet [51] 46.20 47.88 67.18 44.00 43.40 63.86 38.10 38.27 59.39 CVPR2015

(4)FACT [23] − 49.53 68.07 − 44.59 64.57 − 39.92 60.32 ICME2016

(11)CLVR [29] − 62.00 76.00 − 56.10 71.80 − 50.60 68.00 BMVC2017

(6)NuFACT [53] − 48.90 69.51 − 43.64 65.34 − 38.63 60.72 TMM2018

(9)VAMI [35] − 63.12 83.25 − 52.87 75.12 − 47.34 70.29 CVPR2018

(10)C2F-Rank [26] 63.50 61.10 81.70 60.00 56.20 76.20 53.00 51.40 72.20 AAAI2018

(12)SDC-CNN [30] 63.52 56.98 86.90 57.07 50.57 80.05 49.68 42.92 73.44 ICPR2018

LCSR 72.53 69.04 84.44 69.68 66.40 80.41 65.65 62.31 75.89 Ours

LCSR + ECN 68.70 64.85 82.61 55.94 53.35 64.88 52.05 49.35 61.46 Ours

The top three results are highlighted in red, green, and blue, respectively

by correlatively learning the multi-view deep features, our
method can significantly improve the ranking to the single-
view method. Since there is only one ground truth in the
gallery for each query, and the overall accuracy is relatively
low on the VehicleID dataset, the ECN may introduce more
wrong hits to the top matchings, so the results after ECN
tend to decline.

Qualitative Result

An example of the qualitative results on VehicleID dataset
is demonstrated in Fig. 5 in the same manner as on the
VeRi-776 dataset from which we can observe that the
multi-view fusion result of our LCSR can significantly
shift forward the true hit. Note that there is only one

Fig. 5 Example of our method (LCSR) on VehicleID dataset (test size = 800). The green and red boxes indicate the right hits and the wrong hits
respectively
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Fig. 6 Component analysis of our method (LCSR) on VehicleID
dataset (test size = 800). Gattr , Rattr , and Rview represent the results
of the GoogleNet subnetwork, ResNet-50 subnetwork, and ResNet-50-
based viewpoint embedding subnetwork, respectively. SR, CSR, and
LCSR indicate the results of fusing the three subnetworks Gattr , Rattr ,
and Rview via sparse ranking (SR), correlative sparse ranking [19],
and our Laplacian-regularized correlative sparse ranking (LCSR)

respectively

ground truth vehicle image in gallery set in the VehicleID
dataset.

Component Analysis

In order to validate the component contribution of our
Laplacian-regularized correlative sparse ranking (LCSR)

framework, we further evaluate the components of the
proposed method with its variants on VehicleID dataset (test
size = 800) as shown in Fig. 6, from which we can see the
following: (1) By fusing the three multi-view subnetworks
Gattr , Rattr , and Rview, sparse ranking (SR) (comparing SR

with Gattr , Rattr , or Rview), it can improve the performance
of the single subnetwork. (2) By introducing the multi-view
correlation to the original sparse ranking model (comparing
CSR to SR), it can further boost the performance. (3) By
introducing the Laplacian regularization constraint to CSR,
our final model LCSR achieves the best performance.

Evaluation on Other Subnetworks

In order to validate the generality of our LCSR, we further
evaluate it on the other three subnetworks, the conventional
MobileNet [54], GoogleNet [55], and ResNet-50 [56]
without any attribute aggregation on VeRi-776 dataset and
VehicleID dataset (test size = 800). Table 3 reports the
results of our LCSR, from which we can see that (1) all
these three subnetworks achieve satisfactory performance.
(2) Our LCSR framework further boosts the performance
by fusing the multi-view information from these three
networks, which implies that one can use our method to fuse
any subnetworks in potential applications.

Parameter Analysis

There are three key parameters in the process of Laplacian-
regularized correlative sparse ranking feature fusion. λ

balances the �2-norm reconstruction error and the �1-norm
sparsity constraint of the coefficients under the kth view. β

balances the sparse reconstruction error and the Laplacian
regularization constraints. μ balances the Laplacian sparse
reconstruction error and the pairwise correlation constraints.
In this paper, we empirically set λ = 0.118, β = 0.048,
and μ = 0.5 to obtain the best performance. We conduct an
experiment on the VehicleID dataset (test size = 800) with
different parameters and report the performance in Fig. 7a,
b, and c. From Fig. 7, we can see that the accuracy does
not change significantly by varying μ and λ in a hundred
magnifications while β in a thousand magnifications, which
demonstrates our model is not sensitive to these three
parameters.

Table 3 Evaluation of mAP and Rank1 on the proposed LCSR on other networks (in %)

VeRi-776 VehicleID (800)

Method mAP Rank1 mAP Rank1

MobileNet [54] 48.37 87.30 31.12 23.51

GoogleNet [55] 49.39 83.90 55.42 51.87

ResNet-50 [56] 47.39 86.05 64.28 60.21

LCSR 58.01 88.97 68.82 65.06
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Fig. 7 Parameter analysis of our
method (in %)

(a) (b)

(c) (d)

VehicleID (Test size = 800) VehicleID (Test size = 800)

VehicleID (Test size = 800) VeRi-776

l (p = 12) p (l = 4)

In addition, there are two key parameters in ECN re-
ranking, where l represents the number of the top samples
to the query q, and p indicates the nearest neighbors to each
top samples. We evaluate these two parameters on VeRi-
776 dataset and report the performance in Fig. 7d, which
consistently demonstrates that ECN is not sensitive to these
two parameters.

Conclusion

In this paper, inspired by multi-channel and sparse
representation visual cognition of the human eyes, we
discover the correlation between multi-view deep sparse
features for vehicle Re-ID. In deep feature extraction, three
CNN re-identification networks are trained to generate
the multi-view deep features. Then, we propose the
Laplacian-regularized correlative sparse ranking method to
jointly learn the sparse coefficients for multi-view features.
Furthermore, we re-rank the initial ranking via ECN
distance to boost the recognition accuracy. Experimental

results on benchmark datasets VeRi-776 and VehicleID
demonstrate the promising performance of our method. In
the future, we shall further integrate the path and plate
information for vehicle Re-ID.
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