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Abstract—Given a speech clip and facial image, the goal of
talking face generation is to synthesize a talking face video with
accurate mouth synchronization and natural face motion. Recent
progress has proven the effectiveness of the landmarks as the in-
termediate information during talking face generation. However,
the large gap between audio and visual modalities makes the
prediction of landmarks challenging and limits generation ability.
This paper proposes a semantic and temporal synchronous
landmark learning method for talking face generation. First,
we propose to introduce a word detector to enforce richer
semantic information. Then, we propose to preserve the temporal
synchronization and consistency between landmarks and audio
via the proposed temporal residual loss. Lastly, we employ a
U-Net generation network with adaptive reconstruction loss to
generate facial images for the predicted landmarks. Experimental
results on two benchmark datasets LRW and GRID demonstrate
the effectiveness of our model compared to the state-of-the-art
methods of talking face generation.

I. INTRODUCTION

Talking face generation aims to generate realistic talking
face video with lip synchronization and smooth facial motion
based on a given audio clip and facial image. It has gained
more attention recently in both research and industrial commu-
nities due to its wild applications prospect in virtual computer
games, speech comprehension, and teleconferencing, etc. With
the blossom of Generative Adversarial Networks (GANs) [1],
many works use this idea to improve the performace of other
tasks [2], [3]. In talking face generation, GAN-based methods
[4]-[9] have made great progress to talking face generation
compared to the HMM-based traditional methods [10], [11].

Recently, to mitigate the cross-modal heterogeneity, Jalalifar
et al. [6] and Chen et al. [8] introduce the landmarks, as
the intermediate information to guide taking face generation.
Note that landmarks refer to a set of coordinate points to
locate the contours of key parts. These methods separate the
audio-face generation into two steps, i.e., audio to landmarks
prediction and landmarks to face generation. Although the
two-step strategy can further improve the synthesis results of
talking face, there is still challenge to predict landmarks from
audio directly and limitation in generation ability.

* corresponding author

978-1-7281-8808-9/20/$31.00 ©2020 IEEE

Particularly, the precision of landmark learning plays a
crucial role and affects the face generation step. For example,
Jalalifar et al. [6] and Chen et al. [8] learn the landmarks via
applying RNN on audio clips without paying enough attention
to semantic information and the mutual information between
two modalities, resulting in the performance limitation of face
generation. Besides, Jalaifar et al. [6] focus on generating
talking face for specific person (President Barak Obama)
without typical evaluation metrics. To address these issues,
this paper focuses on landmark learning from audio to obtain
more reasonable and synchronous landmarks to guide talking
face generation.

Inspired by the fact that semantic information has been
widely studied as high-level information to boost the machine
learning tasks [12]-[14], we propose to utilize the high-
level word information existing in the audio clip as the
semantic supervision to compensate the conventional low-
level Ly or Lo reconstruction supervision. By introducing a
word detector, which judges whether the predicted landmarks
sequence contains the word information or not, the module
of landmark prediction will be optimized and express richer
semantic information into predicted landmarks and make the
lip motion more realistic.

In addition, temporal synchronization is a key issue to
realize a smooth transition between frames. In this cross-
modality task, we argue the change of adjacent audio and
landmarks to be synchronized for the mutual information inter-
modality correspondence. Therefore, we tend to explore the
temporal residual correlation between audio and landmarks
domains to better preserve the temporal synchronization. In
detail, inspired by [15], we develop a MI estimator introducing
a novel constraint named temporal residual loss, which is de-
rived from the mutual information of the audio and landmarks
domain.

According to the above discussion, the landmarks prediction
module is jointly implemented by the word semantic infor-
mation and the temporal synchronous constraint to further
enhance the talking face generation. After obtaining the robust
landmarks, we project them into heatmaps with a differentiable
function, then a variant of U-Net [16] is leveraged to generate
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Fig. 1. The overview of our network. The blue part is the process of audio-to-landmarks (A2L). The green part is the process of landmarks-to-frames (L2F).
The landmarks are more robust through the modules of Word Detector and MI Estimator which shown in orange block.

the final talking face. The main contributions of this work can
be summarized as follow:

« We propose to introduce high-level semantic supervision
for audio-landmark learning. Specifically, a word detector
is developed to detect whether the predicted landmarks
sequence contains the target word.

« We propose to enforce the temporal consistency between
audio and landmarks domains with the newly introduced
temporal residual loss, which is derived by estimating
the mutual information between the adjacent audio and
landmarks.

« Extensive experiments on two benchmark talking face
datasets LRW and GRID demonstrate the effectiveness
of our method, which yield promising talking face gen-
eration results comparing to the state-of-the-art methods.

II. RELATED WORK
A. Audio-landmark Prediction

The landmarks, serving as the coordinate points marking
the key parts, are widely used in many tasks such as face
reconstruction [17]-[19], and human pose estimation [20]-
[22]. Considering the positioning function of landmarks, re-

searchers explore many interesting tasks, including auto-dance
[23]-[26], audio-to-body [27] and audio-to-lip [28]. These
tasks all belong to audio-landmark prediction which aims at
predicting landmarks of body or lip from the input audio
automatically. Specifically, Alemi et al. [23] propose to predict
dance movement driven by music based on GroooveNet. Lee
et al. [24] and Tang et al. [24] respectively utilize an auto-
regressive encoder-decoder network and LSTM auto-encoder
to achieve automatic choreography. Yalta et al. [26] propose
a weakly supervised method based on LSTM for automatic
choreography. Shlizerman ez al. [27] propose to predict skele-
ton motion driven by audio of violin or piano based on
LSTM. Eskimez et al. [28] utilize LSTM to predict lip motion
correspond to audio.

B. Talking face generation

At the earliest stage, some researchers use traditional ways
[10], [11], such as Hidden Markov Models (HMMs) [29] to
capture the correspondence between audio and talking face
sequence. Later, with the development of deep learning, works
are mainly based on deep neural networks. For instance,
Suwajanakorn et al. utilize RNN to generate talking face
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video. Chung et al. [30] propose an encoder-decoder CNN
structure to learn the embedding of audio and frames. Fur-
thermore, recent works are fostered by the success in image
generation based on GANSs, such as [4], [5], [31]. Specifically,
Wiles et al. [5] realize the generation of faces by mapping
source modalities to motion space. Chen et al. [4] propose a
correlation loss which calculates by lip optical flow and audio
derivative to capture the correlation between two modalities.
Vougioukas et al. [31] propose to utilize temporal GAN with
three discriminators to jointly optimize the final generation of
talking face video.

Different from the aforementioned methods which dig the
relationship between audio and visual modalities directly,
some works [6], [8] explore the mapping between audio and
facial or lip landmarks as the bridge of talking face generation.
Specifically, Jalalifar et al. [6] select mouth landmarks as a
condition to help the face frames generation via Conditional
Generative Adversarial Nets (C-GAN) [32]. Furthermore,
Chen et al. [8] divide talking face generation into two stages,
audio to facial landmark and landmark to face generation,
and they focus on the latter stage via attention mechanism
and regression-based discriminator. As we discussed before,
the precision of landmarks makes important contributions and
affects the next faces generation. However, these works only
use Ly or Lo as reconstruction loss to guide the landmark
prediction which may not obtain robust landmarks. Thus, we
pay more attention to the stage of facial landmarks from
audio. Different from Zhou er al. [7], which learn in the
purely data-driven manner and propose to disentangle video
into word-space and person-space via introducing word label
and person id, our work introduces a word detector to detect
predicted landmarks whether contain target word and capture
more semantic feature when optimizing the model of audio to
landmarks. Also, we propose a novel temporal residual loss,
which calculates the Mutual Information (MI) between audio
and landmarks residual in the timing axis, to contribute the
temporal consistency between landmarks and audio clips.

III. APPROACHES

In this paper, we propose a word semantic supervised
and cross-modal temporal synchronization guided landmark
learning approach for talking face generation. As shown in
Fig. 1, our network consists of two phases: 1) Audio-to-
Landmarks (A2L), to predict facial landmarks by a landmark
predictor via an LSTM based network supervised by the word
semantic and audio-landmark cross-modal synchronization. 2)
Landmarks-to-Face (L2F), to generate talking face image from
the predicted sequential landmarks of A2L based on a simple
variant of U-Net. We shall elaborate on these two phases in
the following two sections.

A. A2L: Audio To Landmarks

To obtain landmarks from audio, we design an Audio-
driven Landmarks Predictor (Prey) to predict landmarks by
feeding an audio clip and the reference landmarks as the
basic information. Considering the high correlation between

the words and either audio or lip motion during the talking, we
firstly utilize the words information as semantic supervision
to enhance the semantic consistency in audio-landmarks pairs
via a Word Detector Det,,. Second, to further emphasize the
audio-landmarks cross-modal synchronization, we propose a
temporal residual loss. It maximizes the mutual information
between the change of adjacent audio and landmarks via an
MI estimator FE'st,,. By jointly optimizing the word detector
and the temporal residual loss, our method can predict more
meaningful and synchronized landmarks, which can better
guide the next landmarks to face generation.
Audio-driven Landmark Predictor (Prez). Audio-driven
landmark predictor (Preyr) is first fed by 71" segments audio
clip A = { a1, ag, ..., ar}, and the reference landmarks I,
of the input identity face image Iy detected via Dlib [33]
toolkit. The audio A and reference landmarks /..y provide
the movement and identity information respectively for the
landmarks prediction. The landmark predictor Prej, consists
of three components, including Landmarks Encoder E;, Audio
Encoder E,, and Landmarks Decoder D;. First, we feed the
Mel-scale Frequency Cepstral Coefficients (MFCC) as the
audio feature to the Audio Encoder F,, and code the reference
landmarks l,.; via the Landmark Encoder E;. Second, we
concatenate the speech and the reference landmarks features
into Landmark Decoder D; to obtain the final sequential
landmarks.

The sequential landmarks L = { Iy, lo, .., Iy } prediction
process can be simplified as,

L = Di(Ea(A), Ei(lef)), (1)
where we impose Lo loss as the reconstruction constraint,
l 1 T K
EszxK;kZ:‘aH e =1t |l2, )

where L = { Iy, la, ..., [T } indicate the ground truth landmarks
and K denotes the number of landmarks per face image.
Word Detector based Semantic Supervision. The words
shared in both audio and lip motion can be regarded as the
semantic information, to bridge the audio and visual/landmarks
modalities. By taking words semantic information into con-
sideration, the predicted landmarks will reflect closer words
content to the corresponding audio. Based on this intuitive
motivation, we propose to introduce a word detector Det,,
to distinguish whether the predicted landmarks sequence L
contains the word semantic information existed in the given
audio clip. In addition, we use the word information provided
by the dataset as the semantic supervision to bridge the gap
between the audio and landmarks, therefore to capture more
meaningful and realistic landmarks.

We train the word detector on the training set of large-
scale in-the-wild dataset LRW [34], containing about 500,000
videos with 1.16 seconds per video, to detect the word the
in sequential landmarks. Specifically, we feed a landmark
sequence of 25 frames to the detector, and output a one-hot
vector representing the probability of the predicted word.
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TABLE I
THE DETECTION ACCURACY OF THE WORD DETECTOR ON DATASETS
LRW [34] AND GRID [35].

Datasets | LRW | GRID
Accuracy | 98.24% | 96.73%

The word detector is pretrained as,
Lpet, = log(Det,,(L) — vy), 3)

where the structure of Det,, is based on LSTM and two
fully connected layers v,, is a 500 dimension one-hot vector
indicating the target word. We incorporate the pretrained word
detector into A2L training via the following classification loss,

Lya = log(Dety, (L) — vy). %)

By minimizing the Eq. (4), the predicted sequential land-
marks are endowed with words semantic information and make
it more reasonable to guide the next stage L2F generation.

To evaluate the performance of the word detector, we test the

detection accuracy of the word detector on both LRW [34] and
GRID [35] datasets. The high accuracy as reported in Table I
ensures the effectiveness of word detector in A2L to guarantee
the next face generation.
Temporal Residual Loss based Cross-modal Synchroniza-
tion. Temporal consistency is important for the authenticity of
the smooth transition between frames in sequence. Different
from the existing methods that only consider the temporal con-
sistency in the visual domain [6]-[8], we propose to enforce
the cross-modal synchronization between the residual of both
adjacent audio segments (A;11 — A;) and their corresponding
predicted landmarks (H:Hl — H:,t) In particular, we propose
to maximize the mutual information (MI) to optimize the
temporal residual loss. Motivated by the idea of [15], we first
estimate the MI via a two-stream MI Estimator E'st,,, based
on the three convolution layers and two fully connected layers.
In the same manner as the word detector, MI Estimator E'st,,,
is pretrained on ground truth landmarks,

1 I
Lgst,, = -7 Z Estp[(Air1 —Ay)), (Lepr —Ly)]. (5
t=0

Then, we incorporate the MI Estimator FE'st,, into A2L
training via the following temporal residual loss,

1 & . 5
Ly = 7 tz:; Esty[(Arg1 —Ay)), (Lepr — L)l (6)

By maximizing the mutual information between audio and
the predicted landmarks transitions, the predicted sequential
landmarks can better preserve the smooth transition in cross-
modal synchronization corresponding to the given audio clip.

B. L2F: Landmarks to Face

After obtaining the semantic and cross-modal temporal
synchronized landmarks, we utilize GAN [1] to implement the
landmark to face generation (L2F). In the L2F phase, the main
components consist of Frame Generator (Geny) and Frame
Discriminator (Disy). We employ a variation of U-Net as
the generator Gy, which is widely used due to its promising
performance in the image to image translation. To provide
more spatial information during generation, we first translate
the predicted landmarks into heatmaps. Then we concatenate
the heatmaps with the identity face image and feed into the
Frame Generator G'; to obtain the generated video F = { fl,
fg, - fT }. We impose L, reconstruction loss to optimize
Gy,

Ll =l fi—filli - (7)

Due to the larger variation of the lips, we superimpose
an extra adaptive reconstruction loss which focuses on lip
movement according to predicted lip landmarks,

Ll =|| Crop(f;) — Crop(f™) ||1, (8)

where Crop(-) indicates the operation of cropping the lip area
based on landmarks.

To distinguish the authenticity of the generated face, we
employ the adversarial loss to optimize G and Disy.

!, =E[Disg(fi)] +Ellog(1 — Dy(Gy(I1, 1)), (9

where f; indicates the i-th frame in the video ground truth.

IV. EXPERIMENTS

To verify the validity of the proposed methods, we evaluate
our model on two benchmark datasets LRW [34] and GRID
[35] comparing to the state-of-the-art methods Chung et al.
[30], Wiles et al. [5], Zhou et al. [7], and Chen et al. [8].

A. Dataset

a) LRW dataset: LRW dataset is a large in-the-wild
dataset audio-visual lip-reading database from BBC TV broad-
casts which consists of more than 1000 utterances of 500
different words. The length of each video is 29 frames and
the target word is in the middle of the video. Our model is
trained on the training set of the LRW dataset.

b) GRID dataset: GRID dataset contains 1000 short
videos with simple and syntactically identical phrases spoken
by 33 different speakers in the constrained environments. To
demonstrate the generalization of our model, we use the model
pretrained on the LRW dataset for the cross-dataset evaluation
on the GRID dataset.
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in temporal consistency and smoothness.

B. Experimental Setup

a) Preparing: Frames are firstly extracted from raw
video files and aligned by the RSA algorithm [36]. As our
model can generate 256 x 256 resolution images, we then
resize all the frames to this resolution. Subsequently, the Dlib
[33] is used to detect facial landmarks composed of 64 key
points, which act as the landmarks ground truth. For audio
clips, following the operation of [8], we firstly extract MFCC
at the window size of 10 ms in the audio segment extracted
from the raw video and align to the center image frame and
then remove the first coefficient from the original MFCC
vector and finally obtain a 28 x 12 MFCC feature for each

audio clip.

b) Metrics: In this work, we use the common reconstruc-
tion metrics, such as the peak signal-to-noise ratio (PSNR) and
the structural assessment (SSIM) index to evaluate the gener-
ated videos. For PSNR and SSIM, a larger score corresponds
to more realistic generated results. In addition, to evaluate the
quality of the predicted facial landmarks from the audio clip.
we employ the Landmark Distance (LMD) [4] to calculate the
Euclidean distance between the pseudo facial landmark labels
and the generated landmarks from audio.
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Fig. 3. The examples of generated talking faces from test set of LRW dataset [34] comparing with Zhou et al. [7] and Chen et al. [8]. The results show that
our model can better synchronize with the ground truth. More visualized demonstration please refer to the demo video!.

C. Evaluation on LRW

We evaluate our model on the LRW dataset to verify the
effectiveness, as shown in Table II and Fig. 3. Firstly, as
reported in Table II: 1) Our method achieves the best scores
on LMD and SSIM metrics, which verifies the effectiveness
of our landmark learning. 2) The value of PSNR metric of
ours is slightly overshadowed than Chen er al. [§8]. However,
our method significantly outperforms Chen et al. [8] on LMD
and SSIM, which keeps a better balance on the three metrics.
Then, Fig. 3 demonstrates two examples of the generated
talking faces comparing to the most recent methods Chen
et al. [8] and Zhou et al. [7] which architectures are based
on Audio-Landmark-Face and Audio-Face respectively. It is
clear that the generated facial frames in Chen et al. and Zhou
et al. [7] are not well synchronized with the ground truth
especially in the shape of lip motion. While in the second
example, the results of the Zhou et al. [7] tend to have blurry
lips due to the heterogeneous gap between audio and visual
modality. Note that Chen et al. [8] can only generate 128 x 128
resolution images which are much blurrier than our 256x256
resolution images. In contrast, our approach can generate more
synchronized and realistic results comparing to the ground
truth, suggesting the effectiveness of the proposed landmark
learning approach. More visualized demonstration is provided
in the video'.

D. Cross-dataset Evaluation on GRID

The GRID dataset is constrained in a lab-controlled en-
vironment, which is easy for a model to fit on the training
set and produce high-quality results. Therefore, we verify the
effectiveness of our method on GRID with the model trained
on LRW. Table III reports the cross-dataset evaluation results
comparing with the state-of-the-art methods, which are directly
trained on GRID. As shown in Table III, our model achieves
the best scores on LMD and SSIM metrics, which ensures the

Uhttps://drive.google.com/file/d/1y2010Pzd5g8b8emyDF5jt3kLsG8UIP20

TABLE 1T
QUANTITATIVE COMPARISON RESULTS AGAINST STATE-OF-THE-ART
METHODS ON LRW DATASET [34].

Method |  Evaulation on LRW

| LMD | PSNR | SSIM

Chung et al. [30] 1.35 29.36 0.74

Zhou et al. [7] - 26.80 0.88

Wiles et al. [5] 1.60 29.82 0.75

Chen et al. [8] 1.37 30.27 0.78

Ours 1.09 30.15 0.90
TABLE III

QUANTITATIVE COMPARISON AGAINST STATE-OF-THE-ART METHODS ON
GRID DATASET [35]. NOTE THAT OUR METHOD IS TRAINED ON LRW
DATASET [34].

Method |  Evaulation on GRID

| LMD | PSNR | SSIM
Chung et al. [30] 1.44 29.87 0.76
Wiles et al. [5] 1.48 29.39 0.80
Chen et al. 8] 1.29 32.15 0.83
Ours 0.88 31.50 0.96

generalization of our model. Note that our model is slightly
overshadowed by Chen et al. on PSNR, but still competitive
while training on the LRW dataset.

E. Ablation Study

To evaluate the contribution of each component, we further
conduct an ablation study on the Word detector and temporal
residual loss. As reported in Table IV: 1) By progressively
introducing the Word Detector (WD) and the Temporal Resid-
ual Loss (TR), the results are constantly improved on all the
metrics during both A2L and L2F stages. 2) Introducing the
word detector has slightly reduced the SSIM, but can signifi-
cantly improve the LMD. The main reason is that inaccurate
landmarks may not affect the sharpness of the generated faces.
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TABLE IV
ABLATION STUDY ON TWO KEY COMPONENTS OF THE PROPOSED
METHOD, WORD DETECTOR (WD), AND TEMPORAL RESIDUAL LOSS
(TR) ON LRW DATASET [34].

| A2L | L2F

| LMD | LMD | PSNR | SSIM
Baseline 343 | 141 | 2943 | 083
+ WD 308 | 116 | 29.61 | 0.82
+ TR 327 | 128 | 3004 | 087
+WD + TR (Ours) | 3.03 | 1.09 | 30.15 | 0.90

3) Introducing the temporal residual loss consistently improves
the performance on all the three metrics.

We observe that the LMD of A2L is larger than it of L2F.
The explanation is that LMD of L2F is calculated between
landmarks detected in ground truth face image and generated
image by DIib. The Dlib has a prior on face image that
small deformation will be ignored, while the Audio2Landmark
predictor do not share the same prior.

Fig. 2 presents two examples of the predicted landmarks
while speaking "BETTER” and "WORD” to further verify
the effectiveness. Compared with baseline, the landmarks
highlighted by the blue boxes of +WD’ (Word Detector)
present more synchronously with word semantic pronuncia-
tion. The landmarks highlighted by the red boxes of *+TR’
(Temporal Residual Loss) present more temporal consistency.
After jointly introducing *TR’ and the '+ WD’, the sequential
landmarks of ’Ours’ are more synchronously with the word
pronunciation and transit smoother on lip motion which can
refer to the ground truth.

F. Landmarks Analysis

To evaluate the influence of the number of reference land-
marks in our model, we train our method on five different
settings of reference landmarks as shown in Table V (a) by
removing part of the landmarks in corresponding settings. As
reported in Table V, our method is robust to the landmarks of
the jaw, eyes and nose while more sensitive to the landmarks
in the lip area, which contains more crucial information for
talking face generation.

Furthermore, we randomly select 1430 frontal and 1430
profile face videos from test set of LRW dataset to explore
the influence the reference landmarks in terms of face poses
as shown in Table V (b). Generally speaking, “profile pose”
achieves comparable performance to “frontal face”, which
evidences the robustness of our model with different face
poses. “frontal face” outperforms the “profile pose” on all
metrics due to more precise landmarks (less LMD) which
can further enforce the L2F phase for better talking face
generation.

V. CONCLUSION

In this paper, we have presented a novel method via focusing
on learning robust landmarks from audio to better guide the
talking face generation. For obtaining robust landmarks to

TABLE V
EXPERIMENTS ON DIFFERENT SETTINGS OF REFERENCE LANDMARK
EVALUATED ON LRW DATASET [34].

Settings | A2L | L2F
‘ ( Predicted Lmarks) ‘ LMD ‘ LMD ‘ PSNR ‘ SSIM
w/o eyes & nose (47) 3.09 1.12 30.24 0.89
w/o jaw (51) 3.13 1.13 29.97 0.87
(a) | w/o part of lip (58) 3.31 1.15 29.71 0.87
w/o up lip (60) 3.01 1.86 28.33 0.74
w/o right lip (60) 3.05 2.03 28.16 0.71
frontal only (68) 2.92 1.02 30.27 0.93
(b) | profile only (68) 3.19 1.21 30.01 0.87
frontal + profile (68) 3.06 1.12 30.14 0.90

guarantee the quality of generated talking face, we consider the
semantic information contained in landmarks and cross-modal
temporal synchronization between the change of adjacent
audio and landmarks. The former implements via a word
detector to capture richer semantic information in sequential
landmarks that depend on words semantic supervision and
the latter is achieved by learning synchronous relationship
between temporal residual landmarks via a mutual information
estimator. Experimental results on benchmark datasets validate
the effectiveness of our contributions.
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