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Abstract— Vehicle re-identification (Re-ID) is a crucial task1

in smart city and intelligent transportation, aiming to match2

vehicle images across non-overlapping surveillance camera sce-3

narios. However, the images of different vehicles may have4

small visual discrepancies when they have the same/similar5

attributes, e.g., the same/similar color, type, and manufac-6

turer. Meanwhile, the images from a vehicle may have large7

visual discrepancies with different states, e.g., different camera8

views, vehicle viewpoints, and capture time. In this paper,9

we propose an attribute and state guided structural embedding10

network (ASSEN) to achieve discriminative feature learning11

by attribute-based enhancement and state-based weakening for12

vehicle Re-ID. First, we propose an attribute-based enhancement13

and expanding module to enhance the discrimination of vehicle14

features through identity-related attribute information, and we15

design an attribute-based expanding loss to increase the feature16

gap between different vehicles. Second, we design a state-based17

weakening and shrinking module, which not only weakens the18

state information that interferes with identification but also19

reduces the intra-class feature gap by a state-based shrinking loss.20

Third, we propose a global structural embedding module that21

exploits the attribute information and state information to explore22

hierarchical relationships between vehicle features, then we use23

these relationships for feature embedding to learn more robust24

vehicle features. Extensive experiments on benchmark datasets25

VeRi-776, VehicleID, and VERI-Wild demonstrate the superior26

performance and generalization of the proposed method against27

state-of-the-art vehicle Re-ID methods. The code is available at28

https://github.com/ttaalle/fast_assen.29

Index Terms— Vehicle re-identification, attribute-based30

enhancement, state-based weakening, global structural31

embedding.32
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I. INTRODUCTION 33

VEHICLE Re-identification (Re-ID) aims to identify vehi- 34

cle images from the gallery images captured from 35

non-overlapping surveillance cameras that share the same 36

identity as the given probe vehicle. It is an active and 37

challenging task and has drawn much attention due to its 38

wide applications in social security, smart city, and intelligent 39

transportation. The blossom of Deep Convolutional Neural 40

Network (DCNN) has witnessed recent breakthroughs in vehi- 41

cle Re-ID. However, it still faces two severe challenges. 1) The 42

large intra-class discrepancy among the same vehicle images 43

under different states, e.g., different camera views, vehicle 44

viewpoints, and capture time as shown in Fig. 1 (a) and (b). 45

2) The small inter-class discrepancy among different vehi- 46

cles especially when sharing the same/similar attributes, e.g., 47

the same/similar color, type, and manufacturer as shown 48

in Fig. 1 (b), (c) and (d). 49

Recent efforts have provided various solutions while han- 50

dling the above challenges. Representative approaches fall 51

into five categories: 1) Global feature based methods [1], 52

[2], [3], [4], [5], [6], which aim to extract the global hand- 53

crafted/deep features of vehicle images by specific metric 54

learning methods. However, global feature based methods are 55

generally hard to capture the intra-class discrepancy and inter- 56

class similarity since only the appearance of vehicle images 57

are considered. 2) Path-based methods [7], [8], [9] usually 58

adopt spatial-temporal information to remove unreasonable 59

vehicles for refining the retrieval results in the inference 60

stage. However, the appearance changes of the vehicle due to 61

spatial-temporal changes are ignored in the learning stage of 62

vehicle features. 3) Viewpoint-based methods [10], [11], [12], 63

which aim to handle viewpoint changes and learn multi-view 64

features via metric learning for vehicle Re-ID. Meanwhile, 65

some viewpoint-based methods [13], [14] generate hard nega- 66

tive cross-view and same-view images for more robust training 67

with a Generative Adversarial Network (GAN) [15]. Although 68

these viewpoint-based methods significantly reduce the intra- 69

class difference, they ignore the intrinsic state factors of 70

vehicles (e.g., camera views and capture time) and over- 71

look the challenge of the subtle inter-class discrepancy. 4) 72

Local information enhancement methods [16], [17], [18], [19], 73

[20], [21] usually provide some stable discriminative cues 74

to increase the inter-class discrepancy for vehicle Re-ID. 75

However, local region extraction models usually require a large 76

amount of annotated data which are time and labor consuming. 77

Furthermore, the forthcoming Re-ID model may be sensitive 78
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Fig. 1. Illustration of our attribute-based enhancement and state-based
weakening framework for vehicle Re-ID. Different colors represent different
state information while different markers denote different IDs. In the input
image space, vehicle “b, c, d” are more like a same identity vehicle than
vehicle “a, b”. Our attribute-based enhancement and expanding module is
designed to expand the attribute distribution and re-weight attribute features
to the vehicle features to enhance the inter-class difference. For example, the
feature distance between manufacture KIA and manufacture Benz is enlarged
to force the feature distance between vehicle “b” and vehicle “d” to be
greater. In the same way, our state-based weakening and shrinking module
is designed to shrink the state distribution and re-weight state features to the
vehicle features to weaken the intra-class difference. For example, the feature
distance between camera 139 and camera 79 is reduced to force the feature
distance between vehicle “b” and vehicle “a” to be smaller. Therefore our
attribute-based enhancement and state-based weakening framework can cluster
images from the same vehicle compactly and enhance the discrimination
between different vehicles.

to the inaccurate part extraction. 5) Attribute-based methods,79

which use attribute labels to constrain identity features [22],80

or directly concatenating [23] or summing weighted [24], [25]81

identity features and attribute features to boost the Re-ID task.82

Generally speaking, path-based and viewpoint-based methods83

devote to reduce the impact of identity-unrelated information84

on vehicle Re-ID, while local information enhancement and85

attribute-based methods aim to enhance the identity-related86

information to improve the Re-ID task. In this work, we argue87

to simultaneously enhance the identity-related and weaken the88

identity-unrelated information.89

In vehicle Re-ID, first, the images of different vehicles90

with similar attributes share a similar visual appearance (as91

shown in Fig. 1 (b, c, d)). This results in smaller distances92

between different vehicles in the feature space (as shown in93

Fig. 1 (f)), which is the key reason of inter-class similarity94

in vehicle Re-ID. Therefore, we argue that the feature gap of95

different vehicle images can be increased by enhancing their96

identity-related attribute information during feature learning.97

This is known as knowledge embedding [26] which has been98

commonly employed in many other computer vision prob-99

lems [24], [27], [28]. Specifically, we propose an attribute-100

based enhancement and expanding module to expand the101

attribute distribution and re-weight attribute features to102

the vehicle features to enhance the inter-class difference.103

As shown in Fig. 1 (b, d), we enlarge the feature distance104

between manufacturers “KIA” and “Benz” to force larger105

feature distance between the two vehicles. Second, the images106

of the same vehicle (as shown in Fig. 1 (a, b)) under the107

different states generally present different visual appearance.108

Fig. 2. Illustration of the global structural embedding module for vehicle
Re-ID. These points denote the feature embeddings on 60 images from
4 identities in the VeRi-776 testing set. In the input image feature space,
vehicle ¡◦ID1¡± and ¡◦ID3¡± share the same attribute present large overlap
due to the large inter-class similarity. Meanwhile, the vehicle ¡◦ID1¡± in
different states appears sparse feature distribution due to the large intra-class
discrepancy. After global structural embedding, images of the same vehicle
have been compactly aggregated and the discrimination between different
vehicles has been enhanced guided by their state discrepancy ¡◦ Dab, Dac¡◦,
instance discrepancy ¡◦ D12, D13, D14¡◦, and attribute discrepancy ¡◦ DAB ¡◦.

This results in larger distances between the same vehicle 109

images in the feature space (as shown in Fig. 1 (e)), which 110

is the key reason of intra-class discrepancy in vehicle Re-ID. 111

In the same way, we further argue to decrease the feature gaps 112

between that the images of the same vehicle via state-based 113

weakening during feature learning. Specifically, we propose 114

a state-based weakening and shrinking module to shrink 115

the state distribution and re-weight state features to 116

the vehicle features to weaken the intra-class difference. 117

As shown in Fig. 1 (a, b), we reduce the feature distance 118

between camera 139 and camera 79 to encourage the smaller 119

feature distance between the two images. By enforcing the 120

attribute-based enhancement and state-based weakening con- 121

straints, identity-related attribute clues will be enhanced while 122

the identity-independent state factors will be weakened in the 123

vehicle features. 124

Additionally, the deep metric learning methods, which 125

utilize distance metric loss (e.g., contrastive loss [29] and 126

triplet loss [5]) rather than cross-entropy loss [29], aim to 127

learn a deep feature embedding space by enforcing the dis- 128

tance between positive pairs smaller than that of negative 129

pairs during learning. However, most exiting metric learning 130

methods only focus on the appearance, which ignores the 131

hierarchical structural relationships caused by the states and 132

attributes. Concretely, different vehicle instances with similar 133

appearance can be further distinguished based on their attribute 134

diversity. Therefore it is effective to consider this relationship 135

to increase the inter-class feature distance as shown in Fig. 2. 136

Meanwhile, the images of the same vehicle instance with 137

large appearance changes can be further recognized by their 138

state information. Therefore, it is useful to decrease the 139

intra-class feature distance between easy and hard positive 140

samples as shown in Fig. 2. Herein, we propose a global 141

structural embedding module for all vehicle images to clus- 142

ter images from the same vehicle compactly and enhance 143

the discrimination between different vehicles guided by 144

their state discrepancy, instance discrepancy and attribute 145

discrepancy. 146

In this work, we propose an attribute and state guided 147

structural embedding network (ASSEN) towards enlarging the 148

distance of vehicle inter-class features by all available vehicle 149
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attributes and reducing the distance of vehicle intra-class150

features by all available vehicle states. First, we construct151

an attribute-based enhancement and expanding module to152

obtain vehicle features enhanced by multiple attributes and153

design an attribute-based expanding loss to increase the vehi-154

cle inter-class gap. Then, we propose a state-based weak-155

ening and shrinking module to force the learned vehicle156

features to weaken state information that interferes with157

identity and design a state-based shrinking loss to reduce158

the vehicle intra-class gap. The above two modules encour-159

age our ASSEN to be more focused on its identity-related160

information rather than identity-unrelated information. Finally,161

we construct a global structural embedding module to encour-162

age vehicle features to have a global structure related to163

instance discrepancy, state discrepancy and attribute discrep-164

ancy, which can bring hierarchical relationships into the165

feature embedding to obtain more discriminative vehicle166

features.167

The contributions of this paper can be summarized as168

follows.169

• We design an attribute-based enhancement and expanding170

module to obtain vehicle features enhanced by multiple171

attributes. Compare with previous attribute-based Re-ID172

methods, which use attribute labels to constrain identity173

features [22], or directly concatenating [23] or summing174

weighted [24], [25] identity features and attribute features175

to boost the Re-ID task. Our method utilizes the response176

relationship between attribute feature and identity fea-177

ture to highlight the foreground area of the vehicle178

and expand the subtle differences between the same179

attribute.180

• We propose a state-based weakening and shrinking mod-181

ule to weaken the influence of state information and182

reduce the state change of the same vehicle. Different183

from previous work, we further divide the common184

attribute information into identity-related information and185

identity-unrelated information. Our key idea is to simul-186

taneously enhance the identity-related and weaken the187

identity-unrelated information in a unified framework.188

• We propose a global structural embedding module to189

consider hierarchical relationships related to instance dis-190

crepancy, state discrepancy and attribute discrepancy in191

the feature embedding to learn larger weights for hard192

negative (positive) samples with similar attributes (shar-193

ing different states). Existing metric learning methods194

only consider a small number of samples, or equally195

treat all samples. Our method adaptively assigns different196

weights to each sample pair.197

• Comprehensive experiments on three large-scale vehicle198

Re-ID benchmark datasets with or without state and199

attribute information confirm the effectiveness and gen-200

eralization of the proposed model.201

II. RELATED WORK202

We briefly review the related works in the following two203

folds, i.e., vehicle Re-ID and deep metric learning.204

A. Vehicle Re-Identification 205

Due to wide applications in video surveillance and social 206

security, the vehicle Re-ID task has gained more and more 207

attention in recent years. Liu et al. [4] present a deep rel- 208

ative distance learning method to extract both model and 209

instance differences. Features from the model and instance 210

are concatenated to learn the final vehicle feature with vehicle 211

labels. Liu et al. [30] fuse color, texture, and deep features for 212

vehicle Re-ID. They show that deep features outperform the 213

others and feature fusion improves the Re-ID performance. 214

Yan et al. [31] model the relationship of vehicle images as 215

a multi-grain list to discriminate appearance-similar vehi- 216

cles. By introducing multi-grain relationships, they force the 217

deep model to learn the more discriminative feature between 218

different grains over many images. Liu et al. [7] propose a 219

spatial-temporal relation model to re-rank vehicles to further 220

improve the final results of vehicle Re-ID. Shen et al. [8] 221

investigate spatial-temporal association for effectively regular- 222

izing vehicle Re-ID results. The spatial-temporal information 223

along the candidate path is effectively incorporated to esti- 224

mate the validness confidence of the path. Wang et al. [32] 225

embed the spatial-temporal regularization into the orientation 226

invariant module for vehicle Re-ID. With spatial-temporal 227

regularization, the log-normal distribution is adopted to model 228

the spatial-temporal constraints and the retrieval results can be 229

refined. 230

Different from the above global feature based methods 231

and path-based methods, He et al. [17] investigate vehicle 232

local regions to learn part-regularized features for vehicle 233

Re-ID. Khorramshahi et al. [18] present a dual-path adaptive 234

attention model, to capture key-points related to parts for 235

vehicle Re-ID. Meng et al. [19] propose a part perspective 236

transformation on feature space to transform the deformed 237

region to a unified perspective. Liu et al. [21] adopt the graph 238

convolutional networks (GCNs) [33] to model the correla- 239

tion among parts for vehicle Re-ID. However, the part-based 240

approaches need additional part annotations, which takes extra 241

costs. A part prediction network is also needed, which involves 242

more training procedures and complicates the feature extrac- 243

tion model. In addition, identity-related part information is 244

easily disturbed by identity-unrelated information, such as 245

vehicle viewpoints. 246

To handle the viewpoint variation issue in vehicle Re-ID, 247

Sochor et al. [34] learn a 3D orientation vector embedded 248

into the feature map for vehicle recognition. They show that 249

orientation information can decrease classification error and 250

boost verification average precision. Zhou et al. [35] generate 251

the opposite side features to handle the viewpoint problem. 252

Zhou et al. [13] propose a viewpoint aware network that 253

integrates features from viewpoint-based feature extractors 254

with a GAN to create cross-view features for vehicle Re-ID. 255

Zhou et al. [10] exploit the great advantages of DCNN and 256

Long Short-Term Memory (LSTM) [36] to learn transforma- 257

tions across different viewpoints of vehicles. Lou et al. [14] 258

propose an embedding adversarial learning network (EALN) 259

to generate hard negative cross-view and same-view images 260

for more robust training in vehicle Re-ID. Jin et al. [11] 261

propose an Uncertainty-aware Multi-shot Teacher-Student 262
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(UMTS) Network to exploit the comprehensive information263

of multi-view of the same vehicle for effective vehicle Re-264

ID. However, it is difficult to resolve the challenge of vehicle265

inter-class similarity with these viewpoint learning methods.266

Most of existing methods only reduce intra-class discrepancy267

by state (spatial-temporal, viewpoint) information or increase268

inter-class discrepancy by part information individually, while269

ignoring the global structural relationship related to states270

and attributes. We propose an attribute-based enhancement271

and state-based weakening framework, aiming to explore the272

global structural relationship to increase the inter-class discrep-273

ancy and simultaneously reduce the intra-class discrepancy.274

B. Attribute-Based Re-Identification275

Recent works in person Re-ID [24], [37], [38], [39] adopt276

person attributes, such as gender and hair length, as important277

traits to recognize pedestrians. Khamis et al. [37] jointly learn278

a discriminative projection to a joint appearance-attribute279

subspace, by effectively leveraging the interaction between280

attributes and appearance for person Re-ID. Su et al. [38] pro-281

pose a weakly supervised multi-type attribute learning frame-282

work based on the triplet loss by pre-training the attributes283

predictor on independent data. Lin et al. [24] simultaneously284

learn Re-ID embedding and pedestrian attributes, by sharing285

the same backbone and owning classification FC layers respec-286

tively. Sun et al. [39] train two different models for attribute287

and identity recognition tasks and concatenate two branches288

to one identity vector for Re-ID.289

In vehicle Re-ID, Zheng et al. [25] propose a deep net-290

work architecture guided by meaningful attributes, including291

vehicle viewpoints, types, and colors, for vehicle Re-ID.292

Zhao et al. [23] collect a new vehicle dataset with 21 classes293

of structural attributes and proposed a region of interest (ROIs-294

based) vehicle Re-ID method. Qian et al. [22] propose a two-295

branch stripe-based and attribute-aware deep convolutional296

neural network (SAN) to learn the efficient feature embedding297

for vehicle Re-ID task. However, both attributes and vehicle298

images face challenges caused by appearance changes. Dif-299

ferent from previous work, we further divide the common300

attribute information into identity-related information (named301

attributes, such as color and type) and identity-unrelated302

information (named states, such as viewpoint and camera).303

Our key idea is to simultaneously enhance the identity-related304

and weaken the identity-unrelated information in a unified305

framework.306

C. Deep Metric Learning307

Deep metric learning aims to learn a deep feature embed-308

ding space, in which the samples of a same class are close to309

each other and the samples of different classes are far away.310

There are two fundamental types of loss functions for deep311

metric learning, i.e., the contrastive loss [29] and the triplet312

loss [5], which have been widely used in both person and313

vehicle Re-ID [40], [41], [42], [43]. However, the conventional314

contrastive loss or triplet loss based deep metric learning often315

suffers from slow convergence and poor local optima, since316

only a few samples are considered in each training batch.317

There emerge many advances in more robust deep metric 318

learning recently. Chen et al. [44] design a quadruplet loss to 319

enforce a larger inter-class variation and a smaller intra-class 320

variation compared to the triplet loss. Sohn et al. [45] pro- 321

pose an n-pair loss to generalize triplet loss by allowing 322

joint comparison among more than one negative example. 323

He et al. [46] propose a triplet-center loss to learn a center for 324

each class to enhance the discriminative power of the features. 325

Ustinova et al. [47] propose a listwise loss to estimate two dis- 326

tributions of similarities between positive (matching) and neg- 327

ative (non-matching) pairs. Wang et al. [48] propose a ranked 328

list loss to rank all positive points before the negative points 329

and force a margin between them. Liu et al. [49] propose a 330

Group-Group Loss (GGL) to accelerate the intra-group and 331

inter-group feature learning and promote the discriminative 332

ability. Wu propose [50] a margin loss that relaxes unnecessary 333

constraints from traditional contrastive loss and enjoys the 334

flexibility of the triplet loss. However, all the images in 335

positive/negative pairs are treated equally in existing metric 336

learning approaches, which ignore the hierarchical relation- 337

ships between vehicles. In this paper, we propose a global 338

structural embedding loss to cluster images from the same 339

vehicle compactly and enhance the discrimination between 340

different vehicles guided by their state discrepancy, instance 341

discrepancy and attribute discrepancy. 342

III. METHOD 343

To reduce the intra-class distance of vehicles and increase 344

the inter-class distance of vehicles, we propose an Attribute 345

and State guided Structural Embedding Network (ASSEN). 346

It mainly consists of three modules: attribute-based enhance- 347

ment and expanding, state-based weakening and shrinking, 348

global structural embedding. 349

A. Baseline 350

In this work, our goal is to use the easily obtainable 351

state and attribute information in real-world scenes together 352

with the vehicle ID information to learn the discriminative 353

vehicle identity features. Formally, we denote a vehicle input 354

as I = {(x, yid , yat
i |

M
i=1, yst

j |
N
j=1)}, where x and yid denote 355

the input training vehicle image and its associated vehicle 356

identity label. yat
i and yst

j denote the i-th attribute label and the 357

j-th state label of the image x respectively. M and N are the 358

numbers of attribute and state respectively. It’s worth noting 359

that, attribute/state labels are not essential during the training 360

since we can use the pre-trained attribute/state branches when 361

the attribute/state labels are absent. 362

Given a deep backbone network F(·; θ) with the input 363

image x ∈ RW×H×C , where θ represents the learnable 364

parameters of the network. We adopt ResNet-50 [51] without 365

final down-sampling as the backbone model followed by the 366

state-of-the-art vehicle Re-ID methods, such as UMTS [11], 367

PPT [19], FastReID [52], which is also a common setting 368

in person Re-ID methods after PCB [53]. The corresponding 369

vehicle feature tensor encoded by the network is denoted as 370

T = F(x; θ) ∈ Rw×h×c. Then the identity classification 371

Authorized licensed use limited to: Anhui University. Downloaded on November 11,2022 at 14:36:53 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: ATTRIBUTE AND STATE GUIDED STRUCTURAL EMBEDDING NETWORK FOR VEHICLE RE-IDENTIFICATION 5953

(cross-entropy) loss Lid
ce is in the form of,372

Lid
ce = −yid log(FC(G AP(T ))), (1)373

where GAP denotes a global average pooling operation, and374

FC denotes a Full Connected layer that predicts the result of375

classification. In this paper, we regard ResNet-50 with Lid
ce as376

our baseline.377

B. Attribute-Based Enhancement and Expanding (AEE)378

Module379

Different from the previous attribute-based Re-ID380

methods [22], [23], [24], [25], which boost Re-ID tasks381

by concatenating or weighting attribute features. On the382

one hand, our AEE module hopes to enhance the image383

area corresponding to the attribute to improve the feature384

learning ability of a single sample. On the other hand, our385

AEE module hopes to expand the distribution of attributes to386

increase the inter-class distance of samples within a batch.387

To obtain the attribute information of the vehicle, we trans-388

form the vehicle feature tensor into the vehicle attribute feature389

tensor. The i-th attribute feature tensor T at
i ∈ Rw×h×c can be390

formulated as:391

T at
i |

M
i=1 = ReLU (B N (conv1×1

i (T ))), (2)392

where conv1×1
i denotes 1 × 1 convolutional operation about393

the i-th attribute, BN denotes a Bath Normalize operation, and394

ReLU denotes Rectified Linear Unit. conv + B N + ReLU395

composes of a common convolutional block in DCNN.396

Then the attribute classification loss Lst
ce is in the form of,397

Lat
ce = −

M∑
i=1

yat
i log(FC(G AP(T at

i ))), (3)398

where M is the number of attributes, yat
i denotes the i-th399

attribute label of the image x .400

The attribute tensor will be constrained by the cross-entropy401

loss and the ground-truth attribute label. Our purpose here is402

to use attribute labels to enable the output of vehicle features403

to be guided by multiple attributes. The enhanced tensor can404

be expressed as:405

T e
=

1
M

M∑
i=1

T
⊙

Sigmoid(T at
i ), (4)406

where T e
∈ Rw×h×c denotes the attribute enhanced tensor, the407

Sigmoid function is used to control the value range of T at
i in408

the interval [0, 1], and
⊙

is the element-wise product. Similar409

to attention-based Re-ID methods [13], [54], [55], which aims410

to re-weight the convolutional output of DCNN as a feature411

combination. However, most of existing attention-based Re-ID412

methods lack the guidance of identity-related annotations and413

therefore fail to take advantage of the relationship among the414

identity, color, and type of the same vehicle. We argue that415

this intrinsic identity-related information is crucial in vehicle416

Re-ID.417

The overall attribute-based enhancement procedure can be418

formulated as:419

T ′
= T + β1T e, (5)420

where T ′ denotes the vehicle feature tensor after 421

attribute-based enhancement operation, β1 = 0.05 is a 422

hyperparameter used to balance the original feature and 423

the enhanced feature. We add the class activation maps 424

(CAMs) [56] of the attribute (color and type) information, 425

as shown in Fig. 3 (a, b). The color response map and type 426

response map mainly respond to the foreground area related 427

to the vehicle identity, which means that Eq. (5) tends to 428

highlight the foreground area of the vehicle image. 429

In addition to attribute-based enhancement, we further 430

propose an attribute expanding operation to increase the 431

inter-class attribute discrepancy. The global average pooling 432

(GAP) is used to transfer the i-th attribute tensor T at
i ∈ 433

Rw×h×c into the i-th attribute feature vector f at
i ∈ Rc. 434

First, we calculate the i-th attribute standard deviation, which 435

can be formulated as: Dat
i = std( f at

i , f̄ at
i ), where f at

i = 436

G AP(T at
i ) denotes the i-th attribute feature vector about each 437

image in a batch, f̄ at
i denotes the i-th attribute mean vector 438

about the whole batch-size. Our purpose here is to expand 439

the feature distribution of the attribute under the premise 440

of attribute classification, thereby increasing the inter-class 441

attribute discrepancy. The attribute-based expanding loss can 442

be formulated as: 443

Lae = Lat
ce +

1
M

M∑
i=1

1
1 + exp(Dat

i )
. (6) 444

If there exist two samples that share the same color (or type) 445

in a batch, their color (or type) feature distance will become 446

larger under the premise of classification. 447

C. State-Based Weakening and Shrinking (SWS) Module 448

Although attribute-based enhancement and expanding 449

(AEE) module can enhance the inter-class difference by 450

vehicle identity-related attribute information. These identity- 451

related attribute information may be indistinguishable due to 452

diverse state (e.g., camera views, vehicle viewpoints, capture 453

time) changes. We argue that merely enhancing identity-related 454

information is not sufficient for Re-ID, weakening the state 455

information that interferes with identification is also crucial 456

for vehicle Re-ID. Herein, we further consider weakening state 457

information to reduce the intra-class feature gap for vehicle 458

Re-ID. 459

The j-th state feature tensor T st
j ∈ Rw×h×c can be formu- 460

lated as: 461

T st
j |

N
i=1 = ReLU (B N (conv1×1

j (T ))), (7) 462

where conv1×1
j denotes 1 × 1 convolutional operation about 463

the j-th state. Then the state classification loss Lst
ce is in the 464

form of, 465

Lst
ce = −

N∑
j=1

yst
j log(FC(G AP(T st

j ))), (8) 466

where N is the number of states, and yst
j denotes the j-th state 467

label of the image x . 468

The state tensor will be constrained by the cross-entropy 469

loss and the ground-truth state labels. Our goal is to make the 470
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Fig. 3. Pipeline of Attribute and State guided Structural Embedding Network (ASSEN). Given the image x , we first extract the corresponding vehicle
feature tensor T via the backbone. Next, we transform the feature tensor T into the attribute-based enhancement and expanding (AEE) module to obtain the
enhanced feature tensor T e . The AEE module is constrained by the attribute-related cross-entropy loss Lat

ce and attribute-based expanding loss Lae . Then,
we transform the feature tensor T into the state-based weakening and shrinking (SWS) module to obtain the weakened feature tensor T w . The SWS module
is constrained by the state-related cross-entropy loss Lst

ce and state-based shrinking loss Lss . Followed by the combination T ′′ of the feature tensor T , the
enhanced feature tensor T e and the weakened feature tensor T w to increase the identity-related information and simultaneously reduce the information that
interferes with identity. Finally, the global structural embedding (GSE) module embeds instance discrepancy, attribute discrepancy and state discrepancy to
obtain more discriminative vehicle features by a hierarchical structure. Note that ASSEN does not require attribute/state labels during the test. Furthermore,
attribute/state labels are not essential during the training since we can use the pre-trained attribute/state branches when the attribute/state labels are absent.

learned vehicle feature tensor T alleviate the interference of471

multiple states as much as possible. The weakened tensor can472

be expressed as:473

T w
=

1
N

N∑
i=1

T
⊙

Sigmoid(T st
j ), (9)474

where T w
∈ Rw×h×c denotes the state weakened tensor, the475

Sigmoid function is used to control the value range of T st
j to476

[0, 1], and
⊙

is the element-wise product.477

The overall state-based weakening procedure can be formu-478

lated as:479

T ′′
= T ′

− β2T w, (10)480

where T ′′ denotes the vehicle feature tensor after state-based481

weakening operation, T ′ denotes the vehicle feature tensor482

after attribute-based enhancement operation, β2 = 0.05 is a483

hyperparameter used to balance the original feature and the484

state weakened feature. We add the class activation maps485

(CAMs) [56] of the state (camera and viewpoint) information486

as shown in Fig. 3 (c, d). The camera response map and487

viewpoint response map mainly respond to the background488

area of the vehicle image. Therefore Eq. (10) can suppress489

the background area of the vehicle image.490

In addition to designing a state-based weakening procedure, 491

we also added a state-based shrinking operation to reduce 492

the intra-class state discrepancy. The global average pooling 493

(GAP) is used to transfer the j-th state tensor T st
j ∈ Rw×h×c

494

into the j-th state feature vector f st
j ∈ Rc. First, we calculate 495

the j-th state standard deviation, which can be formulated 496

as: Dst
j = std( f st

j , f̄ st
j ), where f st

j = G AP(F st
j ) denotes 497

the j-th state feature vector about each image in a batch, f̄ st
j 498

denotes the j-th state mean vector about the whole batch-size. 499

Our purpose here is to shrink the feature distribution of the 500

state, thereby reducing the intra-class state discrepancy under 501

the premise of state classification. The state-based shrinking 502

loss can be formulated as: 503

Lss = Lst
ce +

1
N

N∑
j=1

exp(Dst
j )

1 + exp(Dst
j )

, (11) 504

If there exists one sample from different cameras (or view- 505

points) in a batch, their camera (or viewpoint) feature distance 506

will become smaller under the premise of classification. 507

D. Global Structural Embedding (GSE) Module 508

After attribute-based enhancement and state-based weaken- 509

ing operations, we can obtain a final vehicle feature tensor 510
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T ′′
∈ Rw×h×c. Followed by a global average pooling (GAP)511

on this tensor, the final vehicle feature vector f ∈ Rc can512

be expressed as f = G AP(T ′′). The idea of AEE and SWS513

is to embed attribute and state information respectively in the514

training stage to help learn more discriminative identity feature515

f , which is the feature used in the testing stage.516

Although the vehicle feature f can be trained through the517

cross-entropy loss in Eq. (1), the training and testing of vehicle518

Re-ID include completely different classes. Therefore it is519

insufficient to solely rely on the cross-entropy loss. Addition-520

ally, the metric learning methods utilize distance metric loss521

(e.g., contrastive loss [29] and triplet loss [5])) to learn a deep522

feature embedding space where the samples of a same class523

are close to each other and the samples of different classes are524

far away. Wu et al. [50] propose a simple margin loss that525

relaxes unnecessary constraints from traditional contrastive526

loss and enjoys the flexibility of the triplet loss. Based on527

the margin loss [50], we design a new GSE loss to pay more528

attention to the hard negative and positive samples by their529

state discrepancy and attribute discrepancy.530

Given a batch of vehicle images xi |
B
i=1, B is batch size,531

we can get a batch of vehicle feature vectors fi |
B
i=1. The532

margin loss [50] aims to push its negative samples farther533

than an upper boundary u and pull its positive samples closer534

than a lower boundary l. Thus u − l is the margin between535

two boundaries. Mathematically,536

Lm = yi j max(di j − l, 0) + (1 − yi j )max(u − di j , 0), (12)537

where yi j = 1 if yi = y j , yi j = 0 otherwise. di j = ∥ fi −538

f j∥2 is the Euclidean distance between two samples.539

It can be seen from Eq. (12) that margin loss only considers540

the instance difference di j between sample pairs, but ignores541

the hierarchical relationship between sample pairs. Concretely,542

different vehicle instances with similar appearance can be543

further distinguished based on their attribute diversity, we con-544

sider this attribute relationship to help the feature embedding545

of negative sample pairs:546

L−
m = exp(−dat

i j )(1 − yi j )max(u − di j , 0), (13)547

where dat
i j denotes the mean Euclidean distance of the548

attributes between two negative samples in a batch. It worth549

noticing that the gradient magnitude concerning any negative550

embedding is different in Eq. (13). Mathematically,551

∥
∂L−

m

∂ f j
∥2 = exp(−dat

i j ), i f yi ̸= y j , (14)552

which means that our GSE module encourages negative553

samples with smaller attribute differences to obtain greater554

gradient magnitude. If a negative sample pair has the same555

attribute, the dat
i j ≈ 0, then exp(−dat

i j )di j ≈ di j , which556

denotes the feature embedding mainly depends on the instance557

difference di j .558

In the same way, since the images of the same vehicle559

instance with large appearance changes can be further recog-560

nized by their state information, we consider this relationship561

to help the feature embedding of positive sample pairs:562

L+
m = exp(−

1
d̃st

i j
)yi j max(di j − l, 0), (15)563

where d̃st
i j = dst

i j + ϵ, ϵ = 0.000001 is a small value to avoid 564

zero denominators, dst
i j is the mean Euclidean distance of the 565

states between two positive samples in a batch. exp(− 1
d̃st

i j
) 566

can be considered as a gradient magnitude of positive embed- 567

ding, which means that our GSE module encourages positive 568

samples with larger state differences to obtain greater gradient 569

magnitude. 570

The state and attribute guided global structural embedding 571

loss is: 572

Lgse = Si j yi j max(di j − l, 0) + Wi j (1 − yi j )max(u − di j , 0), 573

(16) 574

where Si j = exp(− 1
dst

i j +ϵ
) and Wi j = exp(−dat

i j ) construct 575

a global structure for the whole batch-size vehicle images. 576

If Si j = Wi j = 1, Lgse is equivalent to margin loss [50]. 577

Si j ∈ [0, 1] and Wi j ∈ [0, 1] can be regarded as state-related 578

weights and attribute-related weights respectively. 579

In GSE module, the designed loss can be explained as giving 580

larger weights for hard negatives and positives. Note that the 581

attribute and state features are imposed into the loss function. 582

The corresponding gradients are as following: 583

∥
∂L−

m

∂ f at
j

∥2 = exp(−dat
i j )(u − di j ), i f yi ̸= y j , 584

∥
∂L+

m

∂ f st
j

∥2 = exp(−1/d̃st
i j )(di j − l)/(d̃st

i j ∗ d̃st
i j ), else, (17) 585

which means that our GSE module encourages negative sam- 586

ples with smaller instance differences and attribute differences 587

to obtain greater gradient magnitude of the attribute. Even if 588

two negative samples have the same attributes, the gradient still 589

exists as ∥
∂L−

m
∂ f at

j
∥2 = (u − di j ). Homologous, our GSE module 590

encourages positive samples with larger instance differences 591

and state differences to obtain greater gradient magnitude of 592

the state, until the distance between the positive samples is 593

less than the lower boundary. 594

To reduce hand-tuned hyperparameters, we reconsider the 595

goals of attribute-based expanding and state-based shrinking, 596

and design a new loss function Laess to replace the original 597

loss function Lae and Lss . Mathematically, 598

Laess = α(Lat
ce + Lst

ce) 599

+

1
N

∑N
j=1 exp(Dst

j )

1
M

∑M
i=1 exp(Dat

i ) +
1
N

∑N
j=1 exp(Dst

j )
, (18) 600

where α =
2

M+N is an adaptive parameter inversely propor- 601

tional to the number of annotations. Dat
i (Dst

j ) represents the 602

i-th attribute ( j-th state) standard deviation. Under the premise 603

of attribute/state classification, the attribute difference of all 604

samples is enlarged, while the state difference is reduced. The 605

final objective function for our ASSEN model rewrite as: 606

Ltotal = Lid
ce + Laess + ηLgse, (19) 607

where only η is used to balance the classification learning and 608

metric learning. 609
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IV. EXPERIMENT610

To validate the superiority of the proposed Attribute611

and State guided Structural Embedding Network (ASSEN)612

method, it is compared with state-of-the-art vehicle Re-ID613

approaches on three large-scale databases.614

A. Datasets615

VeRi-776 dataset [7] consists of 49357 images of616

776 distinct vehicles captured in 20 non-overlapping cam-617

eras with various orientations and lighting conditions, where618

576 identities with 37778 images and 200 identities with619

11579 images are assigned as training and testing respectively.620

Furthermore, 1678 images from 200 identities have been621

selected as the queries from the testing set. The original622

VeRi-776 [7] contains the labels of the vehicle IDs, cam-623

era IDs, color IDs and type IDs, while Zheng et al. [25]624

have annotated the viewpoint information, including f ront ,625

f ront_side, side, rear_side, and rear . We use two kinds626

of state information (camera, viewpoint) and two kinds of627

attribute information (color, type) in VeRi-776 dataset [7].628

VERI-Wild dataset [6] is a newly released dataset. Dif-629

ferent from VeRi-776 [7] captured at day, VERI-Wild [6] are630

captured at both day and night. The training subset consists631

of 277797 images of 30671 vehicles. Besides, there are three632

different scale testing subsets, i.e., Test3000 (Small), Test5000633

(Medium), and Test10000 (Large). Except for vehicle ID634

information, VERI-Wild [6] contains various labels of cam-635

era, color, type, and manufacturer annotations. Furthermore,636

we have annotated the time labels according to the acquisition637

hour of each image. For example, the image captured at638

22:15:29 is annotated as 22, and there are 24 time IDs in639

total. We use two kinds of state information (camera, time) and640

three kinds of attribute information (color, type, manufacturer)641

in VERI-Wild dataset [6].642

VehicleID dataset [4] is composed of 221567 images from643

26328 unique vehicles. Half of the identities, i.e., 13164,644

serves for training while the other half for testing evaluation.645

There are 6 testing splits with various gallery sizes as 800,646

1600, 2400, 3200, 6000, and 13164. Following the protocol647

in [14], [18], and [17], we use the first three splits Test800648

(Small), Test1600 (Medium) and Test2400 (Large) for test-649

ing. This procedure is repeated ten times and the averaged650

metrics. Note that VehicleID [4] only contains ID informa-651

tion without any attribute or state information. Therefore,652

we use the attribute and state branch parameters pre-trained653

on VERI-Wild [6] to obtain state and attribute information for654

VehicleID [4].655

B. Evaluation Metrics656

Following the general evaluation protocols in the Re-ID657

field [1], [53], [57], the Rank-1 identification rate (R-1),658

Rank-5 identification rate (R-5), and mean average precision659

(mAP) are used as performance metrics. Rank-score is an660

estimation of finding the correct match in the Rank-K returned661

results. The mAP is a comprehensive index that considers662

both the precision and recall of the results. To evaluate the663

TABLE I
COMPARISON RESULTS OF OUR METHOD AGAINST THE

STATE-OF-THE-ART METHODS ON VERI-776 DATASET (IN %)

TABLE II
COMPARISON RESULTS OF OUR METHOD AGAINST THE

STATE-OF-THE-ART METHODS ON VEHICLEID DATASET (IN %)

stability of our model, we train the model in 10 random trials 664

on each dataset and take the average result as our performance. 665

The corresponding standard deviation values are updated in 666

Table I - IV. 667

C. Implementation Details 668

1) Network Architecture: We adopt ResNet-50 [51] as the 669

backbone model in our experiments. In our implementation, 670

all the input images are resized to W × H × C = 256 × 671

256×3. Follow [53], we remove the last spatial down-sampling 672

operation in ResNet-50 [51]. After the backbone model, the 673

size of the feature tensor is w × h × c = 16 × 16 × 2048. 674

For classifiers, we use a batch normalization layer [58] and 675

a fully connected layer followed by a softmax function. For 676

data augmentation, the images are augmented with random 677

horizontal flipping, padding 10 pixels, random cropping, and 678
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TABLE III
COMPARISON RESULTS ON MAP OF OUR METHOD AGAINST THE STATE-

OF-THE-ART METHODS ON VERI-WILD DATASET (IN %)

TABLE IV
COMPARISON RESULTS ON RANK SCORE OF OUR METHOD AGAINST THE

STATE-OF-THE-ART METHODS ON VERI-WILD DATASET (IN %)

random erasing [59]. The Adam optimizer [60] is used with679

a batch size of 64. We further evaluate our method on a680

stronger baseline FastReID [52]. Note that due to the GPU681

memory limitations, we implement FastReID [52] with the682

same batch-size as our method in 16 ids ∗ 4 imgs for fair683

comparison. The new architecture is named Fast_ASSEN in684

the experiments.685

2) Hyper Parameters: In Attribute-based Enhancement and686

Expanding (AEE) module, β1 is used to balance the original687

tensor and the enhanced tensor and set as 0.05. In State-688

based Weakening and Shrinking (SWS) module, β2 is used689

to balance the original tensor and the weakened tensor and690

set as 0.05. In Global Structural Embedding (GSE) module,691

we empirically fix the upper and lower boundaries in the GSE692

module to 1 and 0.3, following the commonly used margin693

loss [50]. In the final objective function, the weight parameter694

η = 0.3, These hyperparameters will be discussed in detail in695

Table VI. We run our experiments on two Tesla P100 GPU696

with 16 GB RAM. Our model requires about 13.5 GB of RAM697

and 348 minutes of training time on VeRi-776 dataset [7]. The698

base learning rate is 3.5 × 10−4 and the learning rate decays699

to 3.5 × 10−5 and 3.5 × 10−6 at the 40-th epoch and the700

70-th epoch respectively. Our model is trained in a total of701

120 epochs.702

3) Compared Methods: We compare our method with some703

state-of-the-art methods which mainly fail into four categories.704

a) Global feature based methods: E.g., Bag-of-Words + 705

Color Names (BOW-CN) [1], Local Maximal Occurrence 706

(LOMO) [2], GoogLeNet [3], Fusion of Attributes and Color 707

feaTures (FACT) [30], Feature Distance Adversarial Network 708

(FDA-Net) [6], Deep Relative Distance Learning (DRDL) [4], 709

Triplet [5], Softmax [7], Hard-aware Deeply Cascaded embed- 710

ding (HDC) [61], Unlabled-GAN [62], Group-sensitive Triplet 711

Embedding (GSTE) [41]. 712

b) Path based methods: E.g., Orientation Invariant Fea- 713

ture Embedding (OIFE) [32], Siamese-CNN + Path + LSTM 714

(SCPL) [8], Null space base Fusion of Attribute and Color 715

feaTures (NuFACT) [9]. 716

c) Viewpoint based methods: E.g., Viewpoint-aware 717

Attentive Multi-view Inference (VAMI) [13], Embedding 718

Adversarial Learning (EALN) [14], Uncertainty-aware Multi- 719

shot Teacher-Student Network (UMTS) [11]. 720

d) Local information enhancement methods: E.g., 721

Region-aware deep Model (RAM) [16], Adaptive Attention 722

Model for Vehicle Re-identification (AAVER) [18], Part- 723

regularized Near-duplicate (PRN) [17], Part Perspective Trans- 724

formation (PPT) [19]. 725

e) Attribute based methods: E.g., Jointly learns Deep 726

Feature representations, Camera Views, vehicle Types 727

and Colors (DF-CVTC) [25], Two-branch Stripe-based 728

and Attribute-aware Network (SAN) [22], Region of 729

Interests-based Vehicle Re-identification (ROIVR) [23]. 730

D. Comparison With State-of-the-Art Methods 731

1) Evaluation Results on VeRi-776: Table I reports the 732

performance comparison of our method against the state-of- 733

the-art methods on VeRi-776 dataset [7]. From which we 734

can see, the local information enhancement method PPT [19] 735

has higher performance on VeRi-776 [7] compared with the 736

method UMTS [11] based on viewpoint learning. The reason 737

may be because the viewpoint change of VeRi-776 [7] is 738

not too drastic, challenges mainly come from similar vehi- 739

cles. Compared with the method based on local information 740

enhancement and viewpoint-based methods, our approach sig- 741

nificantly beats the state-of-the-art methods as 81.3% and 742

96.9% on mAP and the Rank-1 respectively. Although the 743

second-best method PPT [19] achieves 80.6% and 96.5% 744

on mAP and Rank-1 respectively. PPT [19] propose a part 745

perspective transform module to map key points related to 746

part regions to a unified viewpoint on feature space. How- 747

ever, keypoint extraction usually requires a large amount 748

of annotated data which is time and labor consuming, and 749

inaccurate results of keypoint would affect the performance of 750

vehicle Re-ID greatly. Our ASSEN significantly surpasses the 751

most competitive attribute-based method SAN [22] by +8.8% 752

and +3.6% in mAP and Rank-1 accuracies respectively. The 753

key reason is SAN [22] only considers the enhancement 754

of attributes while ignoring the state diversity. By jointly 755

considering the enhancement of attributes, the weakening of 756

states and the hierarchical relationships in the vehicle Re-ID 757

network, our ASSEN learns more robust feature representation 758

on VeRi-776 dataset [7] comparing to the state-of-the-art 759

methods. Fast_ASSEN further boosts the performance in both 760

mAP and ranking scores. 761
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TABLE V
ABLATION STUDY ON VERI-776, VERI-WILD AND VEHICLEID (IN %)

2) Evaluation Results on VehicleID: Table II shows the762

comparison results on VehicleID [4] on three different testing763

sets. The vehicle images in VehicleID [4] only contain two764

viewpoints, e.g., front and rear, which result in drastic view-765

point changes. As reported in Table II, the method UMTS [11]766

based on viewpoint learning has higher performance than the767

local information enhancement method PPT [19] on Vehi-768

cleID [4] compared with VeRi-776 dataset [7]. This implies769

that it is necessary to consider joint learning from different770

viewpoints in VehicleID [4]. In addition to the viewpoint771

factor similar as UMTS [11], our ASSEN also considers the772

time factor and the camera factor, as well as the attribute773

information to enhance the discrimination ability. As shown in774

Table II, the Rank-1 accuracies of our approach improve 4.3%,775

3.9% and 4.8% than UMTS. Note that our methods, ASSEN776

and Fast_ASSEN, without any attribute and state annotation777

on VehicleID [4], still significantly beats the state-of-the-art778

attribute-based methods, especially comparing SAN [22] and779

ROIVR [23] with additional attribute annotations. This further780

verifies the generality of our method of leveraging the attribute781

and state information on more general scenarios.782

3) Evaluation Results on VERI-Wild: As shown in Table III783

and Table IV, our ASSEN achieves competitive results on784

all of the testing subsets on the VERI-Wild dataset [6].785

Specifically, the Rank-1 accuracies of our approach achieve786

94.9%, 91.7% and 88.8% on Test3000 (small), Test5000787

(middle) and Test10000 (large) respectively, which improve788

3.0%, 2.6% and 4.0% than the second-best method PPT [19].789

Meanwhile, the mAP of our method achieve 80.6%, 74.5% and790

66.2% on Test3000 (small), Test5000 (middle) and Test10000791

(large) respectively, which improve 6.4%, 7.0% and 6.9%792

than the second-best method PPT [19]. The data size of793

VERI-Wild dataset [6] is about 6 times that of VeRi-776794

dataset [7]. Although our Re-ID performance is very close795

to PPT [19] on VeRi-776 [7], our performance on VERI-796

Wild dataset [6] is much higher than that of PPT [19],797

which implies the promising performance in potential large-798

scale applications. Integrating our method into FastReID [52]799

consistently improves the performance both mAP and ranking800

scores.801

Fig. 4. Subcomponent analysis on VeRi-776.

Fig. 5. The mAP performance against the number of training epochs using
global structural embedding loss and margin loss [50] on VeRi-776.

E. Ablation Study 802

1) Component Study: To verify the contribution of the 803

components in our model, we implement several variants of 804

our method on the three datasets, as reported in Table V. Our 805

baseline is ResNet-50 with Lce. By progressively introduc- 806

ing the attribute-based enhancement and expanding module 807

(AEE), state-based weakening and shrinking module (SWS), 808

and global structural embedding module (GSE) into the 809
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Fig. 6. T-SNE [63] visualization of the learned feature embeddings on
329 images from 8 identities in the VeRi-776 testing set. The points with
the same shape indicate the same identity, while the different colors represent
different attributes. These points contain the samples (of ID1, ID2, ID3, ID4)
in Fig. 2.

baseline, both mAP, and Rank-1 scores significantly increase810

on all the three datasets with different test settings.811

This verifies the contribution of each component in our812

model.813

2) Analysis of Different Baselines: To further validate the814

effectiveness of our method, we evaluate the component of815

two stronger baselines, (1) FastReID [52], which is a strong816

baseline for vehicle Re-ID as shwon in Table V (b1-b5),817

and (2) the baseline in the state-of-the-art methods such as818

UMTS [11], PPT [19], FastReID [52], with both cross-entropy819

loss and triplet loss (baseline (Lce + L tr i )), as shown in820

Table V (c1-c5). Note that due to the GPU memory limitations,821

we implement FastReID [52] with the same batch size as our822

method in 16 ids∗4 imgs for fair comparison. Consistently, all823

the AEE, SWS, and GSE modules make effective contributions824

in our method on the new baselines.825

Furthermore, Fig. 6 visualizes the feature map during the826

ablation study. The AEE module increases the inter-class827

distance of different attributes, while the SWS module reduces828

the intra-class distance and increase the inter-class distance829

with the same attribute. GSE module can further reduce the830

intra-class gap and increase the inter-class gap.831

3) Subcomponent Study: To further evaluate the contribu-832

tion of each state and attribute, we evaluate our method by833

removing a certain attribute or state as shown in Fig. 4. It is834

clear that each attribute or state information contributes to835

our ASSEN model. In addition, we compare the performance836

and convergence of the global embedding loss (ASSEN (GSE837

loss)) with the margin loss [50] (ASSEN (margin loss)) as838

shown in Fig. 4 and in Fig. 5, respectively. ASSEN (margin839

loss) denotes baseline+ AE E + SW S +margin loss and has840

Fig. 7. Feature distance discrepancy of the baseline and ASSEN. Distance
discrepancy mainly includes the instance distance between positive sample
pairs (PID), the instance distance between negative sample pairs (NID), the
state distance between positive sample pairs (PSD) and the attribute distance
between negative sample pairs (NAD).

the same hyperparameters as ASSEN. As shown in Eq. (16), 841

the margin loss [50] can be seen as a special form of our 842

global embedding loss without weight. By considering the 843

hierarchical relationships (inter-class attribute discrepancy and 844

intra-class state discrepancy) between vehicles, our global 845

embedding loss converges faster and achieves better perfor- 846

mance. 847

F. Parameter Analysis 848

There are five important parameters in our model. β1 and 849

β2 balances the contribution of the enhanced feature and 850

the weakened feature respectively, while u and l control 851

the margin between positive samples and negative samples 852

respectively. In the final loss function, η control the weight 853

of classification learning and metric learning. We empirically 854

set β1 = 0.05, β2 = 0.05, u = 1, l = 0.3 and η = 0.3. The 855

parameter analysis results with diverse parameter changes on 856

VeRi-776 [7] are shown in Table VI, which demonstrates that 857

our model is not sensitive to the parameters. 858

G. Analysis of Distance Discrepancy 859

To further verify the ability of handling the inter-class 860

similarity and intra-class discrepancy of our method, we visu- 861

alize the instance distance of positive sample pairs (PID), 862

the instance distance of negative sample pairs (NID), the 863
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TABLE VI
PARAMETER ANALYSIS ON VERI-776 (IN %)

state distance of positive sample pairs (PSD) and the attribute864

distance of negative sample pairs (NAD). We first average865

the PID/NID/PSD/NAD of each anchor in a batch, and then866

average over all batches in an epoch. As shown in Fig. 7, our867

ASSEN significantly shortens the state distance of positive868

samples (PSD), while increasing the attribute distance of869

negative samples (NAD), which shortens the instance distance870

of positive samples (PID) and enlarges the instance distance871

of negative samples (NID). It shows that weakening the872

state information can help reduce the intra-class distance, and873

enhancing the attribute information can help enlarge the inter-874

class distance. They are both effective ways to improve the875

discrimination of the vehicle Re-ID network.876

V. CONCLUSION877

To our best knowledge, this is the first work to solve the878

problem of Re-ID by enhancing attribute information and879

weakening state information. In this paper, we first argue the880

factors that cause the challenge of vehicle Re-ID into state881

factors and attribute factors. We have contributed an attribute882

and state guided structural embedding network (ASSEN),883

followed by three novel modules: attribute-based enhance-884

ment and expanding, state-based weakening and shrinking,885

global structural embedding. Comparing with state-of-the-886

art vehicle Re-ID methods, extensive experiments demon-887

strate the promising performance of the proposed method.888

Although our method requires additional state information889

and attribute information, this information is easy to obtain890

and has strong generalization capabilities. In the future,891

we will consider applying the idea of reducing state discrep-892

ancy and increasing attribute discrepancy to other recognition893

tasks (pedestrians, animals) and unsupervised vehicle Re-ID894

problems.895

REFERENCES896

[1] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scal-897

able person re-identification: A benchmark,” in Proc. IEEE Int. Conf.898

Comput. Vis. (ICCV), Dec. 2015, pp. 1116–1124.899

[2] S. Liao, Y. Hu, X. Zhu, and S. Z. Li, “Person re-identification900

by local maximal occurrence representation and metric learning,” in901

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,902

pp. 2197–2206.903

[3] L. Yang, P. Luo, C. C. Loy, and X. Tang, “A large-scale car dataset904

for fine-grained categorization and verification,” in Proc. IEEE Conf.905

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3973–3981.906

[4] H. Liu, Y. Tian, Y. Wang, L. Pang, and T. Huang, “Deep relative907

distance learning: Tell the difference between similar vehicles,” in908

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,909

pp. 2167–2175.910

[5] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified 911

embedding for face recognition and clustering,” in Proc. IEEE Conf. 912

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823. 913

[6] Y. Lou, Y. Bai, J. Liu, S. Wang, and L. Duan, “VERI-Wild: A large 914

dataset and a new method for vehicle re-identification in the wild,” 915

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 916

Jun. 2019, pp. 3235–3243. 917

[7] X. Liu, W. Liu, T. Mei, and H. Ma, “A deep learning-based approach 918

to progressive vehicle re-identification for urban surveillance,” in Proc. 919

Eur. Conf. Comput. Vis., 2016, pp. 869–884. 920

[8] Y. Shen, T. Xiao, H. Li, S. Yi, and X. Wang, “Learning deep neu- 921

ral networks for vehicle re-ID with visual-spatio-temporal path pro- 922

posals,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, 923

pp. 1918–1927. 924

[9] X. Liu, W. Liu, T. Mei, and H. Ma, “PROVID: Progressive and 925

multimodal vehicle reidentification for large-scale urban surveil- 926

lance,” IEEE Trans. Multimedia, vol. 20, no. 3, pp. 645–658, 927

Mar. 2018. 928

[10] Y. Zhou, L. Liu, and L. Shao, “Vehicle re-identification by deep hidden 929

multi-view inference,” IEEE Trans. Image Process., vol. 27, no. 7, 930

pp. 3275–3278, Mar. 2018. 931

[11] X. Jin, C. Lan, W. Zeng, and Z. Chen, “Uncertainty-aware multi-shot 932

knowledge distillation for image-based object re-identification,” in Proc. 933

34th AAAI Conf. Artif. Intell., 2020, pp. 11165–11172. 934

[12] A. Porrello, L. Bergamini, and S. Calderara, “Robust re-identification 935

by multiple views knowledge distillation,” in Proc. Eur. Conf. Comput. 936

Vis., 2020, pp. 93–110. 937

[13] Y. Zhouy and L. Shao, “Viewpoint-aware attentive multi-view inference 938

for vehicle re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. 939

Pattern Recognit., Jun. 2018, pp. 6489–6498. 940

[14] Y. Lou, Y. Bai, J. Liu, S. Wang, and L.-Y. Duan, “Embedding adversarial 941

learning for vehicle re-identification,” IEEE Trans. Image Process., 942

vol. 28, no. 8, pp. 3794–3807, Aug. 2019. 943

[15] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural 944

Inf. Process. Syst., 2014, pp. 2672–2680. 945

[16] X. Liu, S. Zhang, Q. Huang, and W. Gao, “RAM: A region-aware deep 946

model for vehicle re-identification,” in Proc. IEEE Int. Conf. Multimedia 947

Expo (ICME), Jul. 2018, pp. 1–6. 948

[17] B. He, J. Li, Y. Zhao, and Y. Tian, “Part-regularized near-duplicate 949

vehicle re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern 950

Recognit. (CVPR), Jun. 2019, pp. 3997–4005. 951

[18] P. Khorramshahi, A. Kumar, N. Peri, S. S. Rambhatla, J.-C. Chen, and 952

R. Chellappa, “A dual-path model with adaptive attention for vehicle 953

re-identification,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 954

Oct. 2019, pp. 6132–6141. 955

[19] D. Meng, L. Li, S. Wang, X. Gao, Z.-J. Zha, and Q. Huang, “Fine- 956

grained feature alignment with part perspective transformation for 957

vehicle Reid,” in Proc. 28th ACM Int. Conf. Multimedia, Oct. 2020, 958

pp. 619–627. 959

[20] P. Khorramshahi, N. Peri, J.-C. Chen, and R. Chellappa, “The devil is 960

in the details: Self-supervised attention for vehicle re-identification,” in 961

Proc. Eur. Conf. Comput. Vis., 2020, pp. 369–386. 962

[21] X. Liu, W. Liu, J. Zheng, C. Yan, and T. Mei, “Beyond the 963

parts: Learning multi-view cross-part correlation for vehicle re- 964

identification,” in Proc. 28th ACM Int. Conf. Multimedia, Oct. 2020, 965

pp. 907–915. 966

[22] J. Qian, W. Jiang, H. Luo, and H. Yu, “Stripe-based and attribute-aware 967

network: A two-branch deep model for vehicle re-identification,” Meas. 968

Sci. Technol., vol. 31, no. 9, Jun. 2020, Art. no. 095401. 969

[23] Y. Zhao, C. Shen, H. Wang, and S. Chen, “Structural analysis of 970

attributes for vehicle re-identification and retrieval,” IEEE Trans. Intell. 971

Transp. Syst., vol. 21, no. 2, pp. 723–734, Feb. 2020. 972

[24] Y. Lin et al., “Improving person re-identification by attribute 973

and identity learning,” Pattern Recognit., vol. 95, pp. 151–161, 974

Nov. 2019. 975

[25] H. Li et al., “Attributes guided feature learning for vehicle re- 976

identification,” IEEE Trans. Emerg. Topics Comput. Intell., early access, 977

Dec. 1, 2021, doi: 10.1109/TETCI.2021.3127906. 978

[26] T. Chen, L. Lin, R. Chen, Y. Wu, and X. Luo, “Knowledge-embedded 979

representation learning for fine-grained image recognition,” in Proc. 27th 980

Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 627–634. 981

[27] X. Liu, J. Wang, S. Wen, E. Ding, and Y. Lin, “Localizing by describing: 982

Attribute-guided attention localization for fine-grained recognition,” in 983

Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4190–4196. 984

Authorized licensed use limited to: Anhui University. Downloaded on November 11,2022 at 14:36:53 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TETCI.2021.3127906


LI et al.: ATTRIBUTE AND STATE GUIDED STRUCTURAL EMBEDDING NETWORK FOR VEHICLE RE-IDENTIFICATION 5961

[28] L. Lin, L. Huang, T. Chen, Y. Gan, and H. Cheng, “Knowledge-985

guided recurrent neural network learning for task-oriented action pre-986

diction,” in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2017,987

pp. 625–630.988

[29] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by989

learning an invariant mapping,” in Proc. IEEE Comput. Soc. Conf.990

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2006, pp. 1735–1742.991

[30] X. Liu, W. Liu, H. Ma, and H. Fu, “Large-scale vehicle re-identification992

in urban surveillance videos,” in Proc. IEEE Int. Conf. Multimedia Expo993

(ICME), Jul. 2016, pp. 1–6.994

[31] K. Yan, Y. Tian, Y. Wang, W. Zeng, and T. Huang, “Exploiting995

multi-grain ranking constraints for precisely searching visually-similar996

vehicles,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,997

pp. 562–570.998

[32] Z. Wang et al., “Orientation invariant feature embedding and spatial999

temporal regularization for vehicle re-identification,” in Proc. IEEE Int.1000

Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 379–387.1001

[33] T. Kipf and M. Welling, “Semi-supervised classification with graph1002

convolutional networks,” in Proc. Int. Conf. Learn. Represent., 2017,1003

pp. 1–14.1004

[34] J. Sochor, A. Herout, and J. Havel, “BoxCars: 3D boxes as1005

CNN input for improved fine-grained vehicle recognition,” in Proc.1006

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,1007

pp. 3006–3015.1008

[35] Y. Zhou and L. Shao, “Cross-view GAN based vehicle genera-1009

tion for re-identification,” in Proc. Brit. Mach. Vis. Conf., 2017,1010

pp. 1–12.1011

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural1012

Comput., vol. 9, no. 8, pp. 1735–1780, 1997.1013

[37] S. Khamis, C.-H. Kuo, V. K. Singh, V. D. Shet, and L. S. Davis, “Joint1014

learning for attribute-consistent person re-identification,” in Proc. Eur.1015

Conf. Comput. Vis., 2014, pp. 134–146.1016

[38] C. Su, S. Zhang, J. Xing, W. Gao, and Q. Tian, “Multi-type attributes1017

driven multi-camera person re-identification,” Pattern Recognit., vol. 75,1018

pp. 77–89, Mar. 2017.1019

[39] C. Sun, N. Jiang, L. Zhang, Y. Wang, W. Wu, and Z. Zhou, “Unified1020

framework for joint attribute classification and person re-identification,”1021

in Proc. Int. Conf. Artif. Neural Netw., 2018, pp. 637–647.1022

[40] Y.-J. Cho and K.-J. Yoon, “Improving person re-identification via pose-1023

aware multi-shot matching,” in Proc. IEEE Conf. Comput. Vis. Pattern1024

Recognit. (CVPR), Jun. 2016, pp. 1354–1362.1025

[41] Y. Bai, Y. Lou, F. Gao, S. Wang, Y. Wu, and L. Duan, “Group-sensitive1026

triplet embedding for vehicle reidentification,” IEEE Trans. Multimedia,1027

vol. 20, no. 9, pp. 2385–2399, Sep. 2018.1028

[42] S. Zhou, J. Wang, D. Meng, Y. Liang, Y. Gong, and N. Zheng,1029

“Discriminative feature learning with foreground attention for per-1030

son re-identification,” IEEE Trans. Image Process., vol. 28, no. 9,1031

pp. 4671–4684, Dec. 2019.1032

[43] H.-X. Yu and W.-S. Zheng, “Weakly supervised discriminative feature1033

learning with state information for person identification,” in Proc.1034

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,1035

pp. 5527–5537.1036

[44] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond triplet loss:1037

A deep quadruplet network for person re-identification,” in Proc.1038

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,1039

pp. 1320–1329.1040

[45] K. Sohn, “Improved deep metric learning with multi-class n-pair1041

loss objective,” in Proc. Adv. Neural Inf. Process. Syst., 2016,1042

pp. 1857–1865.1043

[46] X. He, Y. Zhou, Z. Zhou, S. Bai, and X. Bai, “Triplet-center loss for1044

multi-view 3D object retrieval,” in Proc. IEEE/CVF Conf. Comput. Vis.1045

Pattern Recognit., Jun. 2018, pp. 1945–1954.1046

[47] E. Ustinova and V. Lempitsky, “Learning deep embeddings with1047

histogram loss,” in Proc. Adv. Neural Inf. Process. Syst., 2016,1048

pp. 4170–4178.1049

[48] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, and N. M. Robertson,1050

“Ranked list loss for deep metric learning,” in Proc. IEEE/CVF Conf.1051

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5207–5216.1052

[49] X. Liu, S. Zhang, X. Wang, R. Hong, and Q. Tian, “Group-group1053

loss-based global-regional feature learning for vehicle re-identification,”1054

IEEE Trans. Image Process., vol. 29, pp. 2638–2652, 2020.1055

[50] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling1056

matters in deep embedding learning,” in Proc. IEEE Int. Conf. Comput.1057

Vis. (ICCV), Oct. 2017, pp. 2840–2848.1058

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 1059

image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 1060

(CVPR), Jun. 2016, pp. 770–778. 1061

[52] L. He, X. Liao, W. Liu, X. Liu, P. Cheng, and T. Mei, “Fas- 1062

tReID: A pytorch toolbox for general instance re-identification,” 2020, 1063

arXiv:2006.02631. 1064

[53] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond part 1065

models: Person retrieval with refined part pooling (and a strong 1066

convolutional baseline),” in Proc. Eur. Conf. Comput. Vis., 2018, 1067

pp. 501–518. 1068

[54] W. Li, X. Zhu, and S. Gong, “Harmonious attention network for 1069

person re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern 1070

Recognit., Jun. 2018, pp. 2285–2294. 1071

[55] H. Guo, K. Zhu, M. Tang, and J. Wang, “Two-level attention 1072

network with multi-grain ranking loss for vehicle re-identification,” 1073

IEEE Trans. Image Process., vol. 28, no. 9, pp. 4328–4338, 1074

Sep. 2019. 1075

[56] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, 1076

“Learning deep features for discriminative localization,” in Proc. 1077

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, 1078

pp. 2921–2929. 1079

[57] H. Luo et al., “A strong baseline and batch normalization neck for 1080

deep person re-identification,” IEEE Trans. Multimedia, vol. 22, no. 10, 1081

pp. 2597–2609, Oct. 2020. 1082

[58] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep 1083

network training by reducing internal covariate shift,” in Proc. Int. Conf. 1084

Mach. Learn., 2015, pp. 448–456. 1085

[59] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing 1086

data augmentation,” in Proc. 34th AAAI Conf. Artif. Intell., 2020, 1087

pp. 13001–13008. 1088

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 1089

2014, arXiv:1412.6980. 1090

[61] Y. Yuan, K. Yang, and C. Zhang, “Hard-aware deeply cascaded embed- 1091

ding,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, 1092

pp. 814–823. 1093

[62] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image 1094

translation using cycle-consistent adversarial networks,” in Proc. IEEE 1095

Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232. 1096

[63] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” 1097

J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008. 1098

Hongchao Li received the B.Eng. degree in soft- 1099

ware engineering and the Ph.D. degree in com- 1100

puter science from Anhui University, Hefei, China, 1101

in 2017 and 2022, respectively. He is currently a 1102

Lecturer with the School of Computer and Informa- 1103

tion, Anhui Normal University. His current research 1104

interests include person/vehicle re-identification and 1105

multimodal learning. 1106

Chenglong Li received the M.S. and Ph.D. degrees 1107

from the School of Computer Science and Technol- 1108

ogy, Anhui University, Hefei, China, in 2013 and 1109

2016, respectively. From 2014 to 2015, he was a 1110

Visiting Student at the School of Data and Computer 1111

Science, Sun Yat-sen University, Guangzhou, China. 1112

He was a Postdoctoral Research Fellow with the 1113

National Laboratory of Pattern Recognition (NLPR), 1114

Center for Research on Intelligent Perception and 1115

Computing (CRIPAC), Institute of Automation, Chi- 1116

nese Academy of Sciences (CASIA), Beijing, China. 1117

He is currently an Associate Professor with the School of Artificial Intelli- 1118

gence, Anhui University. His research interests include computer vision and 1119

deep learning. He was a recipient of the ACM Hefei Doctoral Dissertation 1120

Award in 2016. 1121

Authorized licensed use limited to: Anhui University. Downloaded on November 11,2022 at 14:36:53 UTC from IEEE Xplore.  Restrictions apply. 



5962 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Aihua Zheng received the B.Eng. and master’s-1122

doctoral combined program degrees in computer sci-1123

ence and technology from Anhui University of China1124

in 2006 and 2008, respectively, and the Ph.D. degree1125

in computer science from the University of Green-1126

wich of U.K. in 2012. She is currently an Associate1127

Professor of artificial intelligence with Anhui Uni-1128

versity. Her main research interests include computer1129

vision and artificial intelligent, especially on per-1130

son/vehicle re-identification, audio-visual learning,1131

and multimodal and cross-modal learning.1132

Jin Tang received the B.Eng. degree in automation1133

and the Ph.D. degree in computer science from1134

Anhui University, Hefei, China, in 1999 and 2007,1135

respectively. He is currently a Professor with the1136

School of Computer Science and Technology, Anhui1137

University. His current research interests include1138

computer vision, pattern recognition, machine learn-1139

ing, and deep learning.1140

Bin Luo (Senior Member, IEEE) received the 1141

B.Eng. degree in electronics and the M.Eng. degree 1142

in computer science from Anhui University of China 1143

in 1984 and 1991, respectively, and the Ph.D. degree 1144

in computer science from the University of York, 1145

U.K., in 2002. He is a Professor with Anhui Uni- 1146

versity, China. He currently chairs the IEEE Hefei 1147

Subsection. He has published more than 200 papers 1148

in journal and refereed conferences. His current 1149

research interests include random graph based pat- 1150

tern recognition, image and graph matching, and 1151

spectral analysis. He was a Peer-Reviewer of international academic journals, 1152

such as IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE 1153

INTELLIGENCE (PAMI), Pattern Recognition, and Pattern Recognition 1154

Letters. 1155

Authorized licensed use limited to: Anhui University. Downloaded on November 11,2022 at 14:36:53 UTC from IEEE Xplore.  Restrictions apply. 


