IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

5949

Attribute and State Guided Structural Embedding
Network for Vehicle Re-Identification
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Abstract— Vehicle re-identification (Re-ID) is a crucial task
in smart city and intelligent transportation, aiming to match
vehicle images across non-overlapping surveillance camera sce-
narios. However, the images of different vehicles may have
small visual discrepancies when they have the same/similar
attributes, e.g., the same/similar color, type, and manufac-
turer. Meanwhile, the images from a vehicle may have large
visual discrepancies with different states, e.g., different camera
views, vehicle viewpoints, and capture time. In this paper,
we propose an attribute and state guided structural embedding
network (ASSEN) to achieve discriminative feature learning
by attribute-based enhancement and state-based weakening for
vehicle Re-ID. First, we propose an attribute-based enhancement
and expanding module to enhance the discrimination of vehicle
features through identity-related attribute information, and we
design an attribute-based expanding loss to increase the feature
gap between different vehicles. Second, we design a state-based
weakening and shrinking module, which not only weakens the
state information that interferes with identification but also
reduces the intra-class feature gap by a state-based shrinking loss.
Third, we propose a global structural embedding module that
exploits the attribute information and state information to explore
hierarchical relationships between vehicle features, then we use
these relationships for feature embedding to learn more robust
vehicle features. Extensive experiments on benchmark datasets
VeRi-776, VehicleID, and VERI-Wild demonstrate the superior
performance and generalization of the proposed method against
state-of-the-art vehicle Re-ID methods. The code is available at
https://github.com/ttaalle/fast_assen.

Index  Terms— Vehicle re-identification, attribute-based
enhancement, state-based weakening, global structural
embedding.
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I. INTRODUCTION

EHICLE Re-identification (Re-ID) aims to identify vehi-

cle images from the gallery images captured from
non-overlapping surveillance cameras that share the same
identity as the given probe vehicle. It is an active and
challenging task and has drawn much attention due to its
wide applications in social security, smart city, and intelligent
transportation. The blossom of Deep Convolutional Neural
Network (DCNN) has witnessed recent breakthroughs in vehi-
cle Re-ID. However, it still faces two severe challenges. 1) The
large intra-class discrepancy among the same vehicle images
under different states, e.g., different camera views, vehicle
viewpoints, and capture time as shown in Fig. 1 (a) and (b).
2) The small inter-class discrepancy among different vehi-
cles especially when sharing the same/similar attributes, e.g.,
the same/similar color, type, and manufacturer as shown
in Fig. 1 (b), (c) and (d).

Recent efforts have provided various solutions while han-
dling the above challenges. Representative approaches fall
into five categories: 1) Global feature based methods [1],
[2], [3], [4], [5], [6], which aim to extract the global hand-
crafted/deep features of vehicle images by specific metric
learning methods. However, global feature based methods are
generally hard to capture the intra-class discrepancy and inter-
class similarity since only the appearance of vehicle images
are considered. 2) Path-based methods [7], [8], [9] usually
adopt spatial-temporal information to remove unreasonable
vehicles for refining the retrieval results in the inference
stage. However, the appearance changes of the vehicle due to
spatial-temporal changes are ignored in the learning stage of
vehicle features. 3) Viewpoint-based methods [10], [11], [12],
which aim to handle viewpoint changes and learn multi-view
features via metric learning for vehicle Re-ID. Meanwhile,
some viewpoint-based methods [13], [14] generate hard nega-
tive cross-view and same-view images for more robust training
with a Generative Adversarial Network (GAN) [15]. Although
these viewpoint-based methods significantly reduce the intra-
class difference, they ignore the intrinsic state factors of
vehicles (e.g., camera views and capture time) and over-
look the challenge of the subtle inter-class discrepancy. 4)
Local information enhancement methods [16], [17], [18], [19],
[20], [21] usually provide some stable discriminative cues
to increase the inter-class discrepancy for vehicle Re-ID.
However, local region extraction models usually require a large
amount of annotated data which are time and labor consuming.
Furthermore, the forthcoming Re-ID model may be sensitive
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Fig. 1.  Illustration of our attribute-based enhancement and state-based
weakening framework for vehicle Re-ID. Different colors represent different
state information while different markers denote different IDs. In the input
image space, vehicle “b, ¢, d” are more like a same identity vehicle than
vehicle “a, b”. Our attribute-based enhancement and expanding module is
designed to expand the attribute distribution and re-weight attribute features
to the vehicle features to enhance the inter-class difference. For example, the
feature distance between manufacture KIA and manufacture Benz is enlarged
to force the feature distance between vehicle “b” and vehicle “d” to be
greater. In the same way, our state-based weakening and shrinking module
is designed to shrink the state distribution and re-weight state features to the
vehicle features to weaken the intra-class difference. For example, the feature
distance between camera 139 and camera 79 is reduced to force the feature
distance between vehicle “b” and vehicle “a” to be smaller. Therefore our
attribute-based enhancement and state-based weakening framework can cluster
images from the same vehicle compactly and enhance the discrimination
between different vehicles.

to the inaccurate part extraction. 5) Attribute-based methods,
which use attribute labels to constrain identity features [22],
or directly concatenating [23] or summing weighted [24], [25]
identity features and attribute features to boost the Re-ID task.
Generally speaking, path-based and viewpoint-based methods
devote to reduce the impact of identity-unrelated information
on vehicle Re-ID, while local information enhancement and
attribute-based methods aim to enhance the identity-related
information to improve the Re-ID task. In this work, we argue
to simultaneously enhance the identity-related and weaken the
identity-unrelated information.

In vehicle Re-ID, first, the images of different vehicles
with similar attributes share a similar visual appearance (as
shown in Fig. 1 (b, ¢, d)). This results in smaller distances
between different vehicles in the feature space (as shown in
Fig. 1 (f)), which is the key reason of inter-class similarity
in vehicle Re-ID. Therefore, we argue that the feature gap of
different vehicle images can be increased by enhancing their
identity-related attribute information during feature learning.
This is known as knowledge embedding [26] which has been
commonly employed in many other computer vision prob-
lems [24], [27], [28]. Specifically, we propose an attribute-
based enhancement and expanding module to expand the
attribute distribution and re-weight attribute features to
the vehicle features to enhance the inter-class difference.
As shown in Fig. 1 (b, d), we enlarge the feature distance
between manufacturers “KIA” and “Benz” to force larger
feature distance between the two vehicles. Second, the images
of the same vehicle (as shown in Fig. 1 (a, b)) under the
different states generally present different visual appearance.
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Fig. 2. Illustration of the global structural embedding module for vehicle

Re-ID. These points denote the feature embeddings on 60 images from
4 identities in the VeRi-776 testing set. In the input image feature space,
vehicle j°ID1;j+ and ;°ID3;+ share the same attribute present large overlap
due to the large inter-class similarity. Meanwhile, the vehicle ;°ID1;+ in
different states appears sparse feature distribution due to the large intra-class
discrepancy. After global structural embedding, images of the same vehicle
have been compactly aggregated and the discrimination between different
vehicles has been enhanced guided by their state discrepancy ;°Dgp, Dgci®,
instance discrepancy ;{° D13, D13, D14;°, and attribute discrepancy {°Dapi°.

This results in larger distances between the same vehicle
images in the feature space (as shown in Fig. 1 (e)), which
is the key reason of intra-class discrepancy in vehicle Re-ID.
In the same way, we further argue to decrease the feature gaps
between that the images of the same vehicle via state-based
weakening during feature learning. Specifically, we propose
a state-based weakening and shrinking module to shrink
the state distribution and re-weight state features to
the vehicle features to weaken the intra-class difference.
As shown in Fig. 1 (a, b), we reduce the feature distance
between camera 139 and camera 79 to encourage the smaller
feature distance between the two images. By enforcing the
attribute-based enhancement and state-based weakening con-
straints, identity-related attribute clues will be enhanced while
the identity-independent state factors will be weakened in the
vehicle features.

Additionally, the deep metric learning methods, which
utilize distance metric loss (e.g., contrastive loss [29] and
triplet loss [5]) rather than cross-entropy loss [29], aim to
learn a deep feature embedding space by enforcing the dis-
tance between positive pairs smaller than that of negative
pairs during learning. However, most exiting metric learning
methods only focus on the appearance, which ignores the
hierarchical structural relationships caused by the states and
attributes. Concretely, different vehicle instances with similar
appearance can be further distinguished based on their attribute
diversity. Therefore it is effective to consider this relationship
to increase the inter-class feature distance as shown in Fig. 2.
Meanwhile, the images of the same vehicle instance with
large appearance changes can be further recognized by their
state information. Therefore, it is useful to decrease the
intra-class feature distance between easy and hard positive
samples as shown in Fig. 2. Herein, we propose a global
structural embedding module for all vehicle images to clus-
ter images from the same vehicle compactly and enhance
the discrimination between different vehicles guided by
their state discrepancy, instance discrepancy and attribute
discrepancy.

In this work, we propose an attribute and state guided
structural embedding network (ASSEN) towards enlarging the
distance of vehicle inter-class features by all available vehicle
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attributes and reducing the distance of vehicle intra-class
features by all available vehicle states. First, we construct
an attribute-based enhancement and expanding module to
obtain vehicle features enhanced by multiple attributes and
design an attribute-based expanding loss to increase the vehi-
cle inter-class gap. Then, we propose a state-based weak-
ening and shrinking module to force the learned vehicle
features to weaken state information that interferes with
identity and design a state-based shrinking loss to reduce
the vehicle intra-class gap. The above two modules encour-
age our ASSEN to be more focused on its identity-related
information rather than identity-unrelated information. Finally,
we construct a global structural embedding module to encour-
age vehicle features to have a global structure related to
instance discrepancy, state discrepancy and attribute discrep-
ancy, which can bring hierarchical relationships into the
feature embedding to obtain more discriminative vehicle
features.

The contributions of this paper can be summarized as
follows.

« We design an attribute-based enhancement and expanding
module to obtain vehicle features enhanced by multiple
attributes. Compare with previous attribute-based Re-ID
methods, which use attribute labels to constrain identity
features [22], or directly concatenating [23] or summing
weighted [24], [25] identity features and attribute features
to boost the Re-ID task. Our method utilizes the response
relationship between attribute feature and identity fea-
ture to highlight the foreground area of the vehicle
and expand the subtle differences between the same
attribute.

« We propose a state-based weakening and shrinking mod-
ule to weaken the influence of state information and
reduce the state change of the same vehicle. Different
from previous work, we further divide the common
attribute information into identity-related information and
identity-unrelated information. Our key idea is to simul-
taneously enhance the identity-related and weaken the
identity-unrelated information in a unified framework.

« We propose a global structural embedding module to
consider hierarchical relationships related to instance dis-
crepancy, state discrepancy and attribute discrepancy in
the feature embedding to learn larger weights for hard
negative (positive) samples with similar attributes (shar-
ing different states). Existing metric learning methods
only consider a small number of samples, or equally
treat all samples. Our method adaptively assigns different
weights to each sample pair.

« Comprehensive experiments on three large-scale vehicle
Re-ID benchmark datasets with or without state and
attribute information confirm the effectiveness and gen-
eralization of the proposed model.

II. RELATED WORK

We briefly review the related works in the following two
folds, i.e., vehicle Re-ID and deep metric learning.

5951

A. Vehicle Re-Identification

Due to wide applications in video surveillance and social
security, the vehicle Re-ID task has gained more and more
attention in recent years. Liu ef al. [4] present a deep rel-
ative distance learning method to extract both model and
instance differences. Features from the model and instance
are concatenated to learn the final vehicle feature with vehicle
labels. Liu ef al. [30] fuse color, texture, and deep features for
vehicle Re-ID. They show that deep features outperform the
others and feature fusion improves the Re-ID performance.
Yan ef al. [31] model the relationship of vehicle images as
a multi-grain list to discriminate appearance-similar vehi-
cles. By introducing multi-grain relationships, they force the
deep model to learn the more discriminative feature between
different grains over many images. Liu et al. [7] propose a
spatial-temporal relation model to re-rank vehicles to further
improve the final results of vehicle Re-ID. Shen ef al. [8]
investigate spatial-temporal association for effectively regular-
izing vehicle Re-ID results. The spatial-temporal information
along the candidate path is effectively incorporated to esti-
mate the validness confidence of the path. Wang et al. [32]
embed the spatial-temporal regularization into the orientation
invariant module for vehicle Re-ID. With spatial-temporal
regularization, the log-normal distribution is adopted to model
the spatial-temporal constraints and the retrieval results can be
refined.

Different from the above global feature based methods
and path-based methods, He er al. [17] investigate vehicle
local regions to learn part-regularized features for vehicle
Re-ID. Khorramshahi et al. [18] present a dual-path adaptive
attention model, to capture key-points related to parts for
vehicle Re-ID. Meng et al. [19] propose a part perspective
transformation on feature space to transform the deformed
region to a unified perspective. Liu et al. [21] adopt the graph
convolutional networks (GCNs) [33] to model the correla-
tion among parts for vehicle Re-ID. However, the part-based
approaches need additional part annotations, which takes extra
costs. A part prediction network is also needed, which involves
more training procedures and complicates the feature extrac-
tion model. In addition, identity-related part information is
easily disturbed by identity-unrelated information, such as
vehicle viewpoints.

To handle the viewpoint variation issue in vehicle Re-ID,
Sochor et al. [34] learn a 3D orientation vector embedded
into the feature map for vehicle recognition. They show that
orientation information can decrease classification error and
boost verification average precision. Zhou et al. [35] generate
the opposite side features to handle the viewpoint problem.
Zhou et al. [13] propose a viewpoint aware network that
integrates features from viewpoint-based feature extractors
with a GAN to create cross-view features for vehicle Re-ID.
Zhou et al. [10] exploit the great advantages of DCNN and
Long Short-Term Memory (LSTM) [36] to learn transforma-
tions across different viewpoints of vehicles. Lou et al. [14]
propose an embedding adversarial learning network (EALN)
to generate hard negative cross-view and same-view images
for more robust training in vehicle Re-ID. Jin ef al. [11]
propose an Uncertainty-aware Multi-shot Teacher-Student
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(UMTS) Network to exploit the comprehensive information
of multi-view of the same vehicle for effective vehicle Re-
ID. However, it is difficult to resolve the challenge of vehicle
inter-class similarity with these viewpoint learning methods.
Most of existing methods only reduce intra-class discrepancy
by state (spatial-temporal, viewpoint) information or increase
inter-class discrepancy by part information individually, while
ignoring the global structural relationship related to states
and attributes. We propose an attribute-based enhancement
and state-based weakening framework, aiming to explore the
global structural relationship to increase the inter-class discrep-
ancy and simultaneously reduce the intra-class discrepancy.

B. Attribute-Based Re-Identification

Recent works in person Re-ID [24], [37], [38], [39] adopt
person attributes, such as gender and hair length, as important
traits to recognize pedestrians. Khamis et al. [37] jointly learn
a discriminative projection to a joint appearance-attribute
subspace, by effectively leveraging the interaction between
attributes and appearance for person Re-ID. Su et al. [38] pro-
pose a weakly supervised multi-type attribute learning frame-
work based on the triplet loss by pre-training the attributes
predictor on independent data. Lin e al. [24] simultaneously
learn Re-ID embedding and pedestrian attributes, by sharing
the same backbone and owning classification FC layers respec-
tively. Sun et al. [39] train two different models for attribute
and identity recognition tasks and concatenate two branches
to one identity vector for Re-ID.

In vehicle Re-ID, Zheng et al. [25] propose a deep net-
work architecture guided by meaningful attributes, including
vehicle viewpoints, types, and colors, for vehicle Re-ID.
Zhao et al. [23] collect a new vehicle dataset with 21 classes
of structural attributes and proposed a region of interest (ROIs-
based) vehicle Re-ID method. Qian et al. [22] propose a two-
branch stripe-based and attribute-aware deep convolutional
neural network (SAN) to learn the efficient feature embedding
for vehicle Re-ID task. However, both attributes and vehicle
images face challenges caused by appearance changes. Dif-
ferent from previous work, we further divide the common
attribute information into identity-related information (named
attributes, such as color and type) and identity-unrelated
information (named states, such as viewpoint and camera).
Our key idea is to simultaneously enhance the identity-related
and weaken the identity-unrelated information in a unified
framework.

C. Deep Metric Learning

Deep metric learning aims to learn a deep feature embed-
ding space, in which the samples of a same class are close to
each other and the samples of different classes are far away.
There are two fundamental types of loss functions for deep
metric learning, i.e., the contrastive loss [29] and the triplet
loss [5], which have been widely used in both person and
vehicle Re-ID [40], [41], [42], [43]. However, the conventional
contrastive loss or triplet loss based deep metric learning often
suffers from slow convergence and poor local optima, since
only a few samples are considered in each training batch.
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There emerge many advances in more robust deep metric
learning recently. Chen et al. [44] design a quadruplet loss to
enforce a larger inter-class variation and a smaller intra-class
variation compared to the triplet loss. Sohn et al. [45] pro-
pose an n-pair loss to generalize triplet loss by allowing
joint comparison among more than one negative example.
He et al. [46] propose a triplet-center loss to learn a center for
each class to enhance the discriminative power of the features.
Ustinova et al. [47] propose a listwise loss to estimate two dis-
tributions of similarities between positive (matching) and neg-
ative (non-matching) pairs. Wang et al. [48] propose a ranked
list loss to rank all positive points before the negative points
and force a margin between them. Liu et al. [49] propose a
Group-Group Loss (GGL) to accelerate the intra-group and
inter-group feature learning and promote the discriminative
ability. Wu propose [50] a margin loss that relaxes unnecessary
constraints from traditional contrastive loss and enjoys the
flexibility of the triplet loss. However, all the images in
positive/negative pairs are treated equally in existing metric
learning approaches, which ignore the hierarchical relation-
ships between vehicles. In this paper, we propose a global
structural embedding loss to cluster images from the same
vehicle compactly and enhance the discrimination between
different vehicles guided by their state discrepancy, instance
discrepancy and attribute discrepancy.

III. METHOD

To reduce the intra-class distance of vehicles and increase
the inter-class distance of vehicles, we propose an Attribute
and State guided Structural Embedding Network (ASSEN).
It mainly consists of three modules: attribute-based enhance-
ment and expanding, state-based weakening and shrinking,
global structural embedding.

A. Baseline

In this work, our goal is to use the easily obtainable
state and attribute information in real-world scenes together
with the vehicle ID information to learn the discriminative
vehicle identity features. Formally, we denote a vehicle input
as I = {(x,yid,ylf"|f‘il,y§t|7zl)}, where x and y'¢ denote
the input training vehicle image and its associated vehicle
identity label. y{* and y%' denote the i-th attribute label and the
Jj-th state label of the image x respectively. M and N are the
numbers of attribute and state respectively. It’s worth noting
that, attribute/state labels are not essential during the training
since we can use the pre-trained attribute/state branches when
the attribute/state labels are absent.

Given a deep backbone network F(-;6) with the input
image x € RWXHXC  where 0 represents the learnable
parameters of the network. We adopt ResNet-50 [51] without
final down-sampling as the backbone model followed by the
state-of-the-art vehicle Re-ID methods, such as UMTS [11],
PPT [19], FastReID [52], which is also a common setting
in person Re-ID methods after PCB [53]. The corresponding
vehicle feature tensor encoded by the network is denoted as
T = F(x;0) € RW*hX¢ Then the identity classification
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(cross-entropy) loss ,CQZ is in the form of,
Lid = —y'10g(FC(GAP(T))), (1)

where GAP denotes a global average pooling operation, and
FC denotes a Full Connected layer that predicts the result of
classification. In this paper, we regard ResNet-50 with [,é‘z as
our baseline.

B. Attribute-Based Enhancement and Expanding (AEE)
Module

Different from the previous attribute-based Re-ID
methods [22], [23], [24], [25], which boost Re-ID tasks
by concatenating or weighting attribute features. On the
one hand, our AEE module hopes to enhance the image
area corresponding to the attribute to improve the feature
learning ability of a single sample. On the other hand, our
AEE module hopes to expand the distribution of attributes to
increase the inter-class distance of samples within a batch.

To obtain the attribute information of the vehicle, we trans-
form the vehicle feature tensor into the vehicle attribute feature
tensor. The i-th attribute feature tensor T/ € RW*h*¢ can be
formulated as:

T|\M, = ReLU (BN (conv*'(T))), 2)

1

where convi1X1 denotes 1 x 1 convolutional operation about
the i-th attribute, BN denotes a Bath Normalize operation, and
ReLU denotes Rectified Linear Unit. conv + BN + ReLU
composes of a common convolutional block in DCNN.

Then the attribute classification loss £, is in the form of,

M
£ = =" ylog(FC(GAP(T{"))), 3)
i=1
where M is the number of attributes, yl.“’ denotes the i-th
attribute label of the image x.

The attribute tensor will be constrained by the cross-entropy
loss and the ground-truth attribute label. Our purpose here is
to use attribute labels to enable the output of vehicle features
to be guided by multiple attributes. The enhanced tensor can
be expressed as:

M
1
1¢ =4 2.7 O Sigmoid(T), @
i=l

where T¢ € R¥*h*¢ denotes the attribute enhanced tensor, the
Sigmoid function is used to control the value range of 7' in
the interval [0, 1], and () is the element-wise product. Similar
to attention-based Re-ID methods [13], [54], [55], which aims
to re-weight the convolutional output of DCNN as a feature
combination. However, most of existing attention-based Re-ID
methods lack the guidance of identity-related annotations and
therefore fail to take advantage of the relationship among the
identity, color, and type of the same vehicle. We argue that
this intrinsic identity-related information is crucial in vehicle
Re-ID.

The overall attribute-based enhancement procedure can be
formulated as:

T'=T+ BT, (5)

5953
where T’ denotes the vehicle feature tensor after
attribute-based enhancement operation, 81 = 0.05 is a

hyperparameter used to balance the original feature and
the enhanced feature. We add the class activation maps
(CAMs) [56] of the attribute (color and type) information,
as shown in Fig. 3 (a, b). The color response map and type
response map mainly respond to the foreground area related
to the vehicle identity, which means that Eq. (5) tends to
highlight the foreground area of the vehicle image.

In addition to attribute-based enhancement, we further
propose an attribute expanding operation to increase the
inter-class attribute discrepancy. The global average pooling
(GAP) is used to transfer the i-th attribute tensor Tl.“’ €
R¥*h*¢ into the i-th attribute feature vector f e RC.
First, we calculate the i-th attribute standard deviation, which
can be formulated as: D{ = std(f{, fi‘”), where [ =
GAP(TI-‘”) denotes the i-th attribute feature vector about each
image in a batch, fl.‘” denotes the i-th attribute mean vector
about the whole batch-size. Our purpose here is to expand
the feature distribution of the attribute under the premise
of attribute classification, thereby increasing the inter-class
attribute discrepancy. The attribute-based expanding loss can
be formulated as:

1 & 1
at
Lae = Lee+ M l_zl 14 exp(D) ©

If there exist two samples that share the same color (or type)
in a batch, their color (or type) feature distance will become
larger under the premise of classification.

C. State-Based Weakening and Shrinking (SWS) Module

Although attribute-based enhancement and expanding
(AEE) module can enhance the inter-class difference by
vehicle identity-related attribute information. These identity-
related attribute information may be indistinguishable due to
diverse state (e.g., camera views, vehicle viewpoints, capture
time) changes. We argue that merely enhancing identity-related
information is not sufficient for Re-ID, weakening the state
information that interferes with identification is also crucial
for vehicle Re-ID. Herein, we further consider weakening state
information to reduce the intra-class feature gap for vehicle
Re-ID.

The j-th state feature tensor Tj” € RW*h*¢ can be formu-
lated as:

T3, = ReLU (BN (conv}*'(T))), (7)

where conv!*! denotes 1 x 1 convolutional operation about
the j-th state. Then the state classification loss £/, is in the
form of,

N
LY == y5'log(FC(GAP(T"))), ®)
j=1
where N is the number of states, and y;’ denotes the j-th state
label of the image x.
The state tensor will be constrained by the cross-entropy
loss and the ground-truth state labels. Our goal is to make the
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Fig. 3. Pipeline of Attribute and State guided Structural Embedding Network (ASSEN). Given the image x, we first extract the corresponding vehicle

feature tensor 7' via the backbone. Next, we transform the feature tensor 7 into the attribute-based enhancement and expanding (AEE) module to obtain the
enhanced feature tensor 7¢. The AEE module is constrained by the attribute-related cross-entropy loss £&, and attribute-based expanding loss Lqe. Then,
we transform the feature tensor 7 into the state-based weakening and shrinking (SWS) module to obtain the weakened feature tensor 7%. The SWS module
is constrained by the state-related cross-entropy loss £35!, and state-based shrinking loss Lgs. Followed by the combination 7" of the feature tensor T, the
enhanced feature tensor 7¢ and the weakened feature tensor 7% to increase the identity-related information and simultaneously reduce the information that
interferes with identity. Finally, the global structural embedding (GSE) module embeds instance discrepancy, attribute discrepancy and state discrepancy to
obtain more discriminative vehicle features by a hierarchical structure. Note that ASSEN does not require attribute/state labels during the test. Furthermore,
attribute/state labels are not essential during the training since we can use the pre-trained attribute/state branches when the attribute/state labels are absent.

learned vehicle feature tensor 7' alleviate the interference of
multiple states as much as possible. The weakened tensor can
be expressed as:

N
1
w_ NZT@Sigmoid(TjSt), ©))

i=1

where T% € RY*"*¢ denotes the state weakened tensor, the
Sigmoid function is used to control the value range of T” to
[0, 1], and (©) is the element-wise product.

The overall state-based weakening procedure can be formu-
lated as:

T// — T/ _ ﬂsz,

where T” denotes the vehicle feature tensor after state-based
weakening operation, T’ denotes the vehicle feature tensor
after attribute-based enhancement operation, 8, = 0.05 is a
hyperparameter used to balance the original feature and the
state weakened feature. We add the class activation maps
(CAMs) [56] of the state (camera and viewpoint) information
as shown in Fig. 3 (c, d). The camera response map and
viewpoint response map mainly respond to the background
area of the vehicle image. Therefore Eq. (10) can suppress
the background area of the vehicle image.

(10)

In addition to designing a state-based weakening procedure,
we also added a state-based shrinking operation to reduce
the intra-class state discrepancy. The global average pooling
(GAP) is used to transfer the j-th state tensor Tj” € Rwxhxc
into the j-th state feature vector f{' € RC. First, we calculate
the j-th state standard deviation, which can be formulated
as: D;f = std( ]”, fjs’), where f;t = GAP(FJS-t) denotes
the j-th state feature vector about each image in a batch, f3!
denotes the j-th state mean vector about the whole batch-size.
Our purpose here is to shrink the feature distribution of the
state, thereby reducing the intra-class state discrepancy under
the premise of state classification. The state-based shrinking
loss can be formulated as:

N st
exp(D?

Lo = L5 + —11, 2 T oo Pt (]D)'")’

j=1 expit;

If there exists one sample from different cameras (or view-
points) in a batch, their camera (or viewpoint) feature distance
will become smaller under the premise of classification.

(1)

D. Global Structural Embedding (GSE) Module

After attribute-based enhancement and state-based weaken-
ing operations, we can obtain a final vehicle feature tensor
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T" € R¥*"*¢ Followed by a global average pooling (GAP)
on this tensor, the final vehicle feature vector f € R can
be expressed as f = GAP(T”). The idea of AEE and SWS
is to embed attribute and state information respectively in the
training stage to help learn more discriminative identity feature
f, which is the feature used in the testing stage.

Although the vehicle feature f can be trained through the
cross-entropy loss in Eq. (1), the training and testing of vehicle
Re-ID include completely different classes. Therefore it is
insufficient to solely rely on the cross-entropy loss. Addition-
ally, the metric learning methods utilize distance metric loss
(e.g., contrastive loss [29] and triplet loss [5])) to learn a deep
feature embedding space where the samples of a same class
are close to each other and the samples of different classes are
far away. Wu et al. [50] propose a simple margin loss that
relaxes unnecessary constraints from traditional contrastive
loss and enjoys the flexibility of the triplet loss. Based on
the margin loss [50], we design a new GSE loss to pay more
attention to the hard negative and positive samples by their
state discrepancy and attribute discrepancy.

Given a batch of vehicle images in,B:p B is batch size,
we can get a batch of vehicle feature vectors f,-llel. The
margin loss [50] aims to push its negative samples farther
than an upper boundary u and pull its positive samples closer
than a lower boundary /. Thus u — [/ is the margin between
two boundaries. Mathematically,

,Cm = yijmax(dij - l, 0) + (1 - yij)max(u — d,’j, 0), (12)

where y;; = 1if y; = y;, yij = 0 otherwise. d;; = || fi —
fjll2 is the Euclidean distance between two samples.

It can be seen from Eq. (12) that margin loss only considers
the instance difference d;; between sample pairs, but ignores
the hierarchical relationship between sample pairs. Concretely,
different vehicle instances with similar appearance can be
further distinguished based on their attribute diversity, we con-
sider this attribute relationship to help the feature embedding
of negative sample pairs:

L, = exp(=dij)(1 = yijymax(u — d;;, 0), (13)

where df‘j’ denotes the mean Euclidean distance of the
attributes between two negative samples in a batch. It worth
noticing that the gradient magnitude concerning any negative
embedding is different in Eq. (13). Mathematically,

II%ID — exp(—d™),if vi £ ),
which means that our GSE module encourages negative
samples with smaller attribute differences to obtain greater
gradient magnitude. If a negative sample pair has the same
attribute, the d*/ ~ 0, then exp(—di“jt)dij ~ d;j, which
denotes the feature embedding mainly depends on the instance
difference d;;.

In the same way, since the images of the same vehicle
instance with large appearance changes can be further recog-
nized by their state information, we consider this relationship
to help the feature embedding of positive sample pairs:

(14)

1
£; = exp(—ﬁ)yijmax(dij —1,0), (15)

)
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where ;{is} = dl‘."j’ + ¢, € = 0.000001 is a small value to avoid
zero denominators, dl?']? is the mean Euclidean distance of the
states between two positive samples in a batch. exp(—f;)

can be considered as a gradient magnitude of positive embed-
ding, which means that our GSE module encourages positive
samples with larger state differences to obtain greater gradient
magnitude.

The state and attribute guided global structural embedding
loss is:

Lgse = Sijyijmax(dij —1,0) + W;;(1 — y;j)max(u — d;j, 0),
(16)

where S;; = exp(—ﬁ) and W;; = exp(—df‘j’) construct
a global structure for the whole batch-size vehicle images.
If S;j = Wij = 1, Lgse is equivalent to margin loss [50].
Sij € [0,1] and W;; € [0, 1] can be regarded as state-related
weights and attribute-related weights respectively.

In GSE module, the designed loss can be explained as giving
larger weights for hard negatives and positives. Note that the
attribute and state features are imposed into the loss function.

The corresponding gradients are as following:

oL, .
IIﬁllz = exp(=d{ ) —dij).if yi # ;.
j
3£$ gst gst st
57 2 = exp(=1/di)dij = D/ dif x dif). else. (17)
j

which means that our GSE module encourages negative sam-
ples with smaller instance differences and attribute differences
to obtain greater gradient magnitude of the attribute. Even if
two negative samples have the same attributes, the gradient still

exists as || gfgg l2 = (u — d;;). Homologous, our GSE module
encourages ﬁositive samples with larger instance differences
and state differences to obtain greater gradient magnitude of
the state, until the distance between the positive samples is
less than the lower boundary.

To reduce hand-tuned hyperparameters, we reconsider the
goals of attribute-based expanding and state-based shrinking,
and design a new loss function L. to replace the original
loss function L, and L. Mathematically,

Laess = a(ﬁzé + ﬁztg)
T s ey
% Ziﬂil exp(D{") + % Z;'Vzl exP(D;l)’

(18)

where o = MLJFN is an adaptive parameter inversely propor-
tional to the number of annotations. Df” (Dj.’ ) represents the
i-th attribute (j-th state) standard deviation. Under the premise
of attribute/state classification, the attribute difference of all
samples is enlarged, while the state difference is reduced. The
final objective function for our ASSEN model rewrite as:

Aclotal = Aclci + Eaess + n‘cgsea (19)

where only 7 is used to balance the classification learning and
metric learning.
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IV. EXPERIMENT

To validate the superiority of the proposed Attribute
and State guided Structural Embedding Network (ASSEN)
method, it is compared with state-of-the-art vehicle Re-ID
approaches on three large-scale databases.

A. Datasets

VeRi-776 dataset [7] consists of 49357 images of
776 distinct vehicles captured in 20 non-overlapping cam-
eras with various orientations and lighting conditions, where
576 identities with 37778 images and 200 identities with
11579 images are assigned as training and testing respectively.
Furthermore, 1678 images from 200 identities have been
selected as the queries from the testing set. The original
VeRi-776 [7] contains the labels of the vehicle IDs, cam-
era IDs, color IDs and type IDs, while Zheng et al. [25]
have annotated the viewpoint information, including front,
front_side, side, rear_side, and rear. We use two kinds
of state information (camera, viewpoint) and two kinds of
attribute information (color, type) in VeRi-776 dataset [7].

VERI-Wild dataset [6] is a newly released dataset. Dif-
ferent from VeRi-776 [7] captured at day, VERI-Wild [6] are
captured at both day and night. The training subset consists
of 277797 images of 30671 vehicles. Besides, there are three
different scale testing subsets, i.e., Test3000 (Small), Test5000
(Medium), and Test10000 (Large). Except for vehicle ID
information, VERI-Wild [6] contains various labels of cam-
era, color, type, and manufacturer annotations. Furthermore,
we have annotated the time labels according to the acquisition
hour of each image. For example, the image captured at
22:15:29 is annotated as 22, and there are 24 time IDs in
total. We use two kinds of state information (camera, time) and
three kinds of attribute information (color, type, manufacturer)
in VERI-Wild dataset [6].

VehicleID dataset [4] is composed of 221567 images from
26328 unique vehicles. Half of the identities, ie., 13164,
serves for training while the other half for testing evaluation.
There are 6 testing splits with various gallery sizes as 800,
1600, 2400, 3200, 6000, and 13164. Following the protocol
in [14], [18], and [17], we use the first three splits Test800
(Small), Test1600 (Medium) and Test2400 (Large) for test-
ing. This procedure is repeated ten times and the averaged
metrics. Note that VehicleID [4] only contains ID informa-
tion without any attribute or state information. Therefore,
we use the attribute and state branch parameters pre-trained
on VERI-Wild [6] to obtain state and attribute information for
VehiclelD [4].

B. Evaluation Metrics

Following the general evaluation protocols in the Re-ID
field [1], [53], [57], the Rank-1 identification rate (R-1),
Rank-5 identification rate (R-5), and mean average precision
(mAP) are used as performance metrics. Rank-score is an
estimation of finding the correct match in the Rank-K returned
results. The mAP is a comprehensive index that considers
both the precision and recall of the results. To evaluate the
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TABLE I

COMPARISON RESULTS OF OUR METHOD AGAINST THE
STATE-OF-THE-ART METHODS ON VERI-776 DATASET (IN %)

Methods mAP Rank-1 Rank-5 Reference
BOW-CN [1] 12.2 33.9 53.7 ICCV 2015
LOMO [2] 9.6 25.3 46.5 CVPR 2015
) GoogLeNet [3] 17.9 52.3 72.2 CVPR 2015
FACT [30] 18.8 52.2 72.9 ICME 2016
FDA-Net [6] 55.5 84.3 92.4 CVPR 2019
FastRelD [52] 80.4 96.5 98.4 arXiv 2020
OIFE [32] 48.0 65.9 - ICCV 2017
(2) SCPL [8] 58.3 83.5 90.0 ICCV 2017
NuFACT [9] 48.5 76.9 91.4 TMM 2018
VAMI [13] 50.1 77.0 90.8 CVPR 2018
(3) EALN [14] 57.4 84.4 94.1 TIP 2019
UMTS [11] 75.9 95.8 - AAAI 2020
RAM [16] 61.5 88.6 94.0 ICME 2018
@) AAVER [18] 61.2 89.0 94.7 ICCV 2019
PRN [17] 74.3 94.3 98.9 CVPR 2019
PPT [19] 80.6 96.5 98.3 MM 2020
©) DF-CVTC [25] 61.1 91.3 95.8 TETCI 2021
SAN [22] 72.5 93.3 97.1 MST 2020
ASSEN 8134102 | 96.940.1 |98.740.1 Ours
iiFast_ASSEN | ;i81.7+0.2 | ii97.340.1 | 98.8+0.1 1i0urs
TABLE II

COMPARISON RESULTS OF OUR METHOD AGAINST THE
STATE-OF-THE-ART METHODS ON VEHICLEID DATASET (IN %)

. Small Medium Large
Methods R-I RS | RI RS | RI RS
BOW-CN [1] 13.1 22.7 129  21.1 102 179
LOMO [2] 19.7 32.1 19.0 295 153 256
GoogLeNet [3] 479 67.4 435 635 | 382 595
(1) DRDL [4] 489 66.7 464 644 | 410 60.0
FACT [30] 49.5 68.0 446 642 | 399 605
FDA-Net [6] - - 598 771 | 555 747
FastRelID [52] 82.3 95.5 80.7 727 | 77.8 90.1
@) OIFE [32] - - - - 67.0 829
NuFACT [9] 48.9 69.5 436 653 | 386 60.7
VAMI [13] 63.1 83.3 529 5.1 473 703
(3) EALN [14] 75.1 88.1 71.8 839 | 71.0 69.3
UMTS [11] 80.9 - 78.8 - 76.1 -
RAM [16] 75.2 91.5 723 870 | 677 845
@) AAVER [18] 74.7 93.8 68.6 90.0 | 635 856
PRN [17] 78.4 92.3 750 883 | 742 864
PPT [19] 79.6 92.3 760 894 | 748 87.0
DF-CVTC [25] 75.2 88.1 722 844 | 705 821
(5) ROIVR [23] 76.1 91.2 73.1 875 | 712 847
SAN [22] 79.7 94.3 784 913 | 756 883
ASSEN 852402 97740.1 | 827 957 | 809 939
iiFast_ASSEN | ;i86.010.3 97.8410.1 | ii84.5 ;i96.0 | ;;82.4 ;;94.3

stability of our model, we train the model in 10 random trials
on each dataset and take the average result as our performance.
The corresponding standard deviation values are updated in
Table I - IV.

C. Implementation Details

1) Network Architecture: We adopt ResNet-50 [S1] as the
backbone model in our experiments. In our implementation,
all the input images are resized to W x H x C = 256 x
256 3. Follow [53], we remove the last spatial down-sampling
operation in ResNet-50 [51]. After the backbone model, the
size of the feature tensor is w X h x ¢ = 16 x 16 x 2048.
For classifiers, we use a batch normalization layer [58] and
a fully connected layer followed by a softmax function. For
data augmentation, the images are augmented with random
horizontal flipping, padding 10 pixels, random cropping, and
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TABLE III

COMPARISON RESULTS ON MAP OF OUR METHOD AGAINST THE STATE-
OF-THE-ART METHODS ON VERI-WILD DATASET (IN %)

Methods Small Medium Large Reference
GoogLeNet [3] 243 242 21.5 CVPR 2015
Triplet [5] 15.7 133 9.9 CVPR 2015
Softmax [7] 26.4 22.7 17.6 ECCV 2016
DRDL [4] 225 19.3 14.8 CVPR 2016
(1) HDC [61] 29.1 24.8 18.3 ICCV 2017
Unlabled-GAN [62] 29.9 24.7 18.2 ICCV 2017
GSTE [41] 314 26.2 19.5 TMM 2018
FDA-Net [6] 35.1 29.8 22.8 CVPR 2019
FastReID [52] 81.9 75.7 66.7 arXiv 2020
(3) UMTS [11] 72.7 66.1 54.2 AAAI 2020
“@ AAVER [18] 62.2 53.7 41.7 ICCV 2019
PPT [19] 74.2 67.5 59.3 MM 2020
ASSEN 80.6. 02 745101 662401 Ours
iiFast_ASSEN 1184.310.3 1i78.7+0.2 {i70.1+0.1 iOurs

TABLE IV

COMPARISON RESULTS ON RANK SCORE OF OUR METHOD AGAINST THE
STATE-OF-THE-ART METHODS ON VERI-WILD DATASET (IN %)

. Small Medium Large
Methods R RS R1 RS | RI RS
GoogLeNet [3] 57.2 75.1 532 711 | 446 636
Triplet [5] 447 63.3 403 59.0 335 514
Softmax [7] 53.4 75.0 422 699 379 599
) DRDL [4] 57.0 75.0 519 710 | 446 610
HDC [61] 57.1 78.9 496 723 440 649
Unlabled-GAN [62] 58.1 79.6 51.6 744 | 43.6 655
GSTE [41] 60.5 80.1 52.1 749 | 454  66.5
FDA-Net [6] 64.0 82.8 578 783 | 494 705
FastRelD [52] 96.3 99.2 945 987 | 91.1 976
(@) UMTS [11] 345 - 793 . 723 B
@ AAVER [18] 75.8 92.7 68.2 889 | 58.7 87.6
PPT [19] 91.9 97.3 89.1 95.5 84.8 932
ASSEN 949101 983101 | 917 965 | 888 947
iiFast_ASSEN 11971401 1199.740.1 | 11956 ;:199.2 | ;;93.9 ;984

random erasing [59]. The Adam optimizer [60] is used with
a batch size of 64. We further evaluate our method on a
stronger baseline FastRelD [52]. Note that due to the GPU
memory limitations, we implement FastReID [52] with the
same batch-size as our method in 16 ids * 4 imgs for fair
comparison. The new architecture is named Fast_ASSEN in
the experiments.

2) Hyper Parameters: In Attribute-based Enhancement and
Expanding (AEE) module, §; is used to balance the original
tensor and the enhanced tensor and set as 0.05. In State-
based Weakening and Shrinking (SWS) module, B, is used
to balance the original tensor and the weakened tensor and
set as 0.05. In Global Structural Embedding (GSE) module,
we empirically fix the upper and lower boundaries in the GSE
module to 1 and 0.3, following the commonly used margin
loss [50]. In the final objective function, the weight parameter
n = 0.3, These hyperparameters will be discussed in detail in
Table VI. We run our experiments on two Tesla P100 GPU
with 16 GB RAM. Our model requires about 13.5 GB of RAM
and 348 minutes of training time on VeRi-776 dataset [7]. The
base learning rate is 3.5 x 10~* and the learning rate decays
to 3.5 x 107 and 3.5 x 107% at the 40-th epoch and the
70-th epoch respectively. Our model is trained in a total of
120 epochs.

3) Compared Methods: We compare our method with some
state-of-the-art methods which mainly fail into four categories.

5957

a) Global feature based methods: E.g., Bag-of-Words +
Color Names (BOW-CN) [1], Local Maximal Occurrence
(LOMO) [2], GoogLeNet [3], Fusion of Attributes and Color
feaTures (FACT) [30], Feature Distance Adversarial Network
(FDA-Net) [6], Deep Relative Distance Learning (DRDL) [4],
Triplet [5], Softmax [7], Hard-aware Deeply Cascaded embed-
ding (HDC) [61], Unlabled-GAN [62], Group-sensitive Triplet
Embedding (GSTE) [41].

b) Path based methods: E.g., Orientation Invariant Fea-
ture Embedding (OIFE) [32], Siamese-CNN + Path 4+ LSTM
(SCPL) [8], Null space base Fusion of Attribute and Color
feaTures (NuFACT) [9].

c¢) Viewpoint based methods: E.g., Viewpoint-aware
Attentive Multi-view Inference (VAMI) [13], Embedding
Adversarial Learning (EALN) [14], Uncertainty-aware Multi-
shot Teacher-Student Network (UMTS) [11].

d) Local information enhancement methods: E.g.,
Region-aware deep Model (RAM) [16], Adaptive Attention
Model for Vehicle Re-identification (AAVER) [18], Part-
regularized Near-duplicate (PRN) [17], Part Perspective Trans-
formation (PPT) [19].

e) Attribute based methods: E.g., Jointly learns Deep
Feature representations, Camera Views, vehicle Types
and Colors (DF-CVTC) [25], Two-branch Stripe-based
and Attribute-aware Network (SAN) [22], Region of
Interests-based Vehicle Re-identification (ROIVR) [23].

D. Comparison With State-of-the-Art Methods

1) Evaluation Results on VeRi-776: Table 1 reports the
performance comparison of our method against the state-of-
the-art methods on VeRi-776 dataset [7]. From which we
can see, the local information enhancement method PPT [19]
has higher performance on VeRi-776 [7] compared with the
method UMTS [11] based on viewpoint learning. The reason
may be because the viewpoint change of VeRi-776 [7] is
not too drastic, challenges mainly come from similar vehi-
cles. Compared with the method based on local information
enhancement and viewpoint-based methods, our approach sig-
nificantly beats the state-of-the-art methods as 81.3% and
96.9% on mAP and the Rank-1 respectively. Although the
second-best method PPT [19] achieves 80.6% and 96.5%
on mAP and Rank-1 respectively. PPT [19] propose a part
perspective transform module to map key points related to
part regions to a unified viewpoint on feature space. How-
ever, keypoint extraction usually requires a large amount
of annotated data which is time and labor consuming, and
inaccurate results of keypoint would affect the performance of
vehicle Re-ID greatly. Our ASSEN significantly surpasses the
most competitive attribute-based method SAN [22] by +8.8%
and +3.6% in mAP and Rank-1 accuracies respectively. The
key reason is SAN [22] only considers the enhancement
of attributes while ignoring the state diversity. By jointly
considering the enhancement of attributes, the weakening of
states and the hierarchical relationships in the vehicle Re-ID
network, our ASSEN learns more robust feature representation
on VeRi-776 dataset [7] comparing to the state-of-the-art
methods. Fast_ASSEN further boosts the performance in both
mAP and ranking scores.
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TABLE V
ABLATION STUDY ON VERI-776, VERI-WILD AND VEHICLEID (IN %)
VeRi-776 VehicleID VERI-Wild
Variant Small Medium Large Small Medium Large
mAP R-1 [ mAP R-1 mAP R-1 mAP R-1 | mAP R-1 mAP R-1 mAP R-1
(al) baseline (Lce) 743 948 | 8.0 786 813 746 79.6 720 | 723 895 643 849 536 80.7
(a2) + AEE 76.8 955 859 824 820 776 807 747 | 735 926 664 87.1 57.3 81.1
(a3) + SWS 773 952 | 86.1 79.5 830 754 814 722 | 756 903 696 852 629 80.8
(a4) + GSE 789 959 | 889 834 852 80.7 828 774 | 77.1 932 727 896 638 85.1
(a5) + AEE + SWS 783 956 | 87.0 82.6 838 792 813 76.6 | 769 935 718 899 63.1 83.3
(a6) + AEE + SWS + GSE | 813 969 | 904 852 880 827 855 809 | 8.6 949 745 917 66.2 88.8
(b1) FastReID (Lce 4+ Liyi) 804 965 | 8.8 823 836 80.7 826 778 | 8.9 963 757 945 66.7 91.1
(b2) + AEE 80.0 968 | 86.0 830 840 816 826 782 | 819 964 752 949 663 922
(b3) + SWS 805 965 | 86.6 824 843 807 8.0 779 | 822 964 762 946 673 912
(b4) + AEE + SWS 812 969 | 8.1 852 8.9 826 8.5 810 | 8.0 964 780 949 69.1 926
(b5) + AEE + SWS + GSE | 81.7 973 | 909 860 89.1 845 872 824 | 843 971 787 956 70.1 939
(cl) baseline (Lce + Liri) 76.6 957 | 8.0 802 8.9 775 797 738 | 762 91.8 680 873 57.8 835
(c2) + AEE 769 963 | 8.7 819 840 783 800 76.1 769 932 689 885 593 86.6
(c3) + SWS 77.8 959 | 873 81.6 89 783 813 757 | 779 928 722 87.8 63.1 842
(c4) + AEE + SWS 79.8 96.5 | 88.7 834 87.1 81.0 828 780 | 790 939 736 910 648 888
(c5)+ AEE + SWS + GSE | 813 970 | 904 854 886 836 859 812 | 810 954 752 919 668 90.2
2) Evaluation Results on VehicleID: Table Il shows the B mAP B Rank-1
comparison results on VehicleID [4] on three different testing 100 o " . o
. . . . . o +1. K +1. . o
sets. The vehicle images in VehicleID [4] only contain two 95 948 ‘w W
viewpoints, e.g., front and rear, which result in drastic view- 90
point changes. As reported in Table II, the method UMTS [11] 85
based on viewpoint learning has higher performance than the 30 = 157 o +6.1 5.0 ‘=
local information enhancement method PPT [19] on Vehi- 75 742 I I I I I I
cleID [4] compared with VeRi-776 dataset [7]. This implies 70
that it is necessary to consider joint learning from different o R D & & S B
. . . . .. . . & & & N ) N s
viewpoints in VehicleID [4]. In addition to the viewpoint & & &° o 6\9 & &
. . S & )
factor similar as UMTS [11], our ASSEN also considers the %gf (350% < @f@% %0;\ %af
. . v 15
time factor and the camera factor, as well as the attribute v v w v

information to enhance the discrimination ability. As shown in
Table II, the Rank-1 accuracies of our approach improve 4.3%,
3.9% and 4.8% than UMTS. Note that our methods, ASSEN
and Fast_ASSEN, without any attribute and state annotation
on VehicleID [4], still significantly beats the state-of-the-art
attribute-based methods, especially comparing SAN [22] and
ROIVR [23] with additional attribute annotations. This further
verifies the generality of our method of leveraging the attribute
and state information on more general scenarios.

3) Evaluation Results on VERI-Wild: As shown in Table III
and Table IV, our ASSEN achieves competitive results on
all of the testing subsets on the VERI-Wild dataset [6].
Specifically, the Rank-1 accuracies of our approach achieve
94.9%, 91.7% and 88.8% on Test3000 (small), Test5000
(middle) and Test10000 (large) respectively, which improve
3.0%, 2.6% and 4.0% than the second-best method PPT [19].
Meanwhile, the mAP of our method achieve 80.6%, 74.5% and
66.2% on Test3000 (small), Test5000 (middle) and Test10000
(large) respectively, which improve 6.4%, 7.0% and 6.9%
than the second-best method PPT [19]. The data size of
VERI-Wild dataset [6] is about 6 times that of VeRi-776
dataset [7]. Although our Re-ID performance is very close
to PPT [19] on VeRi-776 [7], our performance on VERI-
Wild dataset [6] is much higher than that of PPT [19],
which implies the promising performance in potential large-
scale applications. Integrating our method into FastReID [52]
consistently improves the performance both mAP and ranking
scores.
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Fig. 5. The mAP performance against the number of training epochs using
global structural embedding loss and margin loss [50] on VeRi-776.

E. Ablation Study

1) Component Study: To verify the contribution of the
components in our model, we implement several variants of
our method on the three datasets, as reported in Table V. Our
baseline is ResNet-50 with L... By progressively introduc-
ing the attribute-based enhancement and expanding module
(AEE), state-based weakening and shrinking module (SWS),
and global structural embedding module (GSE) into the
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Fig. 6. T-SNE [63] visualization of the learned feature embeddings on

329 images from 8 identities in the VeRi-776 testing set. The points with
the same shape indicate the same identity, while the different colors represent
different attributes. These points contain the samples (of ID1, ID2, ID3, ID4)
in Fig. 2.

baseline, both mAP, and Rank-1 scores significantly increase
on all the three datasets with different test settings.
This verifies the contribution of each component in our
model.

2) Analysis of Different Baselines: To further validate the
effectiveness of our method, we evaluate the component of
two stronger baselines, (1) FastReID [52], which is a strong
baseline for vehicle Re-ID as shwon in Table V (bl-b5),
and (2) the baseline in the state-of-the-art methods such as
UMTS [11], PPT [19], FastRelD [52], with both cross-entropy
loss and triplet loss (baseline (L. + L)), as shown in
Table V (c1-c5). Note that due to the GPU memory limitations,
we implement FastReID [52] with the same batch size as our
method in 16 ids*4 imgs for fair comparison. Consistently, all
the AEE, SWS, and GSE modules make effective contributions
in our method on the new baselines.

Furthermore, Fig. 6 visualizes the feature map during the
ablation study. The AEE module increases the inter-class
distance of different attributes, while the SWS module reduces
the intra-class distance and increase the inter-class distance
with the same attribute. GSE module can further reduce the
intra-class gap and increase the inter-class gap.

3) Subcomponent Study: To further evaluate the contribu-
tion of each state and attribute, we evaluate our method by
removing a certain attribute or state as shown in Fig. 4. It is
clear that each attribute or state information contributes to
our ASSEN model. In addition, we compare the performance
and convergence of the global embedding loss (ASSEN (GSE
loss)) with the margin loss [50] (ASSEN (margin loss)) as
shown in Fig. 4 and in Fig. 5, respectively. ASSEN (margin
loss) denotes baseline+ AEE +SWS+margin loss and has
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Fig. 7. Feature distance discrepancy of the baseline and ASSEN. Distance

discrepancy mainly includes the instance distance between positive sample
pairs (PID), the instance distance between negative sample pairs (NID), the
state distance between positive sample pairs (PSD) and the attribute distance
between negative sample pairs (NAD).

the same hyperparameters as ASSEN. As shown in Eq. (16),
the margin loss [50] can be seen as a special form of our
global embedding loss without weight. By considering the
hierarchical relationships (inter-class attribute discrepancy and
intra-class state discrepancy) between vehicles, our global
embedding loss converges faster and achieves better perfor-
mance.

F. Parameter Analysis

There are five important parameters in our model. 81 and
B> balances the contribution of the enhanced feature and
the weakened feature respectively, while u# and [ control
the margin between positive samples and negative samples
respectively. In the final loss function, n control the weight
of classification learning and metric learning. We empirically
set f1 = 0.05, B =0.05, u =1, =0.3 and n = 0.3. The
parameter analysis results with diverse parameter changes on
VeRi-776 [7] are shown in Table VI, which demonstrates that
our model is not sensitive to the parameters.

G. Analysis of Distance Discrepancy

To further verify the ability of handling the inter-class
similarity and intra-class discrepancy of our method, we visu-
alize the instance distance of positive sample pairs (PID),
the instance distance of negative sample pairs (NID), the
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TABLE VI
PARAMETER ANALYSIS ON VERI-776 (IN %)

Parameter Setting mAP | R-1 | Parameter Setting mAP R-1
0 79.6 | 95.9 0.1 80.8 96.8

51 0.05 81.3 | 96.9 0.2 80.5 97.0
0.1 80.6 | 97.0 0.3 81.3 96.9

0 80.8 | 96.8 n 0.4 80.9 96.8

B2 0.05 81.3 | 96.9 0.5 80.8 96.9
0.1 80.1 | 96.5 0.6 80.6 96.6

0.8 79.8 | 96.1 0.2 80.7 96.7

u 1.0 81.3 | 96.9 l 0.3 81.3 96.9
1.2 80.3 | 96.6 0.4 81.0 96.5

state distance of positive sample pairs (PSD) and the attribute
distance of negative sample pairs (NAD). We first average
the PID/NID/PSD/NAD of each anchor in a batch, and then
average over all batches in an epoch. As shown in Fig. 7, our
ASSEN significantly shortens the state distance of positive
samples (PSD), while increasing the attribute distance of
negative samples (NAD), which shortens the instance distance
of positive samples (PID) and enlarges the instance distance
of negative samples (NID). It shows that weakening the
state information can help reduce the intra-class distance, and
enhancing the attribute information can help enlarge the inter-
class distance. They are both effective ways to improve the
discrimination of the vehicle Re-ID network.

V. CONCLUSION

To our best knowledge, this is the first work to solve the
problem of Re-ID by enhancing attribute information and
weakening state information. In this paper, we first argue the
factors that cause the challenge of vehicle Re-ID into state
factors and attribute factors. We have contributed an attribute
and state guided structural embedding network (ASSEN),
followed by three novel modules: attribute-based enhance-
ment and expanding, state-based weakening and shrinking,
global structural embedding. Comparing with state-of-the-
art vehicle Re-ID methods, extensive experiments demon-
strate the promising performance of the proposed method.
Although our method requires additional state information
and attribute information, this information is easy to obtain
and has strong generalization capabilities. In the future,
we will consider applying the idea of reducing state discrep-
ancy and increasing attribute discrepancy to other recognition
tasks (pedestrians, animals) and unsupervised vehicle Re-ID
problems.
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