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Category-Wise Fusion and Enhancement Learning
for Multimodal Remote Sensing Image

Semantic Segmentation
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Abstract— This article presents a simple yet effective method
called Category-wise Fusion and Enhancement learning (CaFE),
which leverages the category priors to achieve effective feature
fusion and imbalance learning, for multimodal remote sensing
image semantic segmentation. In particular, we disentangle
the feature fusion process via the categories to achieve the
category-wise fusion based on the fact that the feature fusion in
the same category regions tends to have similar characteristics.
The disentangled fusion would also increase the fusion capacity
with a small number of parameters while reducing the depen-
dence on large-scale training data. For the sample imbalance
problem, we design a simple yet effective category-wise enhance-
ment learning scheme. In particular, we assign the weight for each
category region based on the proportion of samples in this region
over the whole image. By this way, the learning algorithm would
focus more on the regions with smaller proportion. Note that both
category-wise feature fusion and imbalance learning are only
performed in the training stage, and the segmentation efficiency
is thus not affected. Experimental results on two benchmark
datasets demonstrate the effectiveness of our CaFE against other
state-of-the-art methods.

Index Terms— Category-wise enhancement learning (CEL),
category-wise fusion, imbalance learning, multimodal remote
sensing, semantic segmentation.

I. INTRODUCTION

H IGH spatial resolution (HSR) remote sensing images
contain rich geographic objects, and the automatic

identification (ID) of these objects has practical value for
urban planning and monitoring. Remote sensing image seman-
tic segmentation is a special semantic segmentation task,
which aims to predict the category for each pixel in the image.
It can provide semantic information and location information
for the region of interest, thus has many applications in
remote sensing, such as land use [1], [2], building or road
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Fig. 1. Challenges in HSR imagery. (a) Large intraclass variance in the two
red boxes. (b) Small interclass variance in the light blue and the red boxes.

extraction [3], [4], [5], [6], [7], [8], agriculture vision [9], and
vehicle detection [10].

Deep learning has made remarkable achievement on seman-
tic segmentation of single-modal remote sensing images [11],
[12], [13], [14]. However, due to the lack of rich and diverse
information in HSR imagery, especially when the spectral
characteristics of some foreground objects are similar in
challenging scenarios, single-modal methods cannot achieve
satisfactory results. Recent studies have shown that using
elevation information in digital surface model (DSM) images
can help the segmentation models overcome the problem
of similar spectral features of foreground objects and larger
intraclass variance of background. As shown in Fig. 1(a),
the two red boxes are both “Background” categories but
with significantly different appearance characteristics in HSR
images. By contrast, the elevation information in the red boxes
in the DSM image presents almost the same appearance.
Meanwhile, as shown in Fig. 1(b), the light blue box and
the red box with similar spectral characteristics correspond to
two different categories, “Tree” and “Low veg.,” respectively.
By contrast, elevation information in the DSM images can
better distinguish the difference.

Therefore, it is crucial to effectively integrate the infor-
mation from the DSM images to improve the segmentation
results. Sun and Wang [15] extract elevation information from
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Fig. 2. Sample imbalance in HSR imagery. Compared with other categories,
“Car” and “Background” account for a relatively small proportion.

DSM images to modify segmentation results of red, green,
blue (RGB) optical images. However, the backend-based
processing cannot be trained end-to-end, and thus difficult to
converge. Cao et al. [16] propose to use a lightweight feature
extractor [DSM fusion (DSMF)] to extract features from DSM
images and investigate four fusion strategies. DSMF contains
only a small number of parameters and can be flexibly applied
to other semantic segmentation networks. However, the DSMF
network structure is simple, the features in the DSM images
cannot be fully extracted. Audebert et al. [17] verify that
integrating multimodal information based on residual correc-
tion strategy improves semantic segmentation by allowing the
network to learn robust multimodal features. However, the
methods mentioned above simply sum the feature maps of
two modalities and concatenate them in the channel direction
while ignoring the fact that the feature fusion based on the
same category region often has similar features.

To effectively integrate the DSM information to better solve
the problem of similar spectral features of foreground objects
and larger intraclass variance of background, we propose a
category-wise feature fusion (CFF) module to enhance the
feature fusion of the same category and achieve category-level
feature fusion in this article. Based on the fact that the
same category regions tend to have similar characteristics,
we propose to use category mask to enhance feature fusion of
the same category in both modalities. We first derive the binary
mask of the different categories from the label map. The value
“1” on the corresponding category mask selectively aggregates
the feature of the same category in different channels from the
two modalities. Meanwhile, the value “0” suppresses features
on different channels that do not belong to the category mask.
Then, the feature maps aggregated by each category mask
on the two modalities perform element-wise summation after
concatenation on the channel. Finally, the channel attention
(CA) fuses the features on different channels to obtain a more
salient feature representation.

In addition, the sample imbalance problem hinders the per-
formance of segmentation in remote sensing images. As shown
in Fig. 2, the “Car” and “Background” categories account for
a small proportion compared with other categories. Faced with
the challenge of small foreground objects in remote sensing
datasets and sample imbalance problem, Zheng et al. [11] pro-
pose a foreground perception network using the scene vector to
combine the object context with improving the characteristics
of the foreground object in the instance segmentation in aerial
images dataset (isaid) [18] dataset. This method proposes
the foreground perception network which consists of a 1-D
scene vector. However, it ignores the semantic gap when
modeling the context of the feature maps in different layers

of the encoder. Ma et al. [12] propose a foreground activation
network branch that improves the characteristics of foreground
objects. However, the structure of the dual decoder under
collaborative probability loss cannot converge well during
optimization.

To extract more discriminative features for the samples
with a small proportion to overcome the sample imbalance
problem in remote sensing images, we propose a category-wise
enhancement learning (CEL) module to enhance the network
learning ability, which enforces the network to focus on the
categories features with a small proportion. We use prior
knowledge of the category distribution to enhance network
training, enforcing the network to focus on categories with
a small proportion. We first derive the weight factor of the
category from the label map and embed this prior knowledge
to help the network learn the distribution information of the
image. The categories with a small proportion are assigned
with small weights, by this way, the network pays more
attention to learning this region under the optimization of the
focal loss [19].

Pyramid structure has been noted as a practical scheme to
alleviate the gradient vanishing problem and improve feature
extraction capability, which has been widely used in related
computer vision and machine learning tasks, including Red-
net [20], Deeplabv3 [21], and pyramid scene parsing network
(PSPNet) [22]. To preserve the multiscale feature of objects
in the multilayer decoder, we propose to employ the pyramid
loss supervision (PLS) to optimize the output of each layer of
the decoder.

As summary, we propose a novel network framework called
category-wise fusion and enhancement learning (CaFE) based
on the pyramid structure for multimodal remote sensing image
semantic segmentation in this article. Specifically, we propose
a CFF module to improve feature fusion, and a CEL module
strengthens model learning capabilities. The results on two
benchmark multimodal remote sensing datasets prove the
superiority of our method over other state-of-the-art semantic
segmentation methods. The main contributions in this article
are as follows.

1) We propose a CaFE framework for multimodal remote
sensing image semantic segmentation. It effectively
solves the problems of feature fusion and sample imbal-
ance in multimodal remote sensing image semantic
segmentation from a new perspective.

2) We propose a CFF module, which uses the category
mask in the label map to achieve the category-wise
fusion while suppressing redundant feature.

3) We propose a CEL module to overcome the sample
imbalance problem, which uses prior knowledge of the
distribution of different categories in the input image
to guide the network to learn more effective category
features.

II. RELATED WORK

A. Semantic Segmentation of Single-Modal Remote Sensing
Images

Several earlier works [23], [24], [25] focus on using
multilevel semantic features on local patterns of images.
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Fig. 3. Overview of the proposed CaFE framework, which includes training phase and inference phase. The training stage contains four main parts: CFF,
CEL, decoder, PLS. The inference stage mainly contains the CA module.

Meanwhile, earlier studies mainly rely on low-resolution
and medium-resolution datasets, such as [26], [27]. With
the development of remote sensing technology and the
advancement of measurement technology, a large number
of high-resolution remote sensing images can be obtained
from airborne and spaceborne platforms. Such as Gaofen
image dataset (GID) [28], DeepGlobe [29], iSAID [18],
unmanned aerial vehicle video dataset (UAVid) [30], Zurich
Summer [31], SpaceNet [32], and WHU building change
detection dataset (WHU) [6]. For the challenges of differ-
ent datasets, different researchers propose different solutions.
On the iSAID dataset, foreground objects only occupy 1.34%
of the pixels. This increases the difficulty of extracting
foreground object features and brings the sample imbalance
problem. Some works [11], [12] address such challenges by
modeling foregrounds and optimizing network training using
loss functions. On the GID dataset, Li et al. [33] design
multiscale skip connections and CA blocks to fuse multiscale
features. On the WHU Building dataset [6], Xiang et al. [34]
propose adaptive feature selection (AFS), which uses CA
to select important feature. Recently the transformer has
made great achievement in the field of remote sensing.
Wang et al. [35] use Swin Transformer [36] as the backbone
network to extract image feature, and then propose densely
connected feature aggregation module (DCFAM) acts as a
decoder to restore the resolution of the image. He et al. [37]
embed the Swin transformer into the classical convolutional
neural network (CNN)-based UNet. Meanwhile they propose
a spatial interaction module (SIM) to focus on the pixel-level
feature correlation in the spatial dimension, a feature compres-
sion module (FCM) to alleviate the omission of small-scale
features during patch token downsampling, and a relational
aggregation module (RAM) to integrate global dependencies
from the Swin transformer into the features from CNN hier-
archically.

Attention mechanism has also achieved certain results in
the field of remote sensing. Li et al. [13] propose a novel and
efficient module for point-wised affinity learning to handle
dense affinity learning forces small objects to absorb noisy
context. Mou et al. [38] propose a spatial relation module and
a channel relation module to capture long-range spatial rela-
tionships between entities. Li et al. [39] propose a multihead
attention module to capture the global context information
thoroughly. Li et al. [40] employs a new kernel attention
mechanism with linear complexity to solve the traditional
computationally demanding problems of attention. To relieve
the sample imbalance problem in remote sensing images,
Zhou et al. [41] use dice loss to improve road regions weight
in road extraction. Kellenberger et al. [42] utilize the online
hard example mining (OHEM) strategy in the task of animal
detection in remote sensing images. However, the ability of
identifying objects remains limited due to the lack of rich
and diverse information in single-modal HSR remote sensing
images, particularly in challenging scenes where the spectral
characteristics of foreground objects are similar.

B. Semantic Segmentation of Multimodal Remote Sensing
Images

Due to its richer scene characterization, recent progress has
been made in the semantic segmentation of multimodal remote
sensing images. Hong et al. [43] propose joint exploitation
of multiple modalities which characterizes the scene at a
more detailed and precise level, meanwhile investigate five
plug-and-play fusion modules. Recently, multimodal remote
sensing image classification models have been roughly divided
into two categories. One category inputs data as a local
patch around its center pixel [44], [45]. However, the block
operation will lose the spatial and context information. The
other category aims to assign a semantic category to each pixel
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based on CNN. Audebert et al. [46] introduce a multikernel
convolutional layer that operates several parallel convolutions
with different kernel sizes to aggregate predictions at multiple
scales to segment RGB and DSM images. Volpi and Tuia [47]
proves the use of spatial regularization can help simplify class
structures spatially for semantic segmentation in aerial images.
Srivastava et al. [48] propose a multimodal deep learning solu-
tion to enhance the understanding of urban land use from both
overhead and ground images. Another interesting work [49]
utilizes an optical branch to learn global relationships of any
two regions and an elevation feature branch to learn boundary
information. However, the above methods are difficult to
segment objects with similar spectral characteristics. The main
reason is that most of the above methods conduct global fusion
at the feature level, which will bring redundant features.

III. CAFE FRAMEWORK

The proposed CaFE framework uses an end-to-end encoder
and decoder structure, consisting of training and inference
parts. As shown in Fig. 3, CaFE mainly includes a feature
encoder, feature decoder, CFF module, CEL module, and PLS
during the training stage. First, we use a feature encoder to
extract the features of the RGB and DSM images. Then, the
extracted features will flow into the CFF, which uses the
category mask to aggregate features of the same category.
The feature maps after CA output strengthens the feature
fusion and obtains a more salient feature representation.
Considering the sample imbalance problem, we use CEL to
guide the network training and let the network learn more
effective category features. At the same time, we optimize the
predictions for each decoder using a PLS based on the focal
loss [19] to improve the feature extraction ability of objects at
different scales. In the inference stage, only the CA mechanism
in the CFF is retained.

A. CFF Module
The traditional feature fusion method ignores the modality

differences and cannot ensure operational effectiveness when
bringing additional parameters. Note that the label map of
semantic segmentation contains the location information of
objects. Therefore, we utilize the masks of different categories
in the label map to fuse the feature of the same category
on different channels from two modalities, thus enhancing
the feature representation of each category and reducing the
interclass differences. The category masks are decomposed
from the label map of each input network, which using the
prior knowledge of the labels without additional parameters.
The basic idea is shown in Fig. 4. The CFF consists of
two parts: (a) category decoupling and (b) CA. The task
of the category decoupling stage is to separate the features
of different categories in the channel direction of the feature
map according to the category mask. The main reason is that
the same category region tends to have similar characteristics.
CA further improves the feature fusion ability of the same
category to obtain more salient feature representations. We dis-
entangle the feature fusion via the category mask to achieve
the category-wise fusion, which improves the feature fusion
capability of the two modalities.

As shown in Fig. 3, first, two independent residual modules
process a multispectral RGB image and a corresponding DSM

image. Ri , Di (i ∈ {1, 2, 3, 4}) represent the RGB features
and DSM features of the layer i th encoder, respectively, with
the size of 1/4, 1/8, 1/16, 1/32 of the original image. The
detailed CFF is shown in Fig. 4. M j ( j ∈ {0, 1, . . . , 5}),
represents the category masks of different scales of label
maps in different layers of encoder. For the given Ri and
Di , we perform the dot product operation with M0 to M5,
respectively, which use the category mask of the label map to
aggregate the object features that match the category mask on
the channel, the corresponding position “1” retains the feature,
and “0” removes redundant feature. Then, the feature maps
aggregated by each category mask are concatenated in the
channel direction. Finally, we perform an element-wise sum
operation between processed feature Ri and the features Di .
The main idea is to selectively fuse feature of the same cat-
egory on different channels in two modalities using different
category masks. We formulate this procedure as follows:

Frd = Ccat

⎛
⎝Ri �

5∑
j=0

M j

⎞
⎠ + Ccat

⎛
⎝Di �

5∑
j=0

M j

⎞
⎠ (1)

where i = 1, . . . , 4 and Ccat represents for concatenation on
the channel. The feature maps Frd effectively integrate the
same category’s feature and suppress the redundant feature.
Then we use CA to improve the feature interaction ability of
the same region of the feature map Frd .

As shown in Fig. 4(b), we apply 3 × 3 convolutional
layers on feature Frd to reduce the number of channels.
The main purpose is to ensure that the input channels are
consistent when testing. A 3 × 3 convolution then follows
the F̃ features for refining the information, obtaining Fi . The
transformed features Fi are then reshaped into a 1-D vector
through global pooling. The existing work [39] first reduces
the dimensionality of the aggregated features obtained after
global average pooling and generates the weights for each
channel. Efficient channel attention (ECA)-Net [50] proposes
that avoiding dimensionality reduction is essential for learning
CA. Inspired by this, when calculating the weight of the
channel ω, we generate channel weights by performing a
1 × 1 convolution of size k as

ω = ϕk(Fi ) (2)

where ϕ represents 1×1 convolution, and ω is processed by the
sigmoid function. Finally, we perform a matrix multiplication
between the weight ω and the feature map Fi to obtain the
result F ′

i as

F ′
i = ω ⊗ Fi . (3)

The feature map F ′
i obtained by the CFF contains the

rich information of the same regions in the two modalities.
Meanwhile, CFF requires only a small number of parameters.

B. CEL Module

The imbalanced samples can mislead the optimization direc-
tion of the network training. The label map contains not only
the location information of objects, but also the distribution
information of objects. From the perspective of image distri-
bution, the CEL assigns each pixel a weight factor derived
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Fig. 4. Computational details of the CFF in the i th layer encoder, CFF consists of two parts: (a) category decoupling and (b) CA mechanism.

Fig. 5. Structure of CEL. The nonzero value in Vj , j ∈ {0, 1, . . . , 5}
represents the proportion of the corresponding category in the image.

from the label map while helping the network learn the image
distribution information to maintain the stability of network
training, which to implement CEL, focusing on the categories
with a small proportion.

The basic structure is shown in Fig. 5. First, we get the
category masks from the label map used by the encoder at each
layer and then calculate the weights of different categories
in the different category masks, obtaining the weight map
{V0, V1, V2, V3, V4, V5}. The nonzero value in the weight map
Vj represents the proportion of the corresponding category
on the image. Then, we perform a dot product operation
between feature Fi

′ and the feature Vj , obtaining features Fi
′′.

We formulate this procedure as follows:

Fi
′′ = Fi

′ �
5∑

j=0

Vj . (4)

When the weight of the categories with a small proportion
in the label map is low, after assigning the weight to the same
region on the feature map, The output corresponding to the
same region on the feature map is suppressed to a certain
extent, making the prediction of the corresponding region
output more challenging when the model is trained. With
the constrain of the focal loss [19] and the prior knowledge
of images, the model will gradually learn the knowledge of

the sample distribution, then dynamically change the training
director of the network, thus paying more attention to this
part of the region. Each pixel in the feature map F ′′

i not
only contains weight information but also learns the category
distribution of images, effectively helping the network to
accurately segment the categories with a small proportion
during testing.

C. Pyramid Loss Supervision

The network utilize top-down pathway and skip connections
to yield the pyramidal features maps {B1, B2, B3, B4}. The
detailed architecture of the decoder is illustrated in Fig. 3.

Specifically, the deepest-layer features F4
′′ is first reduced

(256 by default) with a 1 × 1 convolution, obtaining the
B1 features. The B1 features are then by two times upsampling.
The features F3

′′ from the encoder is then gathered to sum
with B1, obtaining B2. Generally speaking, we formulate this
procedure as follows:

B(h+1) = Upsample×2
(Bh) + ϕ

(
F ′′

(4−h)

)
(h = 1, 2, 3) (5)

where ϕ represents 1×1 convolution. The decoder is designed
to recover the spatial resolution from the encoder feature maps.
We adopt simple yet effective form to capture multiscale fea-
ture. Finally, the feature maps {B1, B2, B3, B4} are acquired.

To preserve the detailed information of objects in the output
of the multilayer decoder, we use the PLS to optimize the
output of each layer of the decoder, focusing on the feature
changes of objects at different scales.

The feature map F ′′
i outputted by the CEL is only assigns

weight information to different regions of the feature map.
How to use prior knowledge to guide network learning to
overcome the sample imbalance problem is still an important
issue. Based on the idea of focal loss [19], we use (1 − p)r

to represent the weight of categories with a small proportion,
r is the weighting factor, and p is the probability predicted by
the model. The introduction of weight estimation allows the
network to pay more attention to categories with a small pro-
portion during training. At the same time, same as FarSeg [11],
a constant Z is introduced, where Z represents the number of
all pixels in the current prediction map, which avoids gradient
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vanishing. The loss function of the last layer of the decoder
is

L4 = 1

Z

∑
(1 − pi)

r C(pi , yi) (6)

where pi represents the predicted probability, yi represents the
ground truth, and C(pi , yi) represents the cross-entropy loss
of each pixel. At the same time, to preserve the corresponding
information of each layer in the decoder, the loss function
optimizes network training in the decoder’s second, third, and
last layers. The total loss function is

Ltotal =
4∑

q=2

Lq (7)

where Lq represents the loss function of the qth layer decoder.
The PLS can pay more attention to the multiscale changes

of the object and addressing the sample imbalance problem.
At the same time, it can also avoid the problem of gradient
disappearance.

IV. EXPERIMENTS

First, we will introduce the dataset and experimental details
in detail. Second, we will perform extensive experiments on
Potsdam and Vaihingen datasets and give a detailed analysis
to verify the effectiveness of the proposed CaFE. Finally,
we add the CFF and CEL to various baselines to verify the
effectiveness.

A. Data Description

Potsdam: Potsdam1 contain 38 fine-resolution images of size
6000 × 6000 pixels with a ground sampling distance (GSD)
of 5 cm. The dataset provides near-infrared, RGB channels as
well as DSM and normalized DSM. There are 24 images in
the training set and 16 in the test set. Specifically. We utilize
ID: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 5_14,
5_15, 6_13, 6_14, 6_15, 7_13 for testing, and the remaining
24 images for training. We use only the RGB channels and
corresponding DSM in our experiments.
Vaihingen: Vaihingen2 semantic labeling dataset is composed
of 33 orthorectified image files mosaic with three spectral
bands (red, green, near-infrared), plus a normalized DSM of
the same resolution. The dataset has a spatial resolution of
9 cm, with an average size of 2494× 2494 pixels and a GSD
of 5 cm. There are 16 images in the training set and 17 in the
test set. We exploit ID: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27,
29, 31, 33, 35, 38 for testing and the remaining for training.
We also use the corresponding DSM in our experiments.

B. Implementation Details

The backbone used in CaFE is ResNet-50 [51] for all
the experiments, which is pretrained on ImageNet [52]. The
single-modal method only uses RGB data for training in
the experiment. The multimodal method uses RGB and the

1https://www2.isprs.org/commissions/comm2/wg4/
benchmark/2d-sem-label-potsdam/

2https://www2.isprs.org/commissions/comm2/wg4/
benchmark/2d-sem-label-vaihingen/

corresponding DSM dataset. To maintain the fairness of the
experiment, all methods are carried out under the same exper-
imental conditions. Same as FactSeg [12]. The stochastic gra-
dient descent (SGD) optimizer is adopted during the training
with a momentum of 0.9 and a weight decay of 0.0001. The
initial learning rate is set to 0.0007 and a “poly” schedule
with a power 0.9. All models are trained for 150 epochs.
We randomly crop the image into a fixed size (512, 512) from
the original image. The batch size is set to 8. The k in the CA
module and r in the PLS module were 4 and 2, respectively.
For data augmentation, random horizontal and vertical flips
are used during training. We normalize the depth values in the
DSM images to between 0 and 255 during network training,
and the DSM images satisfy the rule that objects close to
the ground present low depth values and objects high above
the ground present high depth values. When the model is
tested, since the CFF and CEL have the label information,
only the CA in CFF and the loss function of the last layer
in the decoder are retained during the test. All methods are
tested on NVIDIA GeForce RTX3090 graphics processing
unit (GPU) with 24 GB RAM. To evaluate the performance
of the proposed methods, we use three metrics to evaluate
the performance of our method, overall accuracy (OA), mean
F1-score (mean-F1), and mean intersection over union (mIoU).

C. Comparison Results

Results on Potsdam: As shown in Table I, after fusing the
elevation information in DSM image, the state-of-the-art mul-
timodal methods V-FuseNet [17], digital surface model fusion
network (DSMFNet) [16] perform even overshadowed by the
single-modal methods such as FarSeg [11] and FactSeg [12].
The main reason is that simple concatenating or summing
in the channel direction ignores the distribution between
modalities and may suppress another modality. By contrast, the
proposed CFF overcomes the problem of modal distribution
differences by selectively guiding the feature fusion of two
modalities of the same category through a category mask.
Therefore, our method (CaFE) significantly beats all the com-
pared state-of-the-art methods in both the RGB and RGB +
DSM scenarios in OA, mean-F1, and mIoU metrics, especially
in “Building,” “Car,” and “Tree.” The DSM image provides
the elevation information of ground objects. The categories
of “Building,” “Car,” and “Tree” have a certain height from
the ground, which present more discriminative features in the
DSM image. It can be seen that our method fully excavates
the feature of these categories in DSM images. Although the
features of the categories “Imp. surf.” and “Low veg.” are not
obvious in DSM images, our method learns complementary
features in the two modalities and achieves promising results.
Fig. 6 provides more intuitive segmentation results of each
method on the Potsdam datasets. Most of the red boxes in
Fig. 6 are the shadow regions and the regions with similar
spectral features in the foreground. As shown in the seventh
row of Fig. 6, the categories marked in the red box are “Low
veg.” and “Tree,” respectively. In the RGB optical image,
the spectral features of these two categories are not highly
discriminative. However, in the DSM image, the elevation
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TABLE I

PERFORMANCE ON THE REFERENCE METHODS AND THE PROPOSED CAFE FRAMEWORK ON THE POTSDAM DATASET

Fig. 6. Visual results of our proposed method compared with other state-of-the-art methods on the Potsdam Dataset. The white, blue, cyan, green, yellow, red,
separately represent the categories of “Imp. surf.,” “Building,” “Low vegetation,” “Tree,” “Car,” “Background.” (a) Fully convolutional networks (FCN)-8s.
(b) U-Net. (c) Deeplabv3. (d) RefineNet. (e) MANet. (f) Hybrid multiple attention network (HMANet). (g) FarSeg. (h) FactSeg. (i) V-FuseNet.

information of these two categories is more distinguishable.
The single-modal method multi-scale skip connected architec-
ture (MACU)-Net [33] and FarSeg [11] perform poorly, the
main reason is that the single-modal condition lacks rich and
diverse information. Their performance is limited when facing
the challenge of similar spectral features of foreground objects.
After using the elevation information in the DSM image, the
multimodal method DSMFNet [16] has a certain improvement,
but it still cannot accurately distinguish the semantic regions
of these two categories. Our method decouples the process
of feature fusion through category masks while enhancing
features of the same category through CA to obtain more
salient feature representations for each category. As shown in
the shaded regions marked in red boxes in Fig. 6, our method
achieves more accurate results.

Results on Vaihingen: As shown in Table II, in the Vaihingen
dataset, our method (CaFE) consistently achieves the best
results on OA, mIoU, and mean-F1 metrics. Compared with
the Potsdam dataset, the color information of the Vaihingen
dataset is more abundant. However, the occlusion problem
usually leads to semantic ambiguity. For example, the shadow
area caused by the occlusion of the category of “Tree” brings
certain challenges to recognizing the category of “Car” and
“Imp. surf.” Meanwhile, the existing multimodal methods
still work poorly compared to some single-modal methods,
such as FarSeg [11] and FactSeg [12], which indicates the
importance of fusion strategy while integrating the DSM image
information. As shown in Fig. 7, the texture difference between
category “Tree” and category “Building” is relatively large.
Both the single-modal methods and the multimodal methods

Authorized licensed use limited to: Anhui University. Downloaded on February 13,2023 at 09:25:41 UTC from IEEE Xplore.  Restrictions apply. 



4416212 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE II

PERFORMANCE ON THE REFERENCE METHODS AND THE PROPOSED CAFE FRAMEWORK ON THE VAIHINGEN DATASET

Fig. 7. Visual results of our proposed method compared with other state-of-the-art methods on the Vaihingen dataset. The white, blue, cyan, green, yellow, red,
separately represent the categories of “Imp. surf.,” “Building,” “Low veg.,” “Tree,” “Car,” “Background.” (a) FCN-8s. (b) U-Net. (c) Deeplabv3. (d) RefineNet.
(e) MANet. (f) HMANet. (g) FarSeg. (h) FactSeg. (i) V-FuseNet.

perform well. As shown in the third row of Fig. 7, due to the
occlusion caused by the shadow of the category “Building,”
the edge of the category “Car” marked in the red box is
not well segmented in the single-modal methods. By con-
strast, the multimodal method V-FuseNet [17] has a certain
improvement after introducing the elevation information in the
DSM image. Our proposed method is able to recognize the
category of “Car” with finer boundaries. Furthermore, single-
modal methods cannot well handle the challenging shadow
area as shown in the red boxes marked in Fig. 7. After
introducing the elevation information in the DSM image, our
method (CaFE) segments more continuously at the object’s
boundary. It shows strong robustness despite the challenges of

shadowed regions and similar spectral features of foreground
objects.

D. Component Analysis

Ablation Study: Table III shows the ablation study on the
key components, CFF, CEL, and PLS, in the proposed CaFE
framework. First, by progressively introducing each compo-
nent, the mIoU consistently improves, which validates the
effectiveness of each component in our model. As shown in
Table III(c) and (d), the mIoU has been distinctively improved
after introducing CFF and CEL, respectively. This evidence
the significant contribution of the proposed CFF, which uses
category masks to achieve category-level feature fusion, so as
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TABLE III

OBJECT SEGMENTATION mIoU (%) ON POTSDAM DATASET. STARTING
FROM BASELINE, THE PROPOSED MODULES ARE GRADUALLY ADDED

IN THE PROPOSED CAFE FOR THE MODULE ANALYSIS

Fig. 8. Visual representation of the feature response maps on the category
of “Building” and “Tree” with/without our proposed CFF in the Potsdam and
Vaihingen dataset.

Fig. 9. Visualization of keypoint detection on the “Car” category in the
Potsdam dataset.

to more effectively fuses features from two modalities. And
the proposed CEL, which introducing weights of different
categories in the label map and embedding network training,
implements CEL to overcome the sample imbalance problem.
Effectiveness of CFF and CEL: Fig. 8 shows the class
activation maps for “Building” and “Tree” on the Potsdam
and Vaihingen dataset, respectively. Our model accurately
segments the categories even under the shadow challenges
marked by yellow boxes in the Potsdam dataset. Meanwhile,
the yellow boxes marked in the Vaihingen dataset are not in
the “Tree” category. While our model successfully avoids false
prediction with the guidance of CFF.

Fig. 9 shows the visual examples of the key points in the
“Car” category on the original image. The category of the
“Car” belongs to hard examples (with a small proportion),
and it is challenging to identify them accurately. As shown in
Fig. 9, CEL uses the prior knowledge of category weights to
guide the network to learn more effective category features,
and the key points are more densely distributed in the “Car”
category area.

TABLE IV

mIoU (%) ON POTSDAM DATASET USING LOSS
FUNCTION IN DIFFERENT DECODERS

Evaluation on PLS: Adding the focal loss [19] function to
each layer of the pyramid loss can supervise network training
and focus on the features of objects in feature maps at different
scales. To investigate the impact of different loss combinations,
we evaluate the performance of our method by progressively
adding the focal loss into each layer in the decoder. As shown
in Table IV, in general, after progressively adding the loss
function in the second to the fourth layers of the decoder,
the mIoU consistently increases. This implies that PLS can
effectively learn the object features in different layer decoders.
However, as shown in Table IV(d), the mIoU declines after
further adding the loss at the first layer of the decoder. The
main reason is that the output resolution of the first layer is
shallow. Meanwhile, the label map downsampling may lose
detailed information, which brings training fluctuations caused
by noisy labels. Therefore, in the PLS, we enforce the loss into
the last three layers as shown in Fig. 3.

E. Baseline and Backbone Analysis

Different Baselines Plugin: To verify the generality of the
CFF and CEL, we integrate them together into four latest
single-modal remote sensing image semantic segmentation
method FarSeg [11], MACU-Net [33], and FactSeg [12],
MANet [40] and two multimodal latest method DSMFNet [16]
and V-FuseNet [17]. As shown in Table V, CFF + CEL further
boost the mean-F1 on all the six methods, which verifies the
generality of the proposed CFF and CEL. The improvements
in the categories of “Low veg.” and “Imp. surf.” are slightly
overshadowed comparing with the other three categories after
introducing CFF and CEL. The main reason is that “Low
veg.” and “Imp. surf.” encounter occlusion problems that
lead to semantic ambiguity. However, we can still improve
the segmentation results in these two categories. Note that
introducing CFF and CEL may bring negative contribution
to the segmentation, such as the “Low veg.” category in
multimodal methods DSMFNet [16] and V-FuseNet [17]. The
main reason is that the features of the “Low veg.” categories
are not distinct in DSM images, which is challenging to be
extracted. The simple feature extractor of the DSM images in
DSMFNet [16] and V-FuseNet [17] cannot sufficiently learn
the challenging “Low veg.” category.
Backbones Analysis: For the more comprehensive com-
parison, we further evaluate our modules with two more
complex backbones ResNet-101 [51] and vision transformer
(ViT) [58] as shown in Table VI. First, it can be seen that
when adding our proposed module to each backbone, there
is a significant improvement on mIoU, which verifies the
generality of the proposed modules. Second, using the more
complex backbones ResNet-101 [51] and ViT [58] do not
achieve better results comparing to the widely used backbone
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TABLE V

EVALUATION OF CFF AND CEL ON OTHER ADVANCED METHODS

TABLE VI

mIoU (%) ON POTSDAM DATASET

USING VARIOUS BACKBONES

TABLE VII

mIoU (%) ON POTSDAM DATASET USING IMAGES WITH
DIFFERENT CATEGORY DISTRIBUTIONS

ResNet-50 [51]. This is because DSM images do not contain
much texture and color information, and a more complex
backbone may affect the model training. As shown in Table VI,
our method (CaFE) achieves the best results when adopting
ResNet-50 [51].
Other Analysis: To evaluate our method when handling the
images with different category distributions, we divide the test
images in the Potsdam dataset into two parts: balanced (images
with all six categories) and imbalanced (the rest of images with
less categories) for evaluation. As shown in Table VII, both
the state-of-the-art methods FactSeg [12] and MACU-Net [33]
and our CaFE decline in the imbalanced case comparing to the
balanced case. The main reason is that when there are only a
few categories in the image, the help of contextual information
of other categories is lacking. Comparing with FactSeg [12]
and MACU-Net [33], the proposed CaFE achieves the best
performance in the imbalanced case as well as the balanced
case. This evidences that under the guidance of the CEL, our
model can better learn the image distribution while overcom-
ing the category imbalance problem.

F. Parameter Analysis

There are two critical parameters in our methods, k in (2)
indicating the number of interactions among the channels,
and r in (6) representing the weight of samples. Table VIII

TABLE VIII

mIoU(%) ON POTSDAM DATASET USING

VARYING k FOR CA AND r FOR PLS

evaluates the influence of these two parameters in our method.
Generally speaking, our method is not sensitive to these two
parameters. As the value of k increases, the mIoU slightly
decreases, which indicates that under the condition of sam-
ple imbalance, the higher the similarity of category features
between adjacent channels. When r is too large, the mIoU
tends to decline. The main reason is that too much supervision
of hard samples (with a small proportion) slows down the
network convergence. Therefore, we set k to 4 and r to 2 for
the best performance.

V. CONCLUSION

In this article, to solve the problem of similar spectral
features of foreground objects and larger intraclass variance of
background and the sample imbalance problem. We propose
a multimodal remote sensing image semantic segmentation
framework called CaFE based on sufficient exploitation of
structural information in the label map. Specifically, we pro-
pose the CFF module which uses category mask to aggregates
the feature of the same category in different channels to
achieve the category-wise level feature fusion. Then we pro-
pose the CEL module by learning weight factors in the label
map to overcome the sample imbalance problem. Meanwhile,
we use the PLS to focus on the multiscale features of objects
in HSR remote sensing images. Extensive experiments have
shown the superior performance of the proposed CaFE on two
public aerial benchmarks.
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