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Entropy Guided Adversarial Domain Adaptation
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Abstract— Recent advances on aerial image semantic segmen-
tation mainly employ the domain adaption to transfer knowledge
from the source domain to the target domain. Despite the
remarkable achievement, most methods focus on the global
marginal distribution alignment to reduce the domain shift
between source and target domains, leading to a wrong mapping
of the well-aligned features. In this article, we propose an
effective unsupervised domain adaptation approach, which relies
on a novel entropy guided adversarial learning algorithm, for
aerial image semantic segmentation. In specific, we perform local
feature alignment between domains by learning a self-adaptive
weight from the target prediction probability map to measure
the interdomain discrepancy. To exploit the meaningful structure
information among semantic regions, we propose to utilize the
graph convolutions for long-range semantic reasoning. Compre-
hensive experimental results on the benchmark dataset of aerial
image semantic segmentation and natural scenes demonstrate the
superior performance of the proposed method compared to the
state-of-the-art methods.

Index Terms— Aerial image, graph convolutional network
(GCN), information entropy, semantic segmentation, unsuper-
vised domain adaptation (UDA).

I. INTRODUCTION

SEMANTIC segmentation [1] is a fundamental computer
vision task that assigns a predictive category for each pixel

of an input image, which has wide practical applications such
as auto-driving [2] and image editing [3].

With potential applications such as land-cover monitoring
and planning [4], climate monitoring and forecasting [5], urban
management [6], building extraction [7], recent efforts devoted
to aerial image semantic segmentation for better understand-
ing the remote scenarios with reliable inferential knowledge.
However, the aerial images collected by airborne satellites or
unmanned aerial vehicles normally contain a wealth of detailed
land information with redundant information and noise, which
bring great challenges for semantic segmentation.
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Recent achievements on natural image semantic segmenta-
tion, such as FCN [8], U-Net [9], SegNet [10], PSPNet [11],
ResNet [12], and DeepLab [13] significantly boost the
development of aerial image semantic segmentation [14]–[16]
due to the powerful capability of feature learning and represen-
tation. Despite their excellent success in aerial image semantic
segmentation, the key issue is these data-driven supervised
methods rely on a large amount of annotations, which are
extremely time-consuming and labor-intensive, especially
for the extraordinary high-resolution aerial image. Although
weakly supervised methods [17]–[21] and synthetic data [22],
[23] can overcome this issue to some extent, they still require
extra human efforts or have a large discrepancy in texture,
spatial layout, color, and lighting conditions between synthetic
and real images which is also called domain shift. Domain
adaptation, as a particular case of transfer learning, has been
widely explored to simulate the human visual system to learn
from one or more related source domain data distribution
and transfer the learned knowledge to the target domain [24],
[25]. Unsupervised domain adaptation (UDA) bridges the gap
between the labeled source and the unlabeled target domains
mainly through maximum mean discrepancy (MMD) [26],
[27], adversarial learning [28]–[34], or self-training [35]–
[37]. Recent efforts evidence the promising achievement of
adversarial learning-based DA in UDA semantic segmentation.

Adversarial DA uses the discriminator to improve the ability
of the generator while learning domain-invariant features.
Early efforts [30], [38]–[40] mainly focus on generative
adversarial learning methods by employing the generative
adversarial network (GAN) [41] structure, which generates
simulated images to mimic the appearance of the target domain
and retain the semantic invariant. Recent efforts [28], [29],
[33], [34] adopt the subspace adversarial learning method
to learn the domain-invariant features, which maps images
from both domains to a common subspace and then uses a
discriminator to reduce distribution discrepancy due to the
similarity of the feature distribution in the feature space [29]
or the spatial layout in the output space [33], and [32] uses
the differences between the two classifiers to promote feature
alignment. Others methods [31], [42]–[44] make efforts to
integrate both generative and subspace adversarial learning
methods. More recent works devote to introduce curriculum
learning [45] and entropy minimization [46] to adversarial
learning to reduce the domain shift. However, most exist-
ing adversarial learning-based UDA methods suffer from a
major limitation: they focus on aligning the global marginal
distribution of the features from both domains while ignoring
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the local joint distribution shift that the discrepancy of regional
feature similarity for multiple categories between domains,
as so-called negative transfer [34].

Recent efforts [47]–[50] evidence the effectiveness
of domain adaptation method on aerial image semantic
segmentation. Benjdira et al. [47], [48] and Tasar et al.
[49] translate images between domains to reduce style
discrepancy and reuse labels as additional supervision based
on the generative method. Fang et al. [50] apply feature
generation and category-level subspace adversarial learning
methods [34], via a geometry-consistent GAN embedded into
a cotraining adversarial network to eliminate above negative
transfer. It is difficult to train the discriminator to distinguish
the transferred images or the generated high-dimensional
features. At the same time, the above methods rarely take
into account the domain-invariant feature alignment during
the global adversarial learning, and the additional classifier
increases the complexity of the model in the work of
Fang et al. [50]. Furthermore, most of the above methods
directly derive from natural images and ignore the specific
characteristics of the aerial image, such as the existence
of multiscale objects and the absence of regional semantic
information in image preprocessing.

To solve these problems, we propose an entropy guided
adversarial (EGA) learning method in the output-space
to enhance the local feature alignment for UDA aerial
image semantic segmentation and encode the long-range
semantic dependencies between regions for compensating
the semantic absence base on graph convolutional network
(GCN). Information entropy, which indicates the amount
of information and measures uncertainty, has been widely
explored in semantic segmentation [37], [46], [51], [52].
As shown in Fig. 1(a), the model trained on the labeled
source domain tends to produce over-confident prediction
with low entropy. And the target domain predictions based
on a source-only trained model usually represent low-entropy
on the source-like (domain-invariant) regions (the category
regions of “Build.”) and high-entropy on the target-like
(domain-variant) regions (the regions of “Imp. surf.” and
“Tree”) due to the domain shift, as shown in Fig. 1(b) and
(c). Furthermore, the information entropy map has a strong
relationship with the error map, which is apparent in the
labeled source domain. This relationship has also been studied
in previous work [51], [52]. In particular, we have studied the
entropy distributions of correct and incorrect predictions in the
source and target domains in Fig. 1(c). The incorrect prediction
usually corresponds to the high entropy, while the correct pre-
diction corresponds to the low entropy. The traditional global
feature alignment method ignores the local feature alignment,
thus will cause prediction errors in domain-invariant regions,
as shown in the third row of Fig. 1(d) (the category of
“Build.”). Therefore, regions should be discriminatively
treated in adversarial learning. We argue that the entropy map
can represent the domain shift, which in turn means we can
use the entropy value to enhance the local feature alignment
in adversarial learning. By the EGA learning, we encourage
the network to preserve the domain-invariant features while
enforcing the alignment of the domain-variant features.

Fig. 1. Effectiveness of the proposed EGA domain adaptation for aerial image
semantic segmentation. The first two rows show the results of source (a) and
target (b) domain scene tested on the source-only trained model. In the third
row (c), the left figure draws the relationship between the entropy and the
predictions on both domains before adaptation, while the right one plots the
relationship between the feature similarity between two domains for each
class together with the entropy of the target domain. The last two rows
show the results of the same target domain scene after traditional global
feature alignment (d) and our method (e). Columns represent the images
from both domains, the information entropy maps calculated on the prediction
probability maps and the error maps, respectively. The error map is represented
by a binary map to show the difference between the ground truth (GT) and
the prediction map, where white and black pixels indicate the correct and
incorrect predictions, respectively.

In addition, we note that the scene layout between the
source and the target domain in aerial image presents a
huge discrepancy comparing to the natural image, which
brings more challenges to the segmentation task, as shown
in Fig. 2(a) and (b). Due to the high resolution, aerial images
are usually divided into multiblocks, which will result in
missing region semantics, such as the “Build.” cutting from
the middle significantly destroy the local region structure.
Therefore, the region’s relationships are needed for long-range
semantic dependence. As shown in Fig. 2(c), the feature
response map after the long-range semantic reasoning (LSR) is
enhanced by encoding more context information and refining
object boundaries.

The main contributions of our work can be summarized as
follows.

1) We propose a novel UDA network to handle the problem
of local distribution shift for aerial image semantic
segmentation.
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Fig. 2. Comparison of natural image and aerial image, and the feature
response map with/without the LSR. The scene layout of the natural image in
the source domain is more similar as in the target domain comparing with the
aerial image by comparing (a) with (b). Furthermore, the divided blocks in
the aerial image have lost/destroyed the local semantic information, as shown
in (b). In (c), we show the deep feature response map with/without LSR.

2) An EGA domain adaption approach is proposed, which
learns the adaptive weight of the predictive entropy map
in the target domain to guide the adversarial learning for
local feature alignment.

3) A LSR model is designed to explore local regional
dependencies and compensate for the lack of semantic
structure information.

4) Experiments on benchmark aerial segmentation dataset
ISPRS and natural synthetic-to-real dataset demonstrate
the effectiveness and robustness of our proposed method,
which yields a new state-of-the-art performance.

II. RELATED WORK

We briefly review methods of aerial image semantic
segmentation and related works on UDA for semantic
segmentation.

A. Aerial Image Semantic Segmentation

The powerful ability of deep models and the availability
of large-scale aerial images with high visual quality pro-
vides an opportunity to enhance segmentation performance.
Hence, many representative deep learning-based methods have
been applied to aerial image semantic segmentation. Exist-
ing efforts mainly concern to modify the FCN framework
for segmentation work [14]–[16], [51]–[58]. For example,
Sherrah [53] incorporate the dilated convolution into FCN
without extra down-sampling operation. To fuse high-level
semantic information with low-level detail information,
Wang et al. [51] propose a gate mechanism implemented
by entropy maps to fuse feature maps from different levels.
Furthermore, Panboonyuen et al. [57] employ a global con-
volutional network to capture complex features and produce
weights for the feature in different layers by the channel atten-
tion. They also introduce domain-specific transfer learning

that initializes the weights by using other aerial image to
alleviate the scarcity of training dataset. Although the above
methods achieve significant improvement, they mainly train
segmentation networks through many annotated images, which
are usually difficult to be collected in real scenarios. Mean-
while, they are based on the assumption that the training and
testing sets fall into the same data distribution, which is also
hard to be satisfied when the domain shift emerges.

Recent efforts [47]–[50] evidence the effectiveness of
domain adaptation method for aerial image semantic seg-
mentation. Benjdira et al. [47] proposed to generate images
from the source domain to the target domain for reducing
style discrepancy and reuse labels from the source domain.
Tasar et al. [49] proposed a translating framework, ColorMap-
GAN framework to mimic the spectral distribution of the
target image. Meanwhile, Benjdira et al. [48] proposed to use
two GAN structures and a small set of labeled target images
to improve the generalization ability of the model on the
target domain. Fang et al. [50] proposed the category-sensitive
domain adaptation via a geometry-consistent GAN embed-
ded into a cotraining adversarial network. However, these
generation-based methods are generally hard to train, and their
segmentation performance is significantly restricted by the
quality of the generated images or features.

B. UDA for Semantic Segmentation

Adversarial learning [41] is one of the most active tech-
niques for UDA semantic segmentation due to its powerful
ability in image or feature generation and the adversarial loss
can be used to promote feature distribution alignment between
domains. Adversarial learning can be considered into two
parts, including generative adversarial learning and subspace
adversarial learning methods.

The works [29], [32]–[34], [59] apply the subspace adver-
sarial learning method to learn domain-invariant features.
The map images from both domains to a common sub-
space (feature- or output-space) and then use discriminators
to reduce domain discrepancies. Hoffman et al. [29] are
the first to explore the adversarial learning based on fea-
ture subspace for UDA semantic segmentation, propose both
global, and category-specific domain adaptation techniques.
Tsai et al. [33] propose a multilevel adversarial network
on different feature representation levels to realize output-
space-based adversarial learning. However, such methods
pursue global feature alignment and ignore the regional
discrepancy between domains. Luo et al. [34] propose
a category-level adversarial network using the cotraining
mechanism and calculating the two distinct view-prediction
local-aligned maps to guide the adversarial learning for keep-
ing local semantic consistency. Zheng and Yang [59] propose
an orthogonal method to exploit the intradomain knowledge
and reduce the inherent uncertainty by minoring the discrep-
ancy of two different classifiers. Saito et al. [32] minimize
the difference from two classifiers to align feature distribution
between domains. Some works [30], [31], [38]–[40], [42], [43]
employ the generative adversarial learning to translate the
image styles for decreasing the appearance difference in the
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image-level and make feature invariant to style information.
Bousmalis et al. [30], Li et al. [39], and Wu et al. [40] apply
style transfer approaches to reduce appearance discrepancy.

Hoffman et al. [31] propose the cycle-consistent adversarial
domain adaptation, based on the CycleGAN [38], to generate
images and reuse corresponding labels by the constraint of the
cycle-consistency and semantic losses. Li et al. [43] jointly
consider subspace and generative adversarial learning meth-
ods, apply bidirectional learning for domain adaptation, and
introduce a self-supervised learning method to alternatively
learn the image generator and the segmentation model by
perceptual loss. Vu et al. [46] propose two complementary
losses, i.e., entropy loss and adversarial loss, based on infor-
mation entropy to reduce the data distribution gap between
domains. Zhang et al. [45] design curriculum-style learning
by considering the consistency of the local and global label
distributions for UDA semantic segmentation. Other works
introduce the idea of self-training. Zou et al. [35], [36] and
Saporta et al. [37] propose to generate high-confidence
pseudo-labels on the target domain, and then use the
pseudo-labels to train the target model.

III. METHODS

In this section, we shall elaborate on the proposed LSR
and EGA domain adaptation for aerial image semantic
segmentation.

A. Problem Settings

Given the source aerial image set X S with the paired
pixel-level labels set YS , and the target unlabeled aerial image
set XT , the ultimate goal of unsupervised domain adaption
in aerial image semantic segmentation is to learn a model G
producing the pixel-level labels for the target aerial image. The
traditional adversarial network employs a generative model G
to transfer knowledge from the source domain to the target
domain by minimizing a supervised segmentation loss in the
source domain. The supervised segmentation loss defined as

Lseg(G) = E(xs ,ys)∼(X S ,YS )[�(G(xs), ys)] (1)

where xs ∈ X S , ys ∈ YS , E[·] represents the statistical excep-
tion and � indicates the commonly employed cross-entropy
loss.

Meanwhile, to generalize the model G to the target
domain, adversarial-based methods encourage G to learn the
domain-invariant features by confusing the domain discrimi-
nator D which tries to distinguish the outputs from the source
or target domain. This process is achieved by minimizing an
adversarial loss

Ladv(G, D) = −Exs ∼X S

[
log(D(G(xs)))

]

− Ext ∼XT

[
log(1 − D(G(xt)))

]
(2)

where xt ∈ XT , represents an unlabeled sample from target
set.

As mentioned above, traditional adversarial learning meth-
ods [29], [31], [33], [42], [46] focus on the global feature
alignment, which will cause the negative transfer. The direct

effect is, some already aligned features may be destroyed by
the global margin distribution alignment. Meanwhile, the aerial
image has specific characteristics, such as the multiscale
variations and the loss of structural continuity during data
preprocessing. To relieve these problems, we proposed an
EGA learning method to compute a self-adaptive weight
that suppresses the interdomain shift during the adversarial
learning by information entropy, and the LSR by GCN to
explore the structure information.

B. Overview of the Proposed Model

As shown in Fig. 3, there are two main components in the
proposed model, i.e., a generator G and a discriminator D.
The generator G aims to generate feature representation and
prediction map, which consists of a segmentation backbone
(DeepLab-V2 [13] with ResNet-101 [12] in this article) and an
embedding LSR model. The discriminator D is a convolutional
neural network (CNN)-based binary classifier with a fully
convolutional output. In our framework, G consists of three
parts: 1) feature extractor E , that extracts CNN features F
from both domains, 2) embedded LSR model, that explores
the image structure information and enhances the local feature
representation on F , and 3) classifier M , that produces the
prediction probability map. The discriminator D works on
the output-space to align the distributions of two domain
predictions under the guidance of the information entropy map
of the target domain.

For the source domain aerial image xs , we first generate
the deep feature map Fs by feature extractor E , followed by
the LSR model to aggregate the node information through the
information passing mechanism of the graph structure. Then,
the aggregated node features are mapped to the original deep
feature space and merged with deep features by summation
operation, to enhance the information of the features without
increasing the model parameters comparing to the concate-
nation. After that, we obtain the prediction map Ps of the
combined features F̃s via the classifier M , followed by the
supervised segmentation loss with the corresponding label ys .

In the same manner, we can obtain the prediction map Pt

for the target domain. In addition, based on the probability
prediction map, we further calculate the entropy map as a
self-adaptive weight Wg, which can guide the adversarial
learning to perform feature alignment. Meanwhile, to pull
the distribution of target prediction to the source domain,
the discriminator D is introduced to distinguish the prediction
map Pt from the source or target domain. Then we calculate
the adversarial loss weighted by Wg to learn the diverse
attention for each pixel.

C. LSR Model

Our proposed LSR model aims to explore the regional
dependence relations in the aerial image by the information
passing mechanism of the graph structure.

The GCN [60] operates on the instance graph to explore
the data structure information. In this article, we propose
to aggregate the meaningful structure information in aerial
image segmentation via GCN due to its capability of extracting
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Fig. 3. Pipeline of our proposed EGA learning and the LSR model base on GCN. It contains two components, generator (G) and discriminator (D). The
generator consists of a feature extractor (E), an embedded LSR model, and a classifier (M). For the source domain input, we use the prediction after the
classifier to calculate a supervised segmentation loss. As for the target input, based on the output of the classifier, we first calculate a self-adaptive weight
on the information entropy map. Meanwhile, to enforce the local distribution alignment between the source and target prediction, the discriminator calculates
the adversarial loss weighted by the self-adaptive weight.

and aggregating node features by nodes relations from the
graph structure. We directly construct the graph structure
on the original CNN feature maps to preserve the spatial
relationship. The feature map is one-eighth of the input image
size, therefore the computational cost is not extremely large
to handle the most existing cropped aerial or natural images.
Given an undirected graph g = (v, e), the nodes v indicate
each pixel node of the deep feature map, the edges e represent
the similarity between nodes, and A ∈ R

v×v is an adjacency
matrix. Unlike the standard convolution, which operates on a
local regular-grid region, the graph can encode the long-range
dependencies through the relation between nodes represented
by the adjacency matrix. Therefore, it has a larger receptive
field and can explore more context information. Formally,
the graph convolution can be defined as

X (l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 X (l)�(l)
)

(3)

where Ã = A + I , I is an identity matrix, and D̃ is a
degree matrix, represents the degree of each node, is used
to normalize the new features of each node aggregated from
the connected nodes. D̃ii = ∑

j Ãi j , i and j , respectively,
represent the i th row and the j th column of Ã. The value of
degree matrix D̃ is used to calculate the symmetric normalized
Laplacian matrix D̃−(1/2) ÃD̃−(1/2) to measuring the relations
of nodes and compute the new features of each node as the
average of itself and connected nodes. X (l) is the vertex feature
matrix in lth layer, σ is the nonlinear activation function
(rectified linear unit (ReLU) used in our experiments), and
�(l) is a trainable weight matrix.

To apply the forward propagation rule in (3) on the CNN
feature map to explore the long-range dependence and struc-
ture information. We directly perform graph reasoning on

the original feature map. For an input deep CNN feature
map F with the shape of h × w × n, where h, w, n represent
the height, width, and channel number, respectively. To reduce
parameters and computational costs, we use a 1 × 1 convolu-
tion reducing the channel into m. Therefore, the graph node
input can be represented by transferring features after reduced
dimension into X ∈ R

hw×m . As shown in Fig. 3, we calculate
the adjacency matrix A by the dot-product distance of the
dimension-reduced features. In this way, it will increase the
computational cost in the LSR module when aggregating
features. As we evaluated in the ablation study in Table V,
it significantly boosts the performance by enhancing the con-
textual features without introducing significant computational
cost. The similarity between position i and j is expressed as

Ai j = φ(F)iφ(F)T
j (4)

where F is deep feature map extracted from CNN, φ(·) is a
1 × 1 convolution, and φ(F) ∈ R

hw×m is a liner embedding
followed by ReLU(·). The A can be calculated as follows:

A = φ
(

F; Wφ

)
φ
(

F; Wφ

)T
(5)

where Wφ is the learnable parameters for the linear transfor-
mations. Meanwhile, Ã = A + I and D̃ii = ∑

j Ãi j . We can
formulate the graph model as

Z = σ
(

D̃− 1
2 ÃD̃− 1

2 X�
)

(6)

where � is a trainable weight matrix, σ is the ReLU activation
function, and Z is the output features.

After the LSR model, the output Z projects back into the
original deep feature space and then fused with the original
deep CNN feature map F . By this means, the refined feature
F̃ encodes long-range semantic dependencies and aggregates
the image structure information.
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D. EGA Model

To relieve the negative transfer during domain adaptation,
we propose an EGA model, which can learn a self-adaptive
weight from the information entropy map to guide the adver-
sarial process.

In this work, we employ the widely used Shannon
entropy [61]. For a target prediction Pt with the shape of
C × H × W , the entropy map Ent ∈ [0, 1]H×W can be
calculated as follows:

Ent(i, j) = −
C∑

c=1

Pt
(i, j,c) log Pt

(i, j,c) (7)

where Pt is a prediction probability map in target domain
flow, C, H, and W correspond to the class numbers, height,
and width, respectively, and i ∈ {0, 1, . . . , H − 1}, j ∈
{0, 1, . . . , W − 1}. Pt

(i, j,c) represents the predicted probability
in the class c (not the real label) at the position (i, j).

As discussed above, information entropy can be used to
measure the domain shift. Due to the shift between domains,
the predictions of the regions with the large discrepancy on the
target domain image may be under-confident, corresponding
to high-entropy. While the predictions of similar regions are
generally with low-entropy. Therefore, it is meaningful to use
entropy weight to measure the discrepancies between domains
via weighting the adversarial loss. The EGA loss can be
defined as

Lega(G, D) = −Exs ∼X S

[
log(D(G(xs)))

]

− Ext ∼XT

[
Wg × log(1 − D(G(xt)))

]
(8)

where the weight map is a tensor with the size of 1 × H × W ,
and Wg(i, j) = (1/C) × Ent(i, j). The domain adversarial loss
map produced by D is upsampled to the size of the input
image. An element-wise multiplication is operated between
the weight map and domain adversarial loss map. After this
operation, each location in the domain adversarial loss map
has different attention, and the Lega(G, D) will focus on the
low similarity regions and decrease the attention on the high
similarity regions on the target sample, which can push local
feature alignment between domains.

E. Training Objective

As the traditional adversarial network, our method is
optimized by two loss functions, segmentation loss, and
self-adaptive EGA loss.

1) Segmentation Loss: Given an aerial image xs of shape
3 × H × W and correspond label map ys of shape of C ×
H × W , C is the number of object classes in the domain.

The segmentation loss can be defined as

Lseg(G) =
H∑

i=1

W∑
j=1

C∑
c=1

−y(i, j,c)
s log P(i, j,c)

s (9)

where P(i, j,c)
s represents the predicted probability belonging

to class c at the location pixel (i, j). y(i, j,c)
s denotes the

corresponding GT probability belonging to class c at the
location (i, j). If pixel (i, j) belongs to class c, y(i, j,c)

s = 1,
else y(i, j,c)

s = 0.

2) Self-Adaptive EGA Loss: In the traditional adversarial
learning process, due to the negative shift in global fea-
ture alignment, we jointly consider local and global features
alignment. In the DA process, we consider generating
self-adaptive attention to different regions to promote local
region feature alignment. By the EGA learning, we encourage
the network to preserve the domain-invariant features while
enforcing the alignment of the domain-variant features. And
the self-adaptive weight Wg is calculated by the prediction
probability of the target domain input. Given an aerial image xt

with the shape of 3 × H × W , Pt represents the prediction
after generator G. Thus, the self-adaptive weight map Wg can
be calculated as follows:

Wg(i, j) = − 1

C

C∑
c=1

P(i, j,c)
t log P(i, j,c)

t (10)

where dividing by C is to reduce the calculated information
entropy value and prevent misalignment of features caused
by high entropy. The local feature alignment loss formula is
mentioned has mentioned in (8).

Furthermore, to balance local and global features alignment,
we design λw and ε to promote the feature alignment. By con-
sidering both global and local feature alignment, our method
can mitigate the domain shift and encourage the generator
to learn more domain-invariant knowledge. The self-adaptive
EGA loss can be formulated as

LEGA(G, D) = −Exs ∼X S

[
log(D(G(xs)))

]

− Ext ∼XT

[
(λwWg + ε) log(1 − D(G(xt)))

]
(11)

where λw effects on the self-adaptive weight Wg, and the ε is
a decimal to stabilize the training process.

With the above descriptions, the overall loss objective can
be summarized as

L(G, D) = Lseg(G) + λadvLEGA(G, D) (12)

where λadv denotes the hyperparameters that control the influ-
ence of the LEGA(G, D), whose training objective is shown as
follows:

G∗, D∗ = arg min
G

max
D

L(G, D). (13)

F. Analysis

According to the theory of domain adaptation proposed by
Ben-David et al. [24], let H be the hypothesis class, S and T ,
respectively, express the source and the target domains,
the theory defines the expected error on the target samp-
les εT (h) as follows:

∀h ∈ H, εT (h) ≤ εS(h) + 1

2
dH	H(S, T ) + λ (14)

where εS(h) represents the expected error on the source
domain which can be minimized easily by predictions of the
generator G based on the source labels, dH	H(S, T ) measures
the discrepancy distance between the source and the target
distributions, and λ is the shared expected loss expected to be
negligibly small.
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Followed by Ben-David et al. [24], dH	H(S, T ) is min-
imized by the global domain adversarial learning. Recently,
UDA semantic segmentation commonly use global margin
alignment to narrow the discrepancy between domains [28]

dH	H(S, T )

= 2 sup
h∈H	H

|Pf ∼S[h( f ) = 1] − Pf ∼T [h( f ) = 1]|
≤ 2 sup

h∈Hd

|Pf ∼S[h( f ) = 1] − Pf ∼T [h( f ) = 1]|
= 2 sup

h∈Hd

|Pf ∼S[h( f ) = 0] + Pf ∼T [h( f ) = 1] − 1|. (15)

However, as we have mentioned, the global feature align-
ment chases the global marginal distribution without con-
sidering the local discrepancies between domains. As shown
in Fig. 1(c), the higher similarity of the class features between
domains, the smaller the entropy value. Furthermore, the lower
similarity corresponds to the higher entropy. Therefore, in the
feature alignment process, it is essential to discriminatively
treat different classes. Thus, we propose to use the entropy
value to reflect the discrepancies between domains, and
adaptively learn the attention of distinctive regions to better
promote the alignment of features between domains.

Our method consists of two parts: LSR and EGA learn-
ing. LSR aims to enhance the dependence of local regions
through the message propagation mechanism and aggregate
context information, which enhances domain-invariant feature
extraction ability of the generator. Meanwhile, EGA extends
the traditional adversarial loss with a self-adaptive attention
Wg(i, j) = −(1/C)

∑C
c=1 P(i, j,c)

t log P(i, j,c)
t . Wg indicates the

amount of uncertain information extracted from the local
regions, while the entropy output corresponding to the region
discrepancy compared to the source domain. Therefore, larger
Wg encourages the generator G to fool discriminator D and
pays more attention to the local regions while adversarial
learning. Smaller Wg indicates that the generator G has
learned enough domain-invariant knowledge in this region,
thus weakens the adversarial learning process to remain the
local feature alignment.

IV. EXPERIMENTS

To verify the effectiveness of the proposed method, we eval-
uate our method in comprehensive scenarios in both aerial and
natural image segmentation datasets.

A. Setup

1) Datasets: We evaluate our method on a 2-D semantic
segmentation benchmark dataset ISPRS. ISPRS is offered by
the International Society for Photogrammetry and Remote
Sensing 2-D Semantic Labeling Contest, which currently
provides the best evaluation platform for aerial image semantic
segmentation. It contains two subsets the Potsdam1 and the
Vaihingen.2

1http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.
html

2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.
html

Potsdam subset contains 38 aerial images covering 3.42 km2

area of the Potsdam city with a resolution of 5 cm. Those
images are fixed with a size of 6000 × 6000 pixels in three
channels: red, green, and blue. About 24 out of 38 images
in Potsdam have pixel-annotation, which spans six categories:
Building, Tree, Car, Impervious surfaces, Low vegetation, and
Clutter/background.

Vaihingen subset contains 33 aerial images covering
1.38 km2 area of the Vaihingen city with a resolution of 9
cm. The size of each image is approximately 2000 × 2000
pixels in three different channels: near-infrared, red, and green.
About 16 out of 33 images provide pixel-annotation, with the
same categories classification as in Potsdam.

Following the protocol in [47], [48], and [50], for Potsdam
(source domain)-to-Vaihingen (target domain) task, we use
24 labeled images with the paired labels in Potsdam and
17 unlabeled Vaihingen images as the training data, while the
remaining 16 Vaihingen images with the paired labels are as
the testing data. On the contrary, for the Vaihingen-to-Potsdam
task, we use 16 Vaihingen labeled images with the paired
labels and 14 Potsdam unlabeled images as training data,
while the remaining 24 Potsdam labeled images for testing.
As preprocessing, we crop all the high-resolution images in
both domains into 512 × 512 pixels by a sliding window with
an overlap of 256 pixels.

2) Implementation Details: In the same manner as state-
of-the-art methods, we employ the widely used DeepLab-
V2 [13] framework with ResNet-101 [12] model pretrained
on ImageNet [62] as the backbone. Then 1×1 convolution
layer is used to reduce the channel m of the deep feature map
from 2048 to 64. In our LSR model, we use a three-layer
GCN network with the feature dimension as {64, 512, 1024}
and insert the dropout layer between the GCN layer with a
rate of 0.5, following a 1 × 1 convolution layer to recover
the channel and match the size with the original deep feature
map. Once obtaining the refined feature map, we combine the
refined feature with the input feature by summation with a
1×1 convolution layer. Subsequently, Atrous Spatial Pyramid
Pooling (ASPP) with dilated rates {6, 12, 18, 24} is employed
to predict segmentation maps. Finally, an up-sampling layer
with the softmax function output the prediction probability
map with the size of the input image. Meanwhile, for the
discriminator, we adopt the similar structure as in [63], which
contains 5 convolution layers with kernel of 4 × 4, channel
numbers of {64, 128, 256, 512, 1} and stride of 2. Each
convolution layer follows a Leaky-ReLU parameterized by 0.2
except the last layer. Finally, the prediction of the discriminator
is upsampled to the same size of the input for matching the size
of the weight map. Empirically, followed by our baseline [33]
and other state-of-the-art domain adaption works [46], [50],
we use different optimizers to optimize generator and discrim-
inator. We use stochastic gradient descent (SGD) [64] with the
initial learning rate as 2.5 × 10−4 and a momentum of 0.9 as
the optimizer for the generator. The discriminator optimizer
employs Adaptive Moment Estimation (Adam) [65] with the
initial learning rate 5 × 10−5 and β1 = 0.9, β2 = 0.99.
Theoretically, SGD [64] is a mainstream algorithm to optimize
the generator [28]. SGD can speed up the convergence with
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TABLE I

COMPARISON RESULTS BASED ON THE DOMAIN ADAPTATION FROM POTSDAM-TO-VAIHINGEN.
THE BEST THREE RESULTS ARE HIGHLIGHTED IN RED, GREEN, AND BLUE, RESPECTIVELY

a strong generalized optimal solution while avoiding local
minimums. Adam [65] can speed up the convergence of the
discriminator, thereby promoting the feature extraction of the
generator for the domain-invariant. We set both optimizers
a weight decay of 5 × 10−4. Meanwhile, the learning rate
decays by a poly learning rate policy. The initial learning rate
is multiplied by (1 − iter/(max_iter))power with power of 0.9.
In all experiments, the maximum iterations are set to 100 k,
and the batch size is 1. In our best model, the hyperparameters
λadv, λw , and ε are set to 0.001, 5, and 0.6, respectively,
on Potsdam-to-Vaihingen domain adaptation task. Our experi-
ments are implemented in a PyTorch environment with a single
NVIDIA Tesla V100-16G GPU.

Followed by the state-of-the-art methods [47], [48], we use
four metrics to evaluate the performance of our method, pixel
accuracy (PA), mean F1 score (mF1), intersection over union
(IoU), and mean IoU (mIoU).

B. Quantitative Comparison

1) Potsdam-to-Vaihingen: Table I reports the experimental
results of our method comparing with the advanced methods
on Potsdam to Vaihingen datasets. Due to the domain shift
between the two datasets, the source-only method NoAd-
apt presents stumbling performance. Although the generative
methods improve the results by a large margin, they are
hard to preserve the semantic information during the genera-
tion, which leads to limited performance. Generally speaking,
the domain adaptation methods significantly boost the perfor-
mance in overall metrics (mIoU, PA, and mF1) and individual
categories, revealing their ability to transfer knowledge from
the labeled source domain to the unlabeled target domain.
By establishing the EGA learning for enhancing local feature
alignment and the LSR for the structure information, our
method is significantly superior to all the compared methods,
which verifies the effectiveness of our method for learning
domain-invariant features. Specifically, first, by comparing all
domain adaptation methods with NoAdapt, the segmentation
metrics achieve a large degree of improvement. Meanwhile,
we note that the IoU of “Car” declines to some extent
after adaptation, which endures the side effect of pursuing
global feature alignment. Second, the generative adversarial
learning methods have slight improvement due to the semantic
information retain hardly for the translated image. CsDA [50]
achieves better segmentation performance benefit from the

extra feature- and output-space adversarial learning, which
considering the spatial contextual similarity. Third, the result
of our method together with the Baseline, AdaptSegNet [33],
Advent [46], CLAN [34], and MRNet [59] present the supe-
riority of output-space feature alignment. Our method in
“Build.” and “Imp. surf.” make significant improvement due
to the consideration of the regional dependencies and structure
information enhancement. As an entropy-guided local feature
alignment method, our method can even effectively segment
the “Tree” and “Low veg.” which present high interclass
similarity. At last, although MRNet [59] and Advent [46]
achieve promising mIoU, they are still overshadowed than our
method due to their limited capability in some challenging cat-
egories such as “Low veg.” and “Clu./Back.,” which evidences
the robustness of our method on challenging scenarios for
aerial image semantic segmentation. In addition, summation
operation outperforms concatenation operation in our model,
which verifies the summation can enhance the information of
the features without increasing the model parameters. We use
the summation in the following experiments if not specified.

2) Vaihingen-to-Potsdam: To further verify the effectiveness
of our method, we evaluate our method by exchanging the
source domain and target domain data as the Vaihingen-to-
Potsdam. As shown in Table II, first of all, our method con-
sistently beats the state-of-the-art methods as in the Potsdam-
to-Vaihingen task as shown in Table I. Note that, the images
in Vaihingen dataset cover a narrow area with a lower resolu-
tion with relatively rough annotation, while Potsdam includes
images from a larger area with much higher resolution and
more refined annotation. This brings more challenges in the
Vaihingen-to-Potsdam domain adaptation task.

3) Synthetic-to-Real: To verify the generalization ability of
our method, we conduct experiments of domain adaption from
two synthetic datasets GTA5 [22] and Synthia [23] to the
real dataset Cityscapes [66], as shown in Table III (GTA5-to-
Cityscapes) and Table IV (Synthia-to-Cityscapes). First, our
method achieves promising performance against the state-of-
the-art domain adaptation methods on natural images, which
verifies the effectiveness of the proposed method. Second,
our method focuses on local feature alignment and LSR thus
can effectively reduce the impact of negative transfer, such
as the infrequent classes “fence,” “pole,” “bike” in GTA5-
to-Cityscapes, and “sign” in Synthia-to-Cityscapes. Third,
the improvement on the natural dataset is not as significant

Authorized licensed use limited to: Anhui University. Downloaded on December 15,2022 at 14:59:51 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: EGA DOMAIN ADAPTATION FOR AERIAL IMAGE SEMANTIC SEGMENTATION 5405614

TABLE II

COMPARISON RESULTS BASED ON THE DOMAIN ADAPTATION FROM VAIHINGEN-TO-POTSDAM.
THE BEST THREE RESULTS ARE HIGHLIGHTED IN RED, GREEN, AND BLUE, RESPECTIVELY

TABLE III

COMPARISON RESULTS BASED ON THE DOMAIN ADAPTATION FROM GTA5-TO-CITYSCAPES. THE BEST THREE RESULTS

ARE HIGHLIGHTED IN RED, GREEN, AND BLUE, RESPECTIVELY

TABLE IV

COMPARISON RESULTS BASED ON THE DOMAIN ADAPTATION FROM SYNTHIA-TO-CITYSCAPES.
THE BEST THREE RESULTS ARE HIGHLIGHTED IN RED, GREEN, AND BLUE, RESPECTIVELY

as on the aerial image dataset. The main reason is, compared
with natural images, the large-scale objects in aerial images
tend to lose more semantic information during cropping.
Meanwhile, there are larger discrepancies between classes in
true orthophoto of the aerial image. Our method is more
suitable for aerial image segmentation through LSR to enhance
feature representation and information entropy to promote
local feature alignment.

C. Qualitative Comparison

Fig. 4 visualizes some qualitative segmentation examples
obtained by our method compared to the state-of-the-art
competitors on Potsdam-to-Vaihingen. Due to the domain
shift between the Potsdam and the Vaihingen, the predic-
tions of NoAdapt [Fig. 4(a)] introduce much noise and
lose the object boundary and structure information. The
segmentation results of the generative adversarial learning
methods, CylceGAN [38] and the Benjdira’s [47] as shown
in Fig. 4(b) and (c) are also unsatisfactory for the limited
generated images by global consistency constraint. CsDA [50]

as shown in Fig. 4(d), achieves a significant improvement by
introducing extra feature generation and output-space adver-
sarial learning that considers the spatial distribution informa-
tion. However, it still suffers from unclear object boundaries
such as the “Build.” category and confuses misclassification
such as “Low veg.” and “Tree” categories. The Baseline,
AdaptSegNet [33], and Advent [46] pursue the global margin
alignment, which results in much misclassification such as
“Tree” and “Low veg.” Furthermore, the “Build.” bound-
aries are still rough and involving many holes, as shown
in Fig. 4(e)–(g). CLAN [34] is able to generate more precise
and accurate predictions by considering the category-level
data distribution and local semantic consistency, as shown
in Fig. 4(h). However, due to the large appearance discrepancy,
such as the left and the right “Build.” comparing to the
middle “Build.” as shown in the second row, it suffers the
challenge of intradomain discrepancy for aerial image seman-
tic segmentation. MRNet [59] presents refined segmentation
results by considering the intradomain adaptation. However,
it fails to isolated individuals from each other, such as “Build.”
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Fig. 4. Visual Results of our proposed method compared with other state-of-the-art methods on Potsdam-to-Vaihingen. The blue, green, yellow, cyan, white,
and red separately represent the categories of “Build.,” “Tree,” “Car,” “Low veg.,” “Imp. surf.,” and “Clu./Back.” (a) NoAdapt, (b) CycleGAN, (c) Benjdira’s,
(d) CsDA, (e) Baseline, (f) AdaptSegNet, (g) Advent, (h) CLAN, (i) MRNet, (j) Ours.

TABLE V

ABLATION STUDIES ON THE POTSDAM-TO-VAIHINGEN DOMAIN ADAPTATION

in the second and fourth rows in Fig. 4(i). Furthermore,
it presents obvious misclassification, such as the “Low veg.”
misclassified as “Tree” as shown in the sixth row. Our pro-
posed method with the LSR model explores the long-range
dependencies of the input image for structure information and
self-adaptive adversarial learning for local feature alignment.
Thus it produces more precise predictions and preserves better
object boundary information, as shown in Fig. 4(j). Especially,
we achieve much accurate prediction on small objects such
as “Car” than other methods by the local feature alignment,
as shown in the fourth and eighth rows. By comparing the
third, fourth, and fifth rows of Fig. 4(j) with other state-
of-the-art methods, our method can predict a more precise
“Build.” boundary. Even though some “Build.” boundary is
still rough in our method, as shown in the second row of
in Fig. 4(j), our method can effectively separate them from
adjacent objects. Furthermore, due to the sensor variation
between domains, the “Low veg.” and “Tree” result in high
similarity in appearance, as shown in the last two rows. This
brings a big challenge for the state-of-the-art methods while
can be successfully segmented by our method benefit from

the proposed EGA learning. The key reason is we consider the
discrepancies of local regions between domains and the weight
of information entropy to guide the local feature alignment.

D. Component Analysis

1) Ablation Study: To further verify the contribution of
the components in our model, we conduct the ablation study
on several variants of our method on Potsdam-to-Vaihingen
domain adaptation task, as reported in Table V. B1 is our
Baseline, which takes a global feature alignment base on
the DeepLab-V2 framework. B2 embeds GCN-based LSR on
Baseline B1 to explore the region correlation and the struc-
ture information of the input. B3 combines the information
entropy of the target domain input to guide the adversarial
process, called EGA on Baseline B1. B4 is our final model,
which combines both LSR and EGA to the Baseline. By the
information passing mechanism, the embedded LSR model can
capture the structure information in the input image, which
purges the prediction map, especially on large-scale objects.
Therefore, B2 achieves significant improvement comparing
with B1, as shown in Table V. By arguing the entropy map
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Fig. 5. Visual Results of our proposed method on Potsdam-to-Vaihingen.
B0: NoAdapt, B1: Our baseline, B2: B1+ our proposed LSR, B3: B1+ our
proposed EGA, B4: B1+ LSR + EGA. The top row represents the input
target image and the predicted probability maps of different variants. The
middle row is the GT and prediction results, while the bottom row shows the
prediction error map comparing to the GT.

representing the interdomain shift, the EGA model can refine
the segmentation results by the local aligned method, espe-
cially on the local regions and the small objects. Compared
B1 with B3 in Table V, it demonstrates the EGA model can
effectively improve the segmentation accuracy. By integrating
both LSR and EGA, our final model B4 further improves the
segmentation results, which verifies the contribution of the
two components. In addition, we evaluate the computational
cost of each module on the baseline during the training as
shown in Table V. Both LSR and EGA modules significantly
increase the segmentation accuracy without introducing dis-
tinct processing costs.

Fig. 5 further visualizes the segmentation results of the
variants. Comparing the results of B2 with B1, the “Build.”
presents more refined boundaries. However, the two categories
“Tree” and “Low veg.” around “Build.” tend to be one cate-
gory due to the high interclass similarity. The prediction error
map in B3 is significantly better than B1. Since EGA concerns
the interdomain discrepancy while simultaneously preserves
the well-aligned features, B3 can pay different attention to
different regions by information map for the domain-variant
categories “Tree” and “Low veg.,” which leads to significantly
better segmentation than B1 and B2. And, our EGA can
preserve well-aligned features and accelerate the unaligned
features as a local feature alignment approach. Therefore,
B4 achieves a more accurate segmentation performance by
combining both LSR and EGA modules, which reinforce each
other during the learning.

2) Evaluation on LSR: To evaluate the contribution of the
proposed LSR via capturing the long-range semantic depen-
dencies, we further visualize the feature response maps of the
DA network on Potsdam-to-Vaihingen task as shown in Fig. 6.
By comparing the feature response maps with/without LSR,
the feature maps with LSR have high responses by considering
the relations and aggregative context information between
different regions. Specifically, the small objects have high
responses which will not be discarded during the feature
extraction, such as the “Tree” in the second and the sixth
columns, and the “Car” in the fourth column. The big objects
present more clear boundary responses after LSR, shown as

Fig. 6. Visual representation of the feature response maps with/without our
proposed LSR on Potsdam-to-Vaihingen. (a) is the original target images, (b)
represents the feature response maps without fusion of the LSR feature, and
(c) represents the feature response maps after fusion.

Fig. 7. Comparison of segmentation results from the source-only method
NoAdapt (a1), Baseline (b1) and Baseline with EGA (c1) on Potsdam-to-
Vaihingen. And the h-dimensional features of (a1)–(c1) are mapped into a
2-D space with t-SNE [67] in (a2)–(c2). Each color represent a class that
has drawn to the upper right of distribution maps. The comparison of feature
distribution confirms that our method can enhance the feature alignment.

the “Build.” in the fourth and the fifth columns, and the “Imp.
surf.” in the third column.

3) Evaluation on EGA: Fig. 7 visualizes the segmentation
results and the corresponding feature distribution maps by t-
SNE [67] of the source-only method NoAdapt, comparing with
our Baseline and the Baseline with EGA. From the segmenta-
tion results in Fig. 7(a1) and the feature distribution Fig. 7(a2)
we can see, NoAdapt can capture the domain-invariant fea-
tures, but generates misclassification in the domain-variant
regions. By considering the global alignment, the Baseline
can promote the generator to learn domain-invariant features.
However, due to the lackness of local alignment, it tends to
map domain invariant regions into other categories, such as
the category of “Build.” in the first and second rows and
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Fig. 8. Converge curve of the generator G and the discriminator D in our
proposed EGA method on Potsdam-to-Vaihingen.

the car category in the second and third rows. By intro-
ducing the proposed EGA to the Baseline to balance the
local and the global feature alignment, Baseline with EGA
as shown in Fig. 7(c1) can well promote the alignment in the
domain-variant regions. Furthermore, by comparing the feature
distribution in Fig. 7(a2)–(c2), EGA can reduce category
confusion while maintaining the original aligned categories by
considering the local feature alignment approach, such as the
“Build.” in the first and third rows and the “Car” in the second
and third rows.

In addition, we use Proxy A-distance (PAD) to measure
the domain distance followed by Ben-David et al. [24]. The
PAD is calculated based on the generalization error ε by a
classifier to discriminate source and target examples as

d̂A = 2(1 − 2ε). (16)

Herein, we keep the discriminator D as the classifier in our
experiments. As reported in Table V, EGA effectively reduces
PAD, which indicates that considering the discrepancy in local
regions can better promote feature alignment and reduce the
domain distance.

E. Other Analysis

1) Convergence Analysis: In addition, we use the loss curve
of the generator G and the discriminator D to indicate the
convergence performance, as shown in Fig. 8. We can see the
loss of the D drops rapidly at the beginning, which shows
that D can effectively distinguish the shift between domains.
In the initial training, the G has extracted a lot of uncertain
information on the target domain due to the domain shift,
our proposed EGA method will increase the weight of the
uncertainty region in adversarial learning, and the loss of
D will increase. As G learns more domain-invariant knowl-
edge, the uncertainty information on the target domain
decreases, and the reduced weight weakens the adversarial
loss of the domain-invariant region to maintain local feature
alignment. Therefore, the loss of D declines and gradually
converges to a stable value. As the ability of the discriminator
gradually weakens, the loss cure of G gradually smooths and
converges to 0.

2) Parameter Analysis: To evaluate the impact of the hyper-
parameters in our proposed method, we perform sensitiv-
ity study on Potsdam-to-Vaihingen domain adaptation task
about the parameters of the self-adaptive EGA loss (ε, λw)
in (11), the weight of adversarial loss (λadv) in (12),

TABLE VI

PARAMETER ANALYSIS ON POTSDAM-TO-VAIHINGEN

the reduced dimension parameter (m), and the results are
reported in Table VI. We design λw and ε to balance local
and global features alignment. Specifically, λw controls the
self-adaptive weight for adversarial loss, if λw is large then
the effect of the entropy weight dominates and the model is
strongly biased toward a few classes. ε represents the influence
of traditional global adversarial loss during training, which is
limited to the range between (0, 1), while larger ε will bias to
the global feature alignment. Following prior works [33], [46],
[50], we set λadv around 0.001. The parameter m is used to
reduce the number of channels in the feature maps to balance
the performance and computation resources. We vary each of
the four parameters while fixing the other three. From Table VI
we can see, our method is not sensitive to the parameters.
We empirically set {ε, λw , λadv, m} = {0.6, 5, 0.001, 64} for
the best performance.

V. CONCLUSION

In this article, we propose a GCN-based LSR and EGA
learning network for UDA of aerial image semantic seg-
mentation. LSR encodes the dependencies between regions
and learns the structure information by the information pass-
ing mechanism of the graph structure. EGA uses the infor-
mation entropy to guide the adversarial learning between
the two domains, encouraging the network to retain the
domain-invariant features and promote the alignment of the
domain-variant features. Experiments on the two benchmark
datasets demonstrate the robustness and effectiveness of our
proposed method, which yields competitive performance com-
pared with other state-of-the-art methods. In the future, we will
introduce the self-supervised learning method in our frame-
work to provide additional supervised information for further
performance boost.
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