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Abstract. Multi-label face attribute recognition (FAR) refers to the
task of predicting a set of attribute labels for a facial image. However,
existing FAR methods do not work well for recognizing attributes of dif-
ferent scales, since most frameworks use the features of the last layer
and ignore the detailed information which is crucial for FAR.To solve
this problem, we propose a prior-guided multi-scale fusion transformer,
which possesses the ability to build the fusion among features of differ-
ent scales with prior knowledge of attributes. First, we employ a unify-
ing Graph Convolution Network (GCN) to model the relations between
multiple attributes by the prior knowledge of facial labels and the sta-
tistical frequencies of co-occurrence between attributes. Second, we pro-
pose a multi-scale fusion module, which uses adaptive attention to fuse
features from two adjacent layers, and then simultaneously fuse the fea-
tures of different scales hierarchically to explore the multilevel relation.
In addition, we utilize the transformer as a feature extraction module to
achieve a global correlation among the acquired features. Experiments
on a large-scale face attribute dataset verify the effectiveness of the pro-
posed method both qualitatively and quantitatively.

Keywords: Face Attribute Recognition · Multi-Scale · Prior-Guided.

1 Introduction

The technology of face attribute recognition, which aims to predict a number
of attributes in face images, has drawn extensive attention due to its potential
applications such as face retrieval [31], face recognition, [2] etc. Despite the
great achievements that have been made in this field, there still exist a variety
of challenges to address. During our study, we summarize the difficulties in face
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Fig. 1. The parts with warm colors represent where the network pays attention. a)
Extracting features of different scales in the network. We can find that the network
pays attention to some local details in the initial stage and gradually some global
information in the later stage.

attribute recognition into three main points. First of all, as shown in Fig. 1, the
information obtained from the last layer of the network mainly represents the
high-level characteristics. To a certain extent, only using the last-layer feature
may affect the ability of the network to capture the potential characteristics
presented in low-level information. Second, there are some subtle correlations
between attributes since the occurrence of some labels may affect each other
in face images. Usually, with a great chance, beard comes together with male,
and receding hairline indicates that a person is not young. Finally, the CNN
models pay more attention to local information, while experiencing difficulty to
capture global representations. So the lack of global relations between features
may weaken the ability of representation learning.

In recent years, with the renaissance of CNN, some deep models have been
applied to face attribute recognition and have made great progress. For instance,
Liu et al. [15] solve the attribute recognition problem by learning independent
classifiers for each attribute. Kalayeh et al. [10] use semantic segmentation to
mine local clues to guide attribute prediction, which means to position the area
where the attribute comes from. Cao et al. [1] consider both identity informa-
tion and attribute relations. SSPL [25] captures the pixel-level and image-level
semantic information. HFE [33] combines attribute and ID information to learn
a fine-grained feature embedding. Nian et al. [21] use a decoupling matrix. De-
spite their achievements, the three challenges mentioned above remain not well
addressed.

In this work, we propose a prior-guided multi-scale fusion transformer to cap-
ture the local and global representations in image features with attribute prior
information. It consists of two sub-modules to progressively capture information
hierarchically. First, we apply an attribute residual mapping module (ARMM)
to capture the relations between attributes. Inspired by [30], following the GCN
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[12] paradigm, we use the prior knowledge of facial labels and the statistical fre-
quencies of co-occurrence between attributes to construct the graph. Then the
obtained feature can enhance attribute-related regions in image features. Sec-
ond, inspired by [26], we design a multi-scale fusion module (MFM) to enable the
network to gradually fuse low-level and high-level features at the same time and
then simultaneously utilize the features of different scales. In addition, we in-
troduce Swin-Tranformer [14] to model global relations. Then pairwise relations
can be fused into image features in a global way by performing message passing
through each spatial patch. The two sub-modules are aggregated together to
perform multilevel relations learning for face attribute recognition.

In summary, the contributions of this work are three-fold.
(1) We propose a multi-scale fusion module to jointly capture relations be-

tween low-level and high-level features for face attribute recognition.
(2) We propose an improved end-to-end architecture based on a transformer

and prior information of attributes. The relations between attributes can be
learned to strengthen the representations.

(3) Experiments show the superiority of the proposed method over recent
methods and the effectiveness of our framework for face attribute recognition.

2 Related Work

2.1 Face Attribute Recognition

Face attribute recognition has risen in recent years. Rudd et al. [22] define face
attribute recognition as a regression task. It applies a single DCNN to learn
multiple attribute labels. Zhong et al. [35] use the mid-level features as the best
representation for recognition. Then Hand et al. [6] branch out to multiple groups
for modeling the attribute correlations due to many attributes being strongly
correlated. Cao et al. [1] design a partially shared structure called PS-MCNN.
Lu et al. [17] propose a network to learn shared features in a fully adaptive way,
which incrementally widens the current design in a layer-wise manner. He et
al. [9] utilize dynamic weights to guide network learning and Huang et al. In
several latest works, HFE [33] combines attribute and ID information to learn
fine-grained feature embeddings, then attribute-level and ID-level constraints
are utilized to establish the hierarchical structure. SSPL [25] proposes a method,
which captures semantic information of facial images in the pixel-level and image-
level.

2.2 Graph Convolution Network

GCN [12] is used to process topological data. Recently, graph-based reasoning
has been proved to be beneficial to a variety of vision tasks including multi-
label classification [3], FVQA [36], zero-shot learning [29], social networks [32],
etc. In recent years, image classification [3] and face attributes classification [21]
propose to use GCN to learn the representations with attribute information.
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2.3 Vision Transformer

At present, Transformer [27] is applied to the vision tasks based on the Vision
Transformer (ViT) [5]. This demonstrates that pure Transformer-based architec-
tures can also obtain relatively good results, promising the potential of handling
the vision tasks and natural language processing (NLP) tasks under a unified
Transformer. Recently, rather than focusing on a particular visual task, some
works try to design a general vision Transformer backbone for general-purpose
vision tasks.[4,14,28] these transformers have been proved effective in features
extracting and perform well in downstream tasks.
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Fig. 2. Structure of prior-guided multi-scale fusion transformer. The inputs of the
framework are face images and prior information of attributes. We use Swin-
Transformer [14] to get four features of different scales in a global way. Then we take
the reshaped features into the Multi-Scale Fusion Module (MFM) to fuse multi-scale
features of high-level and low-level in a hierarchical manner. At the same time, we em-
ploy an Attribute Residual Mapping Module (ARMM) to map the prior information of
attributes into features in the first and last layers of the network. The details of ARMM
is described in Fig. 3. The orange arrow represents the output prior information from
the first GCN [12] layer, and the purple arrow represents the output prior information
from the last GCN [12] layer.

3 APPROACHES

In this paper, we propose a prior-guided multi-scale fusion transformer to simul-
taneously utilize features of different scales and prior information of attributes
to process the feature learning in a global way for face attribute recognition.
As shown in Fig. 2, our network consists of two main modules: 1) Attribute
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Residual Mapping Module (ARMM), to combine the prior knowledge of related
attributes and the image features in the deep and the shallow layers. 2) Multi-
scale Fusion Module (MFM), to obtain the relations between low-level detailed
features and high-level semantic features in different scales, which are extracted
from a transformer. We shall elaborate on these two modules in the following
two sections.

3.1 ARMM: Attribute Residual Mapping Module

1) GCN review
GCN [12] can capture the relationship between nodes in structured graph

data in a semi-supervised manner. The graph is represented in the form of G
= {V, A}, where V ∈ RN×D is the set of N data vectors in D dimension, and
A ∈ RN×N is adjacency matrix. Then GCN can encode the pairwise relationship
among data. The goal of GCN is to learn a function f (·, ·) on a graph G, which
takes initial node continuous representations V and an adjacency matrix A as
inputs. And it updates the node features as Xl+1 ∈ RN×D′

after spreading
information through each layer. Every GCN layer can be formulated as:

Xl+1 = f(Xl,A) = σ(D−1/2AD−1/2XlWl), (1)

where D = diag(d1, d2...dk) is a diagonal matrix with di =
∑

n
j=1Aij . W

l ∈
RDl×Dl+1 is a transformation matrix learned during training and σ denotes a
non-linear operation, which is acted by LeakyReLU [18] for our purpose. Finally,
Xl+1 ∈ RN×Dl+1 denotes the output in the l+1-th layer.

2) Attribute Prior Information
We aim to input the internal relations between attributes obtained from the

distribution of data as prior information into the network. First of all, the con-
struction of a graph is necessary. Inspired by [30], to obtain the prior information
of the label attributes, we extract the feature vector of each word related to the
label from Google Corpus (GoogleNews-vectors-negative300). Followed by [13]
and [20], since each attribute of the face is composed of multiple words, we sum
the features of the words contained in each attribute label and take the average.
Then we use the final vectors as graph nodes with prior information. According
to this, we construct graph nodes as V ∈ RK×D, where K denotes the total
number of the labels.

In order to better propagate information between attributes, a correlation
matrix is a key point. Then we get the matrix with statistical co-occurrence
information by the distribution of samples in the training set. Following [3], we
build this correlation matrix in a data-driven way. That is, we mine their rele-
vant information based on the distribution of attributes within the dataset and
compute the degree of semantic relevance of attributes. The attribute correlation
dependency is modeled in the form of conditional probability between attributes.
We denote the P (Vi | Vj) as the probability of occurrence of attribute Vi when
attribute Vj appears. To construct the correlation matrix, to begin with, we
define the total number of occurrences of each attribute as Ni. Then we count



6 Shaoheng Song, Huaibo Huang, Jiaxiang Wang, Aihua Zheng, and Ran He

Fig. 3. a) Attribute Residual Mapping Module (ARMM). GCN is utilized to capture
the relationship between the prior information of attributes extracted from Google
Corpus. Then the information are mapping into the image features through a residual
mapping module. The attribute features in first layer are mapped into head features,
and the second are mapped into tail features. b) The residual mapping module. ’T’,
’⊕’, ’⊗’ denote matrix transpose, sum and multiplication operations respectively. ’L’
and ’tanh’ are activate fuction. X and E are transformer feature and GCN feature. The
shape of each tensor is marked in gray annotation.

the number of co-occurrences of every attribute pair and build a co-occurrence
matrix M ∈ RK×K , which K means the total number of face attributes. Then,
we define the correlation matrix by the conditional probability matrix as:

[A]ij = Mij/Ni, (2)

where Mij denotes the number of co-occurrences of i-th and j-th facial attributes
and Ni denotes the occurrence times of i -th face attribute.

Since there are some uncommon co-occurrence relationships in the data, it
may cause noise. We apply a threshold τ to filter the noisy conditional proba-
bilities and obtain the robust matrix:

[A]ij =

{
0 if Aij < τ

Aij if Aij > τ
. (3)

3) Residual Mapping Module
The module aims to map the prior information of the attributes into image

features, which is processed from GCN mentioned above. So the network can
apply the prior information to weighted related information for face attribute
recognition. We use the module in the first and last layer of the network for
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shallow and deep guidance. As shown in Fig. 3 b, the details of the module are
as follows:

y = σ(Xϕ(E)T ) +X, (4)

here X ∈ RN×H is transformer feature from a middle layer, N is the patch
number and H is the dimension of the hidden feature. E ∈ RK×H indicates
the hidden attribute embeddings of GCN. σ(·) denotes a non-linear activation
operation, T is transpose operation and ϕ(·) means a Tanh function. Finally, we
use a residual connection to add the original X.

3.2 MFM: Multi-Scale Fusion Module

In the task of face attribute recognition, the information extracted form images
is often inadequate, which brings big challenges. The existing methods have two
potential issues that might limit face attribute recognition performance. First,
CNN-based methods may focus on local regions, which might ignore the spatial
relations, because attributes such as necklace and hair occupy irregular areas in
image space, and sometimes pixels in these irregular areas may lack close spa-
tial connections. Second, the features that recent methods use for face attribute
recognition are only at a certain level. However, the scales of face attributes in
images are different, such that hair takes up a lot of space and eyes occupy a very
small area. Therefore, to enable the network to pay attention to global informa-
tion and recognize attributes at different scales, we aim to use a transformer
to capture long-distance relations in spatial and a multi-scale fusion module to
process the features of different scales extracted from a transformer. Recently,
transformer shines in the field of computer vision, because self-attention can
capture the global relevant information in space in a parallel step. We apply
Swin-Transformer [14] as a backbone to get features in a global way for face at-
tribute recognition. Given an image X ∈ RC×H×W , through the non-overlapped
convolutional token encoder, we obtain patch tokens. Next, there are four Swin-
Transformer blocks and each block contains multiple layers of multi-head self-
attention mechanism. Then we obtained four image features of different scales,

X1 ∈ R
H×W
4×4 ×C1, X2 ∈ R

H×W
8×8 ×C2, X3 ∈ R

H×W
16×16×C3, X4 ∈ R

H×W
32×32×C4, where the

first dimension of the vector represents the number of patches and the second
dimension of the vector represents different dimension of each patch. Addition-
ally, H and W represent the height and weight of the features. As shown in
Fig. 1, these features of different scales can focus on regions of different levels.
The network can aggregate low-level detailed information and high-level seman-
tic information by using these features at the same time. So the fused features
used for face attribute recognition contain more sufficient information. For this
purpose, we designed a multi-scale fusion module inspired by [26].

Firstly, we reshape the extracted features to C1× H
4 × W

4 , C2× H
8 × W

8 , C3×
H
16×

W
16 , C4× H

32×
W
32 respectively. Then in order that both local and global infor-

mation can be exploited simultaneously, we use a convolution module to capture
the short-range context after reshaping operation. To predict more suitable se-
lection weights under the scenario of fusion in adjacent features. We introduce
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an adaptive attention module to let the network automatically select the area
that needs attention in adjacent features. When obtaining an adaptive weight α,
we use 1-α to select the previous level of information, and α to select the current
level of information. Finally, adaptive pooling is applied to match the scale of
the previous level to the current features. We define the adaptive attention α as:

α = Attn(Xl+1), (5)

where Xl+1 is the feature of the l+1-th layer and Attn is adaptive attention.
We define the hierarchical flow as:

Hl+1 = down(α×Conv(Xl+1) + (1− α)×Hl), (6)

where Hl+1 is the fused feature between the information in the l+1-th layer and
the previous fused information, down is the adaptive pooling and conv is the
convlution module to cupture the short-range context.

4 Experiments

4.1 Dataset.

The proposed method is evaluated on a largescale face attribute dataset. The
CelebA [16] consists of 202,599 face images collected from 10,177 people. Each
face includes 40 attribute labels. Following the standard protocol in [16], CelebA
is partitioned into three non-overlapping parts: 160,000 images of first 8000 iden-
tities for training, 20,000 images of another 1000 identities for validation, and
the rest for testing.

4.2 Evaluation Metrics.

For fair comparison, we utilize accuracy as our criteria in our study to evaluate
our performance.

4.3 Implementation detail.

Similar to [31], the number of convolution layers in our GCN is set to 2. The base
model of Swin-Transformer [14] is used as the backbone. The hyper-parameters
τ is set to 0.1. The input shape of images is reshaped to 224 × 224 with the data
augmentations of randomly flip and color enhancement. We train our reasoning
model using the Adam [11] algorithm. A pre-trained model of Swin is used and
the initial learning rate is set to 10−4, which is gradually reduced to 10−7 after
6 epochs. Our model is trained on the CelebA [16] dataset and gets converged
with 10 epochs and it takes three hours with one NVIDIA RTX 3090.
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4.4 Comparison to the State-of-the-Arts.

TABLE 1 show accuracy evaluations on CelebA [16]. The proposed method
shows the relatively better performance on the dataset measured by evaluation
metric. MOON [22] only uses a deep regression model and gets an accuracy of
90.94%, which is a relatively low level. MCNN-AUX [6] branches out several
forks corresponding to different attribute groups and achieves 91.26%. Adaptive
Weighted [9] uses a validation loss which dynamically add learning weights to
each attribute and achieves 91.80%. Adaptive Sharing [17] starts with a thin
multi-layer network and dynamically widens it in a greedy manner during train-
ing and achieves 91.26%. GAN and Dual-path [8] complement face parsing map
with real images and achieves 91.26%. SSPL [25] use a large pretrained model
model but only achieves 91.77%. BLAN [34] uses a bidirectional structure and
a multiscale approach and achieves 91.80%. HFE [33] combine attribute and
ID information and achieves 92.17%. The accuracy are mostly lower than 92%.
However, none of these methods can solve multi-scale problems. Our method can
dynamically fuse relevant information using multi-scale information, which is an
improvement compared to the previous methods and achieves a higher accuracy
of 92.47%.

Table 1. Comparison of mean accuracy on CelebA [16] dataset.

Method CelebA [16]

MOON [22] 90.94
Adaptively Weighted [9] 91.80

MCNN-AUX [6] 91.26
Adaptive Sharing [17] 91.26
GAN and Dual-path [8] 91.81

Autoencoder [24] 90.14
Deep Multi-task [19] 91.70

HFE [33] 92.17
BLAN [34] 91.80
SSPL [25] 91.77

ours 92.47

4.5 Ablution Study.

TABLE 2 indicates the degree of contribution of each module in the whole
network. In this experiment, the baseline is the pure Swin-Transformer [14]. With
the multi-scale fusion module (MFM), the accuracy increase by about 0.26%. It
can gradually combine low-level local features with high-level global features,
which affect a lot on the final classification results. Then we map the prior
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information of attributes into image features to extract sufficient information
about the related attributes and the module increase accuracy by 0.16%. When
using these two sub-modules at the same time, the accuracy improves by 0.41%,
which achieves the relatively best.

Table 2. Ablution study on CELEBA [16] dataset with our method and ResNet50 [7]
backbone.

Method acc. Method acc.

baseline 92.06 ResNet50 91.90
+ MFM 92.32 + MFM 92.15
+ ARMM 92.22 + ARMM 92.00
+ MFM + ARMM 92.47 + MFM + ARMM 92.23

In order to demonstrate the superiority of Swin-Transformer [14] over ResNet50
[7] and show the effectiveness of our method. We also take the ResNet50 [7] as
the backbone to experiment. TABLE 2 shows the effect of the same module on
ResNet50 [7]. The multi-scale module and the prior information of attributes
improve the accuracy by 0.25% and 0.10% respectively and it also achieves the
relatively best when using both the two modules at the same time. Based on the
two results with different backbones, we find that Swin-transformer can learn
the relevance of spatial features, that is, the global relationship between features.

In TABLE 3, we can find that our adaptive attention method is more effec-
tive than directly concatenating or weighed summing the features. Then with
the adaptive attention method, the network can focus on the related features
between adjacent layers, which can recognize attributes at different scales. How-
ever, the methods of directly concatenating or weighed summing are the static
method, which may fuse unnecessary information.

Table 3. Comparison experiment between Adaptive Attention method, Concat method
and Weighted Sum method.

Method acc.

Weighted Sum 92.28
Concat Directly 92.32
Adaptive Attention 92.47

4.6 Qualitative Evaluation

As shown in Fig. 4, we discover that ResNet50 [7] can only pay attention to a
whole local area, which produces a certain offset. And our method can make the
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Table 4. Classification accuracy (%) of Ours (92.47%), BLAN (91.81%) [34] and
MCNN-AUX (91.26%) [6] on CelebA [16] over 40 facial attributes.

Attributes Ours BLAN MCNN-AUX Attributes Ours BLAN MCNN-AUX

5 o’clock Shadow 95.19 95.18 94.51 Male 99.13 98.32 98.17
Arched Eyebrows 87.71 84.74 83.42 Mouth Slightly Open 94.47 94.22 93.74
Attractive 82.63 83.25 83.06 Mustache 97.04 96.99 96.88
Bags Under Eyes 86.15 86.11 84.92 Narrow Eyes 94.00 87.78 87.23
Bald 99.06 99.02 98.90 No Beard 96.64 96.46 96.05
Bangs 96.35 96.26 96.05 Oval Face 77.59 76.86 75.54
Big Lips 83.31 72.59 71.47 Pale Skin 96.65 97.25 97.05
Big Nose 85.30 85.21 84.53 Pointy Nose 78.38 78.02 77.47
Black Hair 91.91 90.49 89.78 Receding Hairline 95.11 93.99 93.81
Blond Hair 95.65 96.27 96.01 Rosy Cheeks 95.41 95.36 95.16
Blurry 96.82 96.37 96.17 Sideburns 97.56 98.04 97.85
Brown Hair 85.92 89.79 89.15 Smiling 94.00 93.19 92.73
Bushy Eyebrows 93.11 93.08 92.84 Straight Hair 85.85 84.65 83.58
Chubby 95.99 95.88 95.67 Wavy Hair 87.37 85.35 83.91
Young 89.09 89.06 88.48 Necktie 97.33 97.20 96.51
Necklace 89.78 88.16 86.63 Lipstick 94.40 94.34 94.11
Hat 99.17 99.15 99.05 High Cheekbones 89.36 88.13 87.58
Heavy Makeup 92.96 92.04 91.55 Gray Hair 98.07 98.35 98.20
Goatee 97.06 97.69 97.24 Eyeglasses 99.63 99.63 99.63
Earrings 91.38 90.93 90.43 Double Chin 96.82 96.58 96.32

Fig. 4. We use Grad-Cam [23] to show the area network pay attention. The parts with
warm colors represent where the network pays attention. The second and the third line
show the results on the input images with ResNet50 [7] and our framework respectively.
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network focus on some characteristic areas and the details are better detected.
Additionally, our method pays more attention to the face area and may not
be affected too much by the background part. These clearly demonstrate the
effectiveness of the proposed solution.

As shown in Fig. 5, it can be seen from the figure that attributes about
Male, Mouth Slightly Open, No Beard, Smiling, and young have strong connec-
tions with other attributes. And these attributes in turn correspond to the se-
quence numbers 20, 21, 24, 31 and 39 in the figure. For example, at row 21
and column 31, the dark blue shows a strong connection between Smiling and
Mouth Slightly Open.

Fig. 5. The visualization of the prior relationship between attributes. The duck blue
means the strong relation and the light blue means the weak relation. The serial number
represents the corresponding attribute. Since the same attribute does not appear twice
in labels of a picture, the diagonal line is not highlighted.

4.7 Quantitative Evaluation

TABLE 4 reports the accuracy of each attribute in CelebA [16]. We take three
levels of models to make predictions, which are MCNN-AUX 91.26% [6], ours
92.47% and BLAN 91.81% [34], because the accuracy of each attribute is not
reported in most previous methods. At the accuracy of attributes Arched Eye-
brow, Big Nose, High Cheekbone, Narrow Eye, Earring and Necklac, ours has an
advantage of more than 2%. Facts have proved that our method can have good
results in recognizing some small attributes. And ours still maintain good accu-
racy in attributes with large scale. Compared to BLAN [34], the accuracy of the
attribute Big lips is improved by about 11%. On the other hands, by performing
multi-scale fusion reasoning, the proposed method has recognized more detailed
attributes while making fewer mistakes and the accuracy of other attributes does
not fluctuate greatly.
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5 Conclusion

In this paper, we propose a prior-guided multi-scale fusion transformer for face
attribute recognition to capture long-distance relations of features in spatial in
an end-to-end manner. We also introduce a learnable weight to perform effective
soft selection of adjacent features and apply a hierarchical approach to fuse
them, which can get enough information to predict attributes at different scales.
Additionally, we introduce prior information of attributes into feature learning,
which can make the network focus on correlations between attributes. Extensive
experimental results on a real dataset demonstrate the effectiveness and the
generalization ability of our method in dealing with face attribute recognition.
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