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ABSTRACT
Attributes are important information to bridge the appearance gap
across modalities, but have not been well explored in cross-modality
person ReID. This paper proposes a progressive attribute embedding
module (PAE) to e�ectively fuse the �ne-grained semantic attribute
information and the global structural visual information. Through
a novel cascade way, we use attribute information to learn the
relationship between the person images in di�erent modalities,
which signi�cantly relieves the modality heterogeneity. Meanwhile,
by embedding attribute information to guide more discriminative
image feature generation, it simultaneously reduces the inter-class
similarity and the intra-class discrepancy. In addition, we propose
an attribute-based auxiliary learning strategy (AAL) to supervise
the network to learn modality-invariant and identity-speci�c local
features by joint attribute and identity classi�cation losses. The PAE
and AAL are jointly optimized in an end-to-end framework, namely,
progressive attribute embedding network (PAENet). One can plug
PAE and AAL into current mainstream models, as we implement
them in �ve cross-modality person ReID frameworks to further
boost the performance. Extensive experiments on public datasets
demonstrate the e�ectiveness of the proposed method against the
state-of-the-art cross-modality person ReID methods.
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1 INTRODUCTION
Cross-modality visible-infrared person ReID (RGB-IR ReID) [31] 
aims to match images of people captured by visible and infrared 
cameras. In addition to the common challenges such as view changes, 
illumination, and background clutter, it brings extra challenges to 
match the modality heterogeneous data of the same person. As 
shown in the oval in Fig. 1 (a), the ubiquitous heterogeneity re-
sults in a large distance between the feature distributions of the 
same person in two modalities. Meanwhile, due to the in�uence of 
light or occlusions, RGB-IR ReID still su�ers from large inter-class 
similarities (the blended distributions in green, black and pink), 
and intra-class discrepancy (the scattered distributions in pink and 
black), as shown in the black box in Fig. 1 (a),

Existing methods can be divided into two main categories: 1) 
GAN-based methods [24, 28, 35], which try to bridge the modal dif-
ferences by generating corresponding modality images. However, 
the inherent di�erences between the modalities may destroy the lo-
cal structure and introduce unavoidable noise during the generation
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Figure 1: Feature distribution of six IDs selected from SYSU-MM01 [31] dataset randomly through three di�erent methods.
The dot and cross denote the features in the visible and infrared modalities respectively and di�erent colors represent di�erent
identities. (a) baseline [12]: training using only identity labels. (b) baseline+ATTR [42]: using identity labels and attribute labels,
and training with additional attribute loss. (c) baseline+Ours: training with attributes embedded by our proposed module.

process. 2) Modality-shared feature learning methods [5, 18, 34]
devote to projecting heterogeneous modal features into the uni�ed
space to reduce the cross-modality di�erence. Nevertheless, both
categories tend to learn global image-level information for modal-
ity feature representation. The large cross-modality heterogeneity
signi�cantly hinders the discriminative feature representation. Fur-
thermore, the large intra-class discrepancy and inter-class similarity
in the visual appearance across the non-overlapping cameras also
bring huge challenges to cross-modality ReID.

As auxiliary information, the attributes have also been proved as
a kind of e�ective information to boost the vision tasks, including
person search [1], vehicle ReID [22, 33] and face recognition [8]. In
cross-modality ReID, Zhang et al. [42] point out that some color-
independent person attributes are unchanged across modalities.
They propose an end-to-end network that uses additional attribute
labels as auxiliary information to bridge the cross-modality gap. By
predicting person attributes through additional attribute classi�ca-
tion branches, it can learn modality variables and identity-speci�c
local features under the joint supervision of attribute and identity
classi�cation losses. However, there are still two major problems.
1) It only �ne-tunes the network jointly with the attribute loss,
which fails to take into account the internal connections between
attributes and images, as well as the potential interactions among
attributes. 2) Unlike global image identity information, attributes
are semantically �ne-grained information, which is very easy to
lose during network training. As a result, the challenges of intra-
class discrepancy and inter-class similarity (inside the rectangular
box in Fig. 1 (b)) are still not well addressed.

To address the above problems, we propose a novel Progressive
Attribute Embedding Network (PAENet) to comprehensively inte-
grate attributes with image information for cross-modality ReID.
Speci�cally, PAE includes three levels of embeddings. The �rst-level
embedding relies on the cross-attention scheme, which can learn
the complementary information between di�erent modalities by

the interaction among key, value and query. Through this embed-
ding, the gap in semantic space between images and attributes is
e�ectively reduced. The regions associated with the attributes can
adaptively provide discriminative details to achieve �ne-grained
matching. Therefore, we design the second-level embedding by the
attribute-guided attention to dynamically selects attribute-related
appearance regions within each modality for �ne-grained matching.
Finally, a certain area may contain multiple attributes, which have
a di�erent impact on identi�cation. Therefore, the three-level em-
bedding is used to collaboratively employ the connections between
di�erent attributes by using channel attention as an element-wise
gating function to select key attributes. By cascading these embed-
dings, PAENet can achieve the e�ective integration of attributes and
images gradually. Meanwhile, it can learn the relationship between
di�erent attributes collaboratively.

Guided by the attributes, the network generates more discrimina-
tive modality-aware features and dynamically mines the modality-
invariant �ne-grained information, which e�ectively reducesmodal-
ity di�erences, shown as the brown and purple IDs in Fig. 1 (c).
By using attributes to guide feature generation, the network can
further relieve the inter-class similarity (green and black IDs) and
intra-class discrepancy (black and pink IDs).

In addition to fusing attributes and images in PAE, we also pro-
pose an attribute-based auxiliary learning scheme to further boost
the discriminative representation of images guided by attributes.
In particular, we design an attribute classi�cation module in the
training stage to guide image representation learning by the at-
tributes. It is worth noting that AAL is only used as an auxiliary
learning strategy to assist in obtaining modality-invariant feature
representation, we remove it in the testing phase.

The main contributions of this paper include:

• We propose a novel progressive attribute embedding method
to e�ectively employ the internal connections between at-
tributes and images, as well as the potential interactions
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among attributes for cross-modality ReID performance boost-
ing. In addition, the �ne-grained information of attributes
are well leveraged in network training.

• We propose an e�ective attribute-based auxiliary learning
scheme to further boost the discriminative representation of
images guided by attributes while maintaining the e�ciency.

• The proposed progressive attribute embedding scheme is
generic and easily integrated with existing ReID frameworks
as we implemented in the experiments, and the results vali-
date the superiority of our scheme against the state-of-the-
art methods.

2 RELATEDWORK
2.1 RGB-IR Cross-modality Person ReID
In RGB-IR ReID, Wu et al. [31] �rst contribute a large benchmark
dataset (SYSU-MM01) and propose a one-stream zero-padding net-
work for RGB-IR imagematching. Current researchesmainly devote
the shared feature learning methods to dealing with modality dif-
ferences. Ye et al. [38] design a new baseline for cross-modality
ReID, which uses the non-local attention block to achieve compet-
itive performance. Lu et al. [18] propose a novel cross-modality
shared-speci�c feature transfer algorithm to explore the potential
of both the modality-shared information and the modality-speci�c
characteristics. Meanwhile, other works [12, 16, 29, 36] have investi-
gated e�ective loss functions to handle the modality gap. However,
most of the above methods focus on improving the intra-class
cross-modality similarity, while ignoring the enlarging inter-class
discrepancy of features.

Meanwhile, some methods explore cross-modality representa-
tion learning from the perspective of generative adversarial training
by GAN technology. The cmGAN[5] is the �rst e�ort in GAN-based
cross-modality person ReID. Dai et al. [5] propose an end-to-end
generated network, which consists of a generator to extract features
from two di�erent modalities and a discriminator to distinguish
the modality features. Wang et al. [25] propose to generate cross-
modality paired images and perform both global set-level and �ne-
grained instance-level alignments, which can reduce the modality
variation well. Although these methods generate corresponding
cross-modal images or features to reduce the modal heterogeneity,
the generated are unreliable with inevitable noise. At the same time,
the infrared images lack the rich color texture information in the
visible image [29], therefore it is not reasonable to directly convert
the cross-modal images/features.

2.2 Attributes for ReID
With the gradual progress of research, attributes (such as gender,
age and clothing) have been noticed as a kind of e�ective auxiliary
information for ReID. Attributes can provide additional annotations
and have been introduced into person ReID. Compared with indi-
vidual personal identi�cation, attributes can provide a higher level
of semantic identi�cation information. Liu et al. [17] have labelled
the two largest datasets, i.e., Market-1501 and DukeMTMC-reID,
with attribute labels, and then simultaneously learned a ReID model
to predict the semantic attributes of the pedestrian. Recently, deep
learning methods [14, 21] use the attributes to help the supervi-
sion of joint training, so as to increase the distinction of identity
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Figure 2: Framework of PAENet– It involves novel key
components: the progressive attribute embedding (PAE) and
attribute-based auxiliary learning (AAL).

features and strengthen the relevance of image pairs. Zhang et
al. [40] use the feature aggregation strategy to make full use of at-
tribute information. To reduce the reliance on attribute annotation,
unsupervised methods [20, 26, 28] have been proposed.

Although both attribute recognition and ReID are classi�cation
tasks, the former favors �ne-grained recognition while the latter
belongs to global visual information recognition. However, most
of the methods mentioned above ignore this discrepancy between
these two tasks as well as the internal relationship among attributes.

3 METHOD
Preliminary. The overview of Progressive Attribute Embedding
Net (PAENet) is illustrated in Fig. 2. The input images, including
the visible and infrared images, are �rst fed into the two-stream
network to extra the image features. Then we propose the pro-
gressive attribute embedding (PAE) to fuse attributes and image
features, promoting the learning of discriminative modal-irrelevant
features and assigning more accurate local features. Meanwhile, to
avoid the misidenti�cation of identity caused by excessive interfer-
ence of attribute information, the attribute-based auxiliary learning
(AAL) is proposed to assist in generating better attribute feature
representation. The two components are integrated into a uni�ed
framework and can facilitate each other.

3.1 Baseline
The conventional two-stream network is used as the backbone to
extra features. Speci�cally, we denote the modality-speci�c features
network as conv<,< 2 [E, C], which separately extract visible and
infrared features. The feature embedding network conv

B projects
modality-speci�c person features into the shared common feature
space. Given a visible image O E 2 '3⇥�⇥, and an infrared image
O
C 2 '3⇥�⇥, , the learned 3D person features L E and L

C in the
common space can be represented as,

L
< =

⇢
conv

B (convE (O E)) ,
conv

B �
conv

C �
O
C � � , (1)
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where Lm 2 '⇠⇥�⇥, , C, H andW are the channel number, image
height and width, respectively. We adopt ResNet-50 as the back-
bone, in which each branch contains a pre-trained model, which
inherits the architecture of ResNet-50 before the global average
pooling layer. At the same time, the last down-sampling opera-
tion is removed to enrich the granularity of feature. Then, we use
Gem-Pooling [38] to obtain �ne-grained features (f<).

Following the state-of-the-art methods [3, 12, 16], we use the
pooled features for subsequent recognition tasks. We use the preva-
lent MMD [12] as our baseline, which utilizes identity loss L83 ,
the proposed the Maximum Mean Discrepancy loss L""⇡ and
hetero-center triplet loss L�2�)A8 to constrain the network, the
baseline learning loss is denoted as L1 ,

L1 = L83 + LMMD + L�2�)A8 . (2)

.

3.2 Progressive Attribute Embedding
To address the di�erences between images and attributes, we pro-
pose the PAE module that blends these two types of information
in a progressive embedding way to bridge the cross-modality gap.
To be brief, the �rst embedding aims to reduce the di�erence in se-
mantic space between images and attributes; the second embedding
dynamically selects attribute-related appearance regions through
attribute-guided attention; the third is used to collaboratively ex-
plore the connections between di�erent attributes and the rich
contextual information.

We use one-hot vector G< to represent the attributes, G< =
{a1, a2, . . . , a=} , a8 2 [0, 1], where = represents the number of at-
tributes, and < 2 [E, C] representing the RGB/IR modality. Ac-
cording to the given attributes (G<), we �rst project them into a
2048-dimensional vector (f<0 ). Given an image feature (f<) and
attribute embedding feature (f<0 ), we aim to learn an attribute
enhanced feature to learn both global visual information and lo-
cal detail information. The overview of the progressive attribute
embedding is illustrated in Fig. 3, which mainly consists of three
progressive embeddings.
Embedding-I. Attributes are �ne-grained semantic information,
while images belong to global structural visual information. There-
fore, there is a big gap between attributes and images. We believe
that the cross-attention mechanism [6] can discover the hidden
relationships between di�erent information by using a simple but
powerful reasoning mechanism. Herein, the �rst embedding aims
to extract useful information from images and attributes through
the powerful and robust cross-attention mechanism to mine the
critical information.

Speci�cally, we �rst use linear mapping to align the dimensions
of attribute and image features, which are sequentially sent to
the cross attention module. In order to integrate attributes and
images more e�ectively, the image feature (f<) serves as query
(W). Meanwhile, the image feature (f<) and the attribute feature
(f<0 ) perform the concatenating operation, and subsequently as key
(Q ) and value (\ ), then use the following expressions to realize the
fusion operation,(

f
<
20 = Norm(�CC (W,Q , \ ) + W),

A�(W,Q , \ ) = B> 5 C<0G
⇣
WQ>
p
3

⌘
\ ,

(3)

where W , Q , \ are query, key and value, respectively, 3 is the em-
bedding dimension. The cross-attention is based on the trainable
associative relation between query and key. Followed by two resid-
ual connections, a normalization layer and a simple feed-forward
network, �nally, the network can learn clear structural information
and subtle pixel-level features (f<41).⇢

z1 = Norm(f<20 + f<),
f
<
41 = Norm (z1 + ��# (z1)) .

(4)

Embedding-II. The Embedding-I uses long-term dependence in-
stead of the local spatial method to fuse attribute and image features.
However, it cannot use attribute features to guide the transfer of
image features, and attributes are detailed information that is very
easy to lose as the network is trained. To this end, we cascade the
attribute-guided attention mechanism to help deal with the lack of
attribute information. We argue that di�erent attributes correspond
to di�erent positions on the image. For attribute features, we only
need to focus on speci�c relevant areas. For this reason, to perceive
attribute-related regions and deliver the most discriminative de-
tail information adaptively, we subsequently introduce a second
embedding by using a spatial attention mechanism with the guide
of speci�c attributes. Speci�cally, we �rst process the attributes
through the linear layer and spatial duplication (1*1 convolution
layer and reshape operation). And then, we use a 1*1 convolution
layer on the fused features (f<41) to unify its dimension and size
with the attribute features after spatial duplication operation. For
the convenience of representation, the processing of attributes and
embedding features are denoted as ?1 and ?2, respectively. After
feature mapping, the attention weight is obtained,⇢

f
<
() = (conv

�
?1

�
f
<
41) � ?2 (f<0 )

� �
,

f
<
42 = f

<
41 � B> 5 C<0G (f<() ),

(5)

where � represents element multiplication, conv is 1*1 convolution
layer, and B> 5 C<0G is used to obtain adaptive attention weights,
which are multiplied with image feature to obtain spatial attention-
guided feature (f<42). After this embedding, the model adaptively
focuses on speci�c areas of the image.
Embedding-III. Although the second embedding can adaptively
focus on speci�c image regions, a particular area may be associated
with multiple attributes. Moreover, some attributes may have a
negative e�ect on the recognition performance, while others are
positive. To distinguish the importance of di�erent attributes, we
further propose the third embedding by using channel attention
as an element-wise gating function, which can choose the positive
e�ective one on the network performance among the di�erent
attributes.

Concretely, we �rst employ a linear layer to embed attributes
(G<) into an embedding vector. We concatenate the attribute em-
bedding vector (f<0 ) and the image features (f<42) after the previous
two embeddings, followed by n fully connected layers and the
B86<>83 function to obtain the channel attention weights,

w
< = B86<>83

�
5 2<8

⇥
f
<
0 ,f<42

⇤ �
, (6)

where 8 2 [1, 2, · · · ,=], and n is the number of attributions. Then
we multiply the weightsw< and feature map L< , and �nally obtain
= di�erent feature,

L
<
4 =

⇥
L
<
1 , L

<
2 , · · · , L<=

⇤
. (7)
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Figure 3: Progressive Attribute Embedding– We take attributes as input and achieve progressive fusion with image features
through three di�erent embeddings.

3.3 Attribute-based Auxiliary Learning
After three layers of progressive attribute embedding, the fused
features L<4 can well integrate attribute information into the image
features. However, it may be exceedingly biased to the attribute
information while weakening the identity information. Therefore,
we propose an attribute-based auxiliary learning (AAL) module
only in the training phase.

The purpose of this module is to use an auxiliary attribute classi�-
cation task to help learnmore detailed identity information learning.
In this way, attributes and images are able to utilize their respec-
tive useful information to complement each other and enhance the
feature representation. In addition, this module introduces original
image features, which are used to help generate better attribute fea-
tures for attribute classi�cation tasks. We �rst concatenate all the
fused feature (f<8 ) after pooling, and then calculate the attention
weight,

]1 = B86<>83
⇥
f
<
1 ,f

<
2 , · · · ,f<=

⇤
. (8)

Then we copy n copies of the pooled features f< obtained by the
feature extractor, and then multiply them with]1 to avoid losing
global information. Next, we use the fully connected (FC) layer to
obtain the attribute feature representation (f<0CA ), which can well
re�ect the information of the attribute-related area.
Attribute Loss. We add attribute classi�cation branches for f<0CA8 ,
and set an attribution classi�er to obtain the attribution prediction
(?̄8 ) through the constraints of additional attribute labels (@̄8 ). In
our model, the binary cross-entropy loss is used for optimization,
and the loss calculation formula is as follows,

L0CA =
"’
8=1

�@̄8 log (?̄8 ) (9)

where" represents the number of person in a mini-batch.

3.4 Optimization
For identity classi�cation task, we �rst calculate the mean value of
the n feature maps L<4 obtained in the previous module, and then

calculate the attention weight through the B86<>83 function,

]2 = B86<>83

"
1
=

=’
8=1

L
<
8

#
, (10)

where the generated attention weight re�ects the correlation be-
tween the local area and the corresponding attributes. Finally, we
multiply it with the feature map (L<) extracted by the feature ex-
tractor, and the �nal person feature (f<83 ) representation is obtained
after pooling.

In this way, the �nal image features can inherit information from
di�erent patterns and capture explicit structural information and
subtle pixel-level features. Therefore, we can obtain the attribute
features (f<0CA ) and image features (f<83 ) of a pedestrian, where
< 2 [E, C], representing the RGB/IR modality.

The image features are used for the subsequent person ReID
task, and the whole network is trained by jointly using baseline
loss L1 and the attribute loss L0CA in the AAL module. The overall
objective function is,

LC>C0; = L1 + _L0CA , (11)

where the _ is a super-parameter. The constraint of di�erent tasks
enforce the network to learn bothmodality-independent and identity-
consistent features, which are more robust and discriminative for
cross-modality ReID.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setting
We evaluate our method on two benchmark cross-modality ReID
datasets SYSU-MM01 [31] and RegDB [19] with widely used met-
rics: the Cumulative Matching Characteristics (CMC) curve [27],
the mean Average Precision (mAP) [44] and the mean Inverse Neg-
ative Penalty (mINP) [38]. In SYSU-MM01 dataset, we use the eight
attributes annotated by Zhang et al. [42], including: 64=34A (male,
female), ⌘08A ;4=6C⌘ (long, short),F40A8=6 6;0BB4B (yes, no), B;44E4
;4=6C⌘ (long, short), C~?4 > 5 ;>F4A -1>3~ 2;>C⌘8=6 (dress, pants),
;4=6C⌘ > 5 ;>F4A -1>3~ 2;>C⌘8=6 (long, short), 20AA~8=6 102:?02:
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(yes, no), and 20AA~8=6 B0C2⌘4; (yes, no). For RegDB dataset, we an-
notate the same eight attributes for each person. For one certain
attribute, the value of positive example is 1 while 0 for negative
example.

4.2 Implementation details
Our proposed method is implemented in PyTorch. Following ex-
isting cross-modality ReID works, ResNet50 [10] is adopted as our
backbone network for fair comparison.The �rst residual block is
speci�c for each modality, while the other four blocks are shared.
The stride of the last convolutional block is set to 1 to obtain a
�ne-grained feature map. We initialize the convolutional blocks
with the pre-trained ImageNet parameters. All the input images
are �rstly resized to 288 ⇥ 144. We adopt random cropping with
zero-padding and horizontal �ipping for data augmentation. SGD
optimizer is adopted for optimization, and the momentum parame-
ter is set to 0.9. We set the initial learning rate to 0.1 with a warm-up
strategy. The learning rate decays by 0.1 at the 30th epoch and 0.01
at the 50th epoch, with a total of 80 training epochs. By default, we
randomly select 8 identities, and then randomly select 4 visible and
4 infrared images to formulate a training batch.

4.3 Comparison with State-of-the-Art Methods
Table 1 �rst presents the quantitative comparison on SYSU-MM01
dataset. Our method signi�cantly outperforms the state-of-the-art
methods in all the evaluation metrics in both all-search and indoor-
search scenarios. Note that ATTR [42] �rst uses attributes however
works modestly in cross-modality ReID. The main reason is that it
simply constrains the network by attribute labels, thus lacking ex-
ploration of the relationship between attributes and images, making
it di�cult to distinguish some pedestrians with similar attributes
and appearances. By �exibly embedding attributes into the net-
work, together with the mutual guidance of both attribute and
identity information, our method can better use attributes and fur-
ther constrain the network, thus achieving a new state-of-the-art
performance.

Table 2 reports the comparison results on the RegDB dataset.
Since the intra-class di�erences in RegDB dataset are comparably
small, it presents much smaller challenges than the SYSU-MM01
dataset. Therefore the role of attributes embedding is comparably
smaller in RegDB. However, our method still e�ectively improves
the performance, compared with our baseline [12].

4.4 Ablation Study
Table 3 reports the ablation study on the SYSU-MM01 dataset in
all-search setting. As shown in Table 3 (b), by only introducing
progressive attribute embedding (PAE), it brings -6.08% and -5.28%
decline in Rank-1 and mAP, respectively. The reason is, the network
pays more attention to attribute information after embedding, re-
sulting in the loss of image identity information. Hence, we propose
attribute-based auxiliary learning (AAL) to explore the relation-
ship between attributes and images. Table 3 (d) achieves signi�cant
improvement compared with the "baseline", which evidences the
contribution of the AAL. By jointly integrating PAE and AAL, it can
facilitate the network to generate more informative image feature

representations while using attribute information, thus achieving
the best performance.

Table 3: Ablation study of PAE and AAL.

PAE AAL R1 R10 R20 mAP mINP
(a) 7 7 66.75 94.16 97.38 62.25 46.08
(b) 3 7 60.67 92.97 97.25 56.97 42.00
(c) 7 3 69.32 96.83 99.11 66.55 53.43
(d) 3 3 74.22 99.03 99.97 73.90 64.29
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Figure 5: The changes of attribute loss L0CA and ID loss L83 .

Visualization of feature distribution.We further utilize t-SNE
[23] to visualize the features in 2D plane on SYSU-MM01 dataset,
Fig. 4 demonstrates the feature distribution. Di�erent colors rep-
resent di�erent categories. Circles and rectangles boxes are used
to highlight the signi�cant changes. It can be seen that the inter-
class distributions in Fig. 4 (a) are not well discriminated, and the
intra-class distributions are also very scattered. Compared with it,
our proposed modules can better cluster the features of the same
identity together, while also better separating the features of dif-
ferent identities. With respect to Table 3, our method can better
aggregate the intra-class features and simultaneously distinguish
the inter-class discrimination.
Evaluation of loss changes. To further demonstrate the impact
of progressive attribute embedding and the rationality of attribute-
based auxiliary learning, the Fig. 5 shows the changes in attribute
loss and ID loss during the �rst 26 iterations. PAE reduces attribute
loss to a certain extent. The network with the PAE module only
e�ectively learns the attribute information. However, the decline
in identity loss is not so signi�cant. After adding the AAL module,
our network avoids this problem. More importantly, through the
joint optimization of embedding and interaction, the performance
of our method is further improved, re�ecting the complementarity
of the two modules.

We further evaluate the results by training these two modules
independently in All-search mode on SYSU-MM01 dataset. We �x
the parameters of one of the two modules (PAE and AAL) and
continue optimizing the other one at the 10th epoch, from when
the network achieves comparatively stable convergence. Table 4
evidences the e�ectiveness of the joint training on PAE and AAL
in our method.
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Table 1: Comparison with the state-of-the-arts on SYSU-MM01 dataset on two di�erent settings. Rank at A accuracy (%) and
mAP (%) are reported. Herein, the best, second and third best results are indicated by red, green and blue fonts.

Settings All Search Indoor Search

Method
Venue A = 1 A = 10 A = 20 mAP A = 1 A = 10 A = 20 mAP

cmGAN [5] IJCAI 18 26.97 67.51 80.56 31.49 31.63 77.23 89.18 42.19
BDTR [36] IJCAI 18 27.32 66.96 81.07 27.32 31.92 77.18 89.28 41.86
eBDTR [36] TIFS 19 27.82 67.34 81.34 28.42 32.46 77.42 89.62 42.46
HSME [9] AAAI 19 20.68 32.74 77.95 23.12 - - - -
D2RL [28] CVPR 19 28.9 70.6 82.4 29.2 - - - -
MAC [34] TIP 20 33.26 79.04 90.09 36.22 36.43 62.36 71.63 37.03
MSR [7] TIP 19 37.35 83.40 93.34 38.11 39.64 89.29 97.66 50.88
Align[24] ICCV 19 42.4 85.0 93.7 40.7 45.9 87.6 94.4 54.3
AGW [38] TPAMI 21 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97
ATTR [42] JEI 20 47.14 87.93 94.45 47.08 48.03 88.13 95.14 56.84
CMSP [30] IJCV 20 43.56 86.25 - 44.98 48.62 89.50 - 57.50
Xmodal [13] AAAI 20 49.92 89.79 95.96 50.73 - - - -
DDAG [37] ECCV 20 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98
ssMF [18] CVPR 20 61.06 89.02 93.9 63.2 70.5 94.9 97.7 72.6
NFS [3] CVPR 21 56.91 91.34 96.52 55.45 62.79 96.53 99.07 69.79
CICL [43] AAAI 21 57.20 94.30 98.40 59.30 66.60 98.80 99.70 74.70
HCT [16] TMM 20 61.68 93.10 97.17 57.51 63.41 91.69 95.28 68.17
MID [11] AAAI 22 60.27 92.90 - 59.40 64.86 96.12 - 70.12
GLMC [41] TNNLS 21 64.37 93.90 97.53 63.43 67.35 98.10 99.77 74.02
SPOT [2] TIP 22 65.34 92.73 97.04 62.25 69.42 96.22 99.12 74.63
MMD [12] BMVC 21 66.75 94.16 97.38 62.25 71.64 97.75 99.52 75.95
MPANet [32] CVPR 21 70.58 96.21 98.80 68.24 76.64 98.21 99.57 80.95
PAENet - 74.22 99.03 99.97 73.90 78.04 99.58 100 83.54

（a）Baseline （b）Baseline + PAE （c）Baseline + AAL （d）Ours 

Figure 4: Feature distributions visualized with t-SNE method.

4.5 Evaluation on PAE
In order to better understand the e�ectiveness of the attribute em-
bedding, we progressively introduce the attribute embedding into
the baseline with attribute-based auxiliary learning. Through layer-
by-layer embedding, the network adaptively learns the relation-
ship between attributes and the semantic information of di�erent
attributes. As shown in Table 5, by progressively imposing the at-
tribute embedding into the baseline with AAL, the performance
has been improved gradually, which highlights the e�ectiveness of
the proposed progressive embedding.

4.6 Other Analysis
Visualization of learned features. Fig. 6 visualizes the feature
attention maps of the baseline and our model. As shown in Fig. 6 (a),
"she is a long-haired woman wearing a long dress and short skirt.",
the baseline pays more attention to the texture area on the edge of
the top and short skirt. By contrast, our method learns richer and
more comprehensive features, avoiding excessive attention to the
salient areas. Consistently in Fig. 6 (b), "he is a man with short hair

and glasses, wearing short sleeves and shorts," the baseline mainly
focuses on the cloth pattern, while our method also focuses on the
discriminative face and the under area.
Analysis on balance parameters _. The auxiliary attribute clas-
si�cation branch in the AAL module helps to learn a more robust
discriminative representation. We �ne-tune the super-parameter _
in the attribute loss to evaluate the performance in All-search mode
on SYSU-MM01 dataset. As shown in Fig. 7, we can conclude that
the best results are obtained when taking the value of 1.
Di�erent baselines plugin. To evaluate the the generality of
our method, which is plug-and-play, we further plug the proposed
PAE and AAL modules into �ve popular open-sourced baselines
on SYSU-MM01 dataset. As shown in Table 6, after integrating
our modules into the �ve baselines, it signi�cantly improves all
the baselines in all the metrics. This veri�es the generality of our
method. Note that the �nal results based on MPANet are compara-
ble to our results on SYSU-MM01 dataset while overshadowed on
RegDB dataset, therefore we choose the simple and e�ective MMD
as our baseline.
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Table 2: Comparison with the state-of-the-arts on the RegDB
dataset. Herein, the best, second and third best results are
indicated by red, green and blue fonts.

Method Venue
V to T T to V

R1 mAP R1 mAP
HSME [9] AAAI 19 41.34 38.82 40.67 37.50
D2RL [28] CVPR 19 43.40 44.10 - -
MSR [7] TIP 19 48.43 48.67 - -
JSIA [25] AAAI 20 48.50 49.30 48.10 48.90
AlignGAN [24] ICCV 19 57.90 53.60 56.30 53.40
CMSP [30] IJCV 20 65.07 64.50 - -
CMM+CML [15] MM 20 - - 59.81 60.86
Xmodal [13] AAAI 20 - - 62.21 60.18
ssMF [18] CVPR 20 65.40 65.60 63.80 64.20
DDAG [37] ECCV 20 69.34 63.46 68.06 61.80
Hi-CMD [4] CVPR 20 70.93 66.04 - -
HAT [39] TIFS 21 71.83 67.56 70.02 66.30
CICL [43] AAAI 21 78.80 69.40 77.90 69.40
NFS [3] CVPR 21 80.54 72.10 77.95 69.79
SPOT [2] TIP 22 80.35 72.46 79.37 72.26
MPANet [32] CVPR 21 82.80 87.70 83.70 80.90
HCT [16] TMM 20 91.05 83.28 89.30 81.46
GLMC [41] TNNLS 21 91.84 81.42 91.12 81.06
MID [11] AAAI 22 87.45 84.85 84.29 81.41
MMD[12] BMVC 21 95.06 88.95 93.65 87.30
PAENet - 97.57 91.41 95.35 89.98

Table 4: Ablation experiment of di�erent training methods.

Setting R1 mAP mINP
the performance at the 10th epoch 57.35 55.47 41.19
Optimizing PAE while �xing AAL 71.89 69.42 57.58
Optimizing ALL while �xing PAE 73.00 68.80 55.23
Jointly training PAE and AAL 74.22 73.90 64.29

Baseline OursImg

（a）person A （b）person B

Baseline OursImg

Figure 6: Attention map Comparison of person A and B.

5 CONCLUSIONS
This paper proposes a Progressive Attribute EmbeddingNet (PAENet)
for cross-modality person ReID, which explores how to utilize aux-
iliary attributes to improve the performance of identifying pedestri-
ans. It contains two main components in a uni�ed framework: pro-
gressive attribute embedding (PAE) and attribute-based auxiliary
learning (AAL). To mine the rich attribute semantic information,

Figure 7: Performance analysis on parameters _.

PAE fuses �ne-grained information and image appearance features
well. Guided by attributes, the network adaptively focuses on dis-
tinguished key regions and extracts �ne-grained modality-sharing
features. Moreover, in the training phase, AAL speci�cally makes
full use of additional attribute classi�cation branches to bridge the
modal gap further and enhance the robustness of image features,
which in turn helps to enhance the e�ectiveness of attribute recog-
nition. Comprehensive experiments demonstrate the e�ectiveness
of proposed method with superior improvement against the state-
of-the-art methods. We believe our modules can also be applied in
other tasks, which use auxiliary information.

Table 5: Evaluation on progressive attribute embedding.

PAE
R1 R10 R20 mAP mINP

Emb1 Emb2 Emb3
(a) 7 7 7 69.32 96.83 99.11 66.55 53.43
(b) 3 7 7 71.95 97.62 99.22 68.23 54.77
(c) 3 3 7 72.73 97.60 99.45 69.55 56.73
(d) 3 3 3 74.22 99.03 99.97 73.90 64.29

Table 6: Plugging PAE and AAL into �ve existing baselines.

RegDB SYSU-MM01
Visible to Infrared All-search Indoor-search

Method Venue R1 mAP R1 mAP R1 mAP
AGW [38] TPAMI 21 70.05 66.37 47.50 47.65 54.17 62.97
AGW+Ours - 92.06 87.26 69.80 68.75 74.76 81.55
DDAG [37] ECCV 20 69.34 63.46 54.75 53.02 61.02 67.98
DDAG+Ours - 91.03 85.70 68.13 65.21 74.10 79.58
MPANet [32] CVPR 21 82.80 87.70 70.58 68.24 76.64 80.95
MPANet+Ours - 90.56 90.43 73.93 74.08 79.10 82.19

HCT [16] TMM 20 91.05 83.28 61.68 57.51 63.41 68.17
HCT+Ours - 95.90 89.93 70.70 69.23 75.56 82.06
MMD [12] BMVC 21 95.06 88.95 66.75 62.25 71.64 75.95
MMD+Ours - 97.57 91.41 74.22 73.90 78.04 83.54
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