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A B S T R A C T

License plate recognition plays a critical role in many practical applications, but license plates of large vehicles
are difficult to be recognized due to the factors of low resolution, contamination, low illumination, and
occlusion, to name a few. To overcome the above challenges, the transportation management department
generally introduces the enlarged license plate behind the rear of a vehicle. However, enlarged license plates
have high diversity as they are non-standard in position, size, and style. Furthermore, the background regions
contain a variety of noisy information which greatly disturbs the recognition of license plate characters. In
this work, we address the enlarged license plate recognition problem and contribute a dataset containing 9342
images, which cover most of the challenges of real scenes. However, the created data are still insufficient
to train deep methods of enlarged license plate recognition, and building large-scale training data is very
time-consuming and high labor cost. To handle this problem, we propose a novel data generation framework
based on the Disentangled Generation Network (DGNet), which disentangles the generation of enlarged license
plate data into the text generation and background generation in an end-to-end manner to effectively ensure
the generation diversity and integrity, for robust enlarged license plate recognition. Extensive experiments on
the created dataset are conducted, and we demonstrate the effectiveness of the proposed approach in three
representative text recognition frameworks.
. Introduction

License plate recognition is an important problem in the field of
omputer vision and plays a critical role in many practical applications,
uch as traffic safety, vehicle management, and urban security. How-
ver, as shown in Fig. 1(a), when encountering some scenarios such
s low resolution, contamination, low illumination and occlusion, the
icense plates of large vehicles are difficult to be recognized. According
o the requirements of the traffic management department, the rear
f large vehicles needs to be painted with enlarged license plates to
andle shortcomings of the standard license plates. In many practical
cenarios, the enlarged license plates are easier to be captured by
urveillance cameras, and thus the enlarged license plate recognition
lays a significant role in identifying large vehicles.

However, enlarged license plate recognition is also a challenging
roblem. As shown in Fig. 1(b), on one hand, due to the lack of
tandard painting requirements in position, size, and style, enlarged
icense plates are highly diverse. On the other hand, the background

∗ Corresponding author at: School of Artificial Intelligence, Anhui University, Hefei, 230601, China.
E-mail address: ahzheng214@foxmail.com (A. Zheng).

contains a variety of noisy information, which has a serious impact on
enlarged license plate recognition.

In this work, we standardize the task of enlarged license plate
recognition, aiming to answer the following two questions: (1) How to
create a unified benchmark dataset to promote the research and devel-
opment of enlarged license plate recognition? (2) How to improve the
performance of deep recognizers when training data are insufficient?

Benchmark dataset. To establish a unified benchmark dataset, we
collect 9342 enlarged license plate images in 18 provinces in China. It
covers most of the real challenges of enlarged license plate recognition
such as low resolution, contamination, and occlusion, as shown in
Fig. 1(a). Due to the special properties of enlarged license plates,
it is hard to collect balanced data for all provinces. Therefore, the
issue of long-tail distribution is a key challenging factor in enlarged
license plate recognition. To facilitate the training and evaluation of
different algorithms, we split the dataset into training and testing sets.
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Fig. 1. (a) Comparison of enlarged license plates with standard license plates. Enlarged
icense plates are more suitable than standard license plates in identifying large vehicles
nder some challenging scenarios. (b) Recognition results of the enlarged license plates
y the state-of-the-art recognition methods, including Litman et al. (2020) and Baek
t al. (2019). All recognition models are trained using our proposed enlarged license
late dataset. The results show that the task of enlarged license plate recognition is
hallenging.

n specific, the testing set occupies about 20 % of the whole dataset
nd the remaining data are used as the training set. We adopt the en-
arged license plate recognition accuracy and the character recognition
ccuracy as our evaluation indicators for different methods.

The huge and diverse challenges such as low illumination and
cclusion seriously affect the performance of enlarged license plate
ecognition. To facilitate the challenge-based performance analysis,
e annotate 10 challenges for each image, including inclined angle,
bnormal illumination, different spacing, size variation, blur, abra-
ion, background clutter, non-standard character, double-row plate and
cclusion.

isentangled generation network. Enlarged license plates have high
iversity as they are non-standard in position, size and style, and back-
round regions contain a variety of noisy information. Therefore, the
reated dataset is hard to cover all real challenges and thus insufficient
o train deep recognition networks. Moreover, building a large-scale
raining dataset is very time-consuming and high labor cost. To handle
his problem, we propose to synthesize large-scale training data to
imulate real scenarios.

Many researchers (Cheng et al., 2018; Gupta et al., 2016; Wang
t al., 2017) propose to generate synthetic images in natural scenes to
mprove recognition performance. For example, Wang et al. (2017) in-
roduce W-Distance (Arjovsky and Bottou, 2017) in the training process
f CycleGAN, and can synthesize a large number of standard license
lates. However, it is easy to result in the mode collapse issue, and
hus difficult to generate enlarged license plates with various styles. Luo
t al. (2021) introduce an additional recognizer to supervise the gener-
tor to ensure the integrity of generated characters. However, existing
isentanglement generation algorithms usually extract the background
nd text information separately through encoders, but are hard to
isentangle them well, making the generated enlarged license plates
ave a lot of noises and errors. The enlarged license plates usually
ave complex background and high diversity of text, and it thus is
 R
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difficult to generate various enlarged license plates under the condition
of unpaired datasets without the supervision information. Furthermore,
it is a more difficult task to generate an enlarged license plate with the
specified license plate text.

To handle these problems, we propose to use a task-level dis-
entanglement generation strategy to decompose the enlarged license
plate image generation into two sub-tasks, including background image
generation and text image generation. Through improving the diversity
of background generation and text generation respectively, we can
not only generate high-diverse synthetic enlarged license plate images,
but control their contents and styles, which are beneficial to boosting
the recognition performance significantly. Therefore, we can obtain a
variety of synthesized enlarged license plate images by inputting text
and background of different styles, without being limited by the mutual
influence of the text and background to generate images with blurred
background or incomplete text structure. It effectively ensures the
diversity and integrity of generated enlarged license plate data.

The effectiveness of disentangled generation is validated on various
tasks (Lee et al., 2020; Huang et al., 2018; Yi et al., 2020; Ning et al.,
2021). Inspired by disentangled generation, we propose to disentan-
gle the generation of enlarged license plate data into two processes,
including text generation and background generation, to address the
problem of mode collapse. In specific, existing disentangled generation
networks (Lee et al., 2020; Huang et al., 2018) usually extract content
and background from source and target domains respectively, and
then combine the content and background to generate target image.
However, enlarged license plates have high diversity, which makes it
difficult to accurately separate the text and background from an image.
Therefore, we propose a task-level disentangled generation network
specifically designed for the task of enlarged license plate recognition
to avoid the problem of incomplete separation.

For the text generation, we first collect a series of license plate
character images. Then, we combine these images into a unified blue
background image. To increase the diversity of text images, we aug-
ment these character images by changing the attributes of size, shape
and position, etc. More importantly, the changes of these attributes
are completely retained in synthesized enlarged license plates, and
the diversity is thus enhanced. For the background generation, the
complex and diverse backgrounds of enlarged license plates are the
important factors that affect the performance of recognition methods.
To better simulate the real data, we construct a complex and diverse
background template set, which contains almost all the backgrounds
of enlarged license plates in real scenes. Based on this set, we can
randomly combine background templates and text images to generate
high-quality synthesized enlarged license plates.

Instead of using recognition methods to supervise generation in
existing works (Luo et al., 2021), we use a mask image to supervise the
generation by introducing a mask constraint loss, which is calculated
by the average absolute error between the mask and output images.
Herein, the mask image is obtained by subtracting the blue background
image from the text image. The designed loss helps us to effectively
ensure the integrity of generated enlarged license plates.

Contributions. The main contributions of this work can be summarized
as follows.

• To promote the research and development of enlarged license
plate recognition, we contribute a dataset containing 9342 im-
ages, which cover most of the challenges of real scenes, for
enlarged license plate recognition. For free academic usage, we
have released this dataset to public.1

• To provide a large-scale training data while avoiding time con-
suming and high labor cost, we propose a novel task-level disen-
tangled generation framework, which disentangles the enlarged
license plate generation into the text generation and background
generation in an end-to-end manner.

1 https://github.com/mmic-lcl/Datasets-and-benchmark-code/blob/main/
EADME.md

https://github.com/mmic-lcl/Datasets-and-benchmark-code/blob/main/README.md
https://github.com/mmic-lcl/Datasets-and-benchmark-code/blob/main/README.md
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• We design a series of strategies to ensure the diversity and in-
tegrity of generated enlarged license plates. On one hand, we
combine a set of augmented text images and a set of constructed
background templates to enhance the diversity. On the other
hand, we design a mask constraint loss based on the mask images
to ensure the integrity.

• We evaluate the effectiveness of generated enlarged license plates
using three representative text recognition methods on the cre-
ated dataset, and the results demonstrate the effectiveness of the
proposed approach.

. Related work

In this section, we review the related works that are most relevant
o us, including license plate recognition, natural scene text recognition
nd generative adversarial networks.

.1. License plate recognition

Existing license plate recognition algorithms can be divided into two
ategories, including segmentation based methods (Gou et al., 2015;
uo and Liu, 2008) and segmentation-free based methods (Li and Shen,
016). The segmentation-based methods need to segment license plate
nto individual characters, and then recognize them one by one. After
icense plate segmentation is completed, template matching (Rasheed
t al., 2012) and learning based (Wen et al., 2011) algorithms are
sually used to classify characters. However, the segmentation methods
ose the internal information of license plates, and the segmentation
erformance would seriously affect the recognition accuracy. Li and
hen (2016) propose a cascaded framework based on CNN and LSTM
or segmented free-based license plate recognition, which significantly
mproves the accuracy of standard license plate recognition.

Xu et al. (2018) contribute a very large dataset and annotate differ-
nt challenges, which greatly facilitate researches in this field. Sun et al.
2021) and Zhang et al. (2020) respectively propose image generation
etworks to generate realistic standard license plate images, and assist
raining recognition models to obtain better recognition accuracy. Gong
t al. (2022) present a dataset with Chinese multi-LP images, and
ropose an end-to-end trainable network to detect and recognize license
lates, which are able to deal with a variety of application scenarios.
owever, different from standard license plates, the enlarged license
lates are with high diversity in both backgrounds and texts, and
xisting methods of standard license plate recognition can thus not
andle the enlarged license plate recognition well. Tao Wen and Wang
2022) propose to combine vision and rule evaluation for the detection
nd recognition of enlarged license plates, in which the character
haracteristics and naming rules of enlarged license plates are used
or recognition. However, these characteristics and rules are difficult
o define and cover various scenarios.

.2. Scene text recognition

In recent years, many works have emerged to solve the task of
rregular text recognition. Yang et al. (2017) and Li et al. (2019) use the
wo-dimensional attention mechanism for irregular text recognition.
iao et al. (2019) propose to use a semantic segmentation network to
dentify irregular scene text. In addition, Luo et al. (2019) propose a
ectification network to convert irregular text images into regular text
mages that reduce background interference. Yang et al. (2019a) use
he character-level supervision to be able to train the model accurately.
hese methods greatly improve the recognition accuracy of irregular
exts. However, huge data support is the key to training these networks
nd building a large-scale training data is very time consuming and
igh labor cost.

There are some differences between the enlarged license plate

ecognition and scene text recognition need to be explained. First, their
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challenges are different. The main challenges of scene text recognition
are huge changes in ratio, scale, and orientation. Scene text recognition
is usually used to recognize the text of store signs, street signs and
public places, etc., which are usually with high resolution. While the
enlarged license plates are captured by traffic surveillance cameras,
and the styles of license plates vary greatly, and the challenges include
blur, abrasion, background clutter and occlusion. Second, their design
rules are different. If it is roughly considered as a special version of
scene text recognition, the prior knowledge of the enlarged license plate
recognition is lost. Taking it as a new task in the follow-up research,
it will cooperate with the standard license plate to further improve
the accuracy of vehicle identification and promote the development of
intelligent transportation.

2.3. Generative adversarial networks

With the widespread applications of Generative Adversarial Net-
works (GANs), Azadi et al. (2018), Cheng et al. (2019) and Yang et al.
(2019b) have achieved amazing results on document images using ad-
versarial learning methods. These methods focus on a single character
and constrain the character to generate a single style. However, our
goal is to generate enlarged license plates with various styles. This
requires us to maintain character information while being able to gen-
erate a good background. The traditional binarization method works
well on document images, but cannot maintain the performance when
the appearance of text in natural images changes greatly. Therefore, it
is still an open issue to coordinate the generations of the content and
background.

Recently, several attempts in image translation have achieved a
critical step. For example, Isola et al. (2017) achieve the generation
of complex image pairs by using paired datasets and use pixel-level
losses to generate complex image pairs. The CycleGAN is proposed by
Zhu et al. (2017) and the cycle consistency loss is used to solve the
problem of unpaired data. The DRIT proposed by Lee et al. (2020)
uses different encoders to solve different tasks, and realizes the diverse
generation of complex images by constraining the embedding space
of different encoders. To make better use of the discriminator, Chen
et al. (2020) propose the idea of reusing the discriminator encoder
to generate more complex images with better quality. Some image
generation models (Karras et al., 2019; Choi et al., 2018; Brock et al.,
2018; Shao and Zhang, 2021; Yun et al., 2021; Emami et al., 2020) can
generate better synthetic images, but they are unsupervised, and thus
we cannot use them to generate enlarged license plates with specified
text.

3. DGNet: Disentangled Generation Network

In this section, we first introduce a novel task-level disentanglement
generation framework based on the Disentangled Generation Network
(DGNet), which disentangles the generation into the text generation
and background generation, for robust enlarged license plate recogni-
tion. Then we present a detailed description of the mask constraint loss,
which effectively ensures the integrity of generated enlarged license
plates.

3.1. Overview

Inspired by NICEGAN (Chen et al., 2020) and DRIT (Lee et al.,
2020), we propose DGNet as shown in Fig. 2. DGNet consists of
four parts, including text image generation, background template set
construction, enlarged license plate image generation and text image
reconstruction.

Text image generation and background template set construction
helps us to generate highly diverse text images and background tem-
plates. Through this way, we can guarantee the diversity of generated
enlarged license plates and control their contents and styles. Then, we
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Fig. 2. Pipeline of the proposed framework. 𝑋 is the text image, 𝑋𝑏𝑔 is unified background image, and 𝑌𝑏𝑔 is the background template sampled from the background template
et. 𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 is the reconstructed image by the combination of text image and unified background image, 𝑌𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑 is the synthetic enlarged license plate, and 𝑋𝑐𝑦𝑐𝑙𝑒 is the
ynthetic text image. 𝐸𝑏𝑔 is the background encoder, and the discriminator consists of a shared encoder 𝐸𝑠ℎ𝑎𝑟𝑒𝑑2 and a linear classifier.
se the text image and background template to generate the enlarged
icense plate by the module of enlarged license plate image generation,
n which the mask constraint loss is introduced to ensure the integrity
f the enlarged license plates. The problem of unpaired data is solved
hrough the module of text image reconstruction.

In addition, we use the similar discriminator and generator to
ICEGAN (Chen et al., 2020). To be specific, the discriminators consists
f a shared encoder 𝐸𝑠ℎ𝑎𝑟𝑒2 and a linear classifier, and the generators
onsists of an encoder and a decoder. The above mentioned encoders
ll have the same structure, which contains six residual blocks for
xtracting features. These encoders shorten the domain translation
ath between low-dimensional hidden space vectors and promote the
omain translation between high-dimensional images. The decoder is
omposed of two sub-pixel convolutional layers for up-sampling, and a
ormalization layer is applied for better learning the style and content
nformation.

.2. Controllable text image generation

As shown in Fig. 5, the characters of enlarged license plates lack uni-
orm standards in font, position, and other attributes. To simulate real
cenarios, we design a strategy of controllable text image generation.

In specific, we build a character set including all characters that
xisted in enlarged license plates, and combine some characters with a
nified blue background image 𝑋𝑏𝑔 by a controllable text constructor to
orm the text image 𝑋. For simplicity, we use one font as a prototype.
n the controllable text constructor, we augment these character images
y changing their sizes, shapes, and positions according to our require-
ents as follows. During this process, the shape of characters will be

hanged, and we use them to simulate different fonts of characters.
irst, the character images are randomly resized between 30 × 60 and
0 × 120. Second, to reshape these text images, we make the characters
igger by randomly expanding 0 to 2 pixels outward or make the
haracters smaller by randomly shrinking 0 to 2 pixels inward along
he character edges. Finally, to simulate the character positions in real-
orld scenarios, we preset many sets of character positions, and the

ontrollable text constructor will randomly choose from them. More
mportantly, the changes of these characters are completely retained in
ynthesized enlarged license plates, and the diversity is thus enhanced.
e show some generated images using our proposed method, as shown

n Fig. 6. We can see that the characters of the enlarged license plate
ave high diversity. It seems a visual gap between real and generated
nlarged license plate image, which is caused by the huge intra-class
ifference of enlarged license plates. Such gap is a key challenge of
nlarged license plate recognition.
4

Fig. 3. (a) Visualization of constructed background templates. Herein, we randomly
select the background templates around enlarged license plates. (b) Some samples from
the background template set, which contains more than 1000 randomly cropped images
from different regions.

In addition, we also show some images generated by random se-
lection of text images and background templates. As shown in Fig. 4,
we can see that the background style of the synthetic enlarged license
plated can be controlled by different background templates, and the
sizes and positions can be controlled by the augmented text images. In
this way, we can control the size, shape and position of enlarged license
plate.

3.3. Multi-style background image construction

The complexity of background in enlarged license plates is an
important factor that affects the performance of recognition methods.
Existing works (Lee et al., 2020; Huang et al., 2018) usually extract text
and background information from a single image. However, enlarged
license plates have high diversity and lots of noisy information, and
it is thus difficult to accurately separate the text and background
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Fig. 4. Visualization of synthetic enlarged license plates with different text images and background templates. The first row indicates different background templates and the first
column denotes different text images. Other images are the synthetic enlarged license plates generated by our DGNet.
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from an image. Therefore, to better simulate the diverse background
information, we propose to build a multi-style background template
set. In specific, we extract the pure background template without
character information around the enlarged license plates, as shown
in Fig. 3(a). The background template set contains more than 1000
randomly cropped images from different regions, and has various styles
of backgrounds, which cover almost all styles in the real scenes, as
shown in Fig. 3(b). The background template can be randomly selected
and combined with the text image to generate an enlarged license plate
with the high-diversity background.

3.4. Enlarged license plate image generation

Given the text image 𝑋 and the background template 𝑌𝑏𝑔 , we first
extract text and background features by a two-stream encoder. The
shared encoder 𝐸𝑠ℎ𝑎𝑟𝑒1 is used to extract the text features, and the
background encoder 𝐸𝑏𝑔 is used to extract the background features
of the input enlarged license plate. Then, we send the combined text
and background features to the generator to generate the high-quality
synthesized enlarged license plate 𝑌𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛.

Our training data are divided into real enlarged license plates
(providing style information) and text masks (providing content in-
formation), and there is no one-to-one correspondence between them.
Due to the imbalance of training data, the generator often generates
frequently seen characters in training data. Therefore, we introduce
the mask constraint loss to ensure the integrity of generated enlarged
license plates. In specific, we use a mask image to supervise the
generation by introducing a mask constraint loss, which is calculated
by the average absolute error between the mask image and the output
image. By subtracting the blue background image from the text image,
we obtain the glyph image with a white background, and then add
the glyph image and the input background template to compute the
text mask image for supervising the generated images. In addition, the
features extracted by the shared encoder 𝐸𝑠ℎ𝑎𝑟𝑒2 are used as the inputs
of text image reconstruction and the linear classifier.
 𝑌

5

3.5. Text image reconstruction

To solve the problem of unpaired training data, we introduce the
text image reconstruction module. On one hand, the cycle consistency
loss (Zhu et al., 2017) is used to force the images between two domains
to perform generation with each other, which effectively solve the un-
paired training data problem. On the other hand, we combine the text
features extracted by the shared encoder 𝐸𝑠ℎ𝑎𝑟𝑒1 with the background
features extracted by the background encoder 𝐸𝑏𝑔 as the input of the
text image generator to obtain the reconstructed text image 𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
and the generated text image 𝑋𝑐𝑦𝑐𝑙𝑒. The text features of 𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
come directly from the shared encoder connected to the text image, and
𝑋𝑐𝑦𝑐𝑙𝑒 comes indirectly from this shared encoder.

3.6. Loss function

The overall loss consists of four parts, including generation ad-
versarial loss, cycle consistency loss, reconstruction loss and mask
constraint loss.

Generation adversarial loss. First, we make use of the least-square
adversarial loss by Mao et al. (2017) due to its more stable training and
high-quality generation. The generation adversarial loss is the key to
improving the performance of the generator, which can be represented
as follows:

𝐿𝑑𝑜𝑚𝑎𝑖𝑛
𝑎𝑑𝑣 = log𝐷𝑌 (𝑌 ) + log(1 −𝐷𝑌 (𝐺𝑋←←→𝑌 (𝑋, 𝑌𝑏𝑔))), (1)

here 𝑋 is the text image, 𝑌 is the enlarged license plate, 𝑌𝑏𝑔 is the
ackground template, 𝐺𝑋←←→𝑌 is the generator of text image to enlarged
icense plate, and 𝐷 is Discriminator.

ycle consistency loss. Inspired by CycleGAN (Zhu et al., 2017), we
se the cycle consistency loss to solve unpaired data problem. Cycle-
onsistency loss can force the generators to be each others inverse and
t is expressed as follows:

= 𝐺 (𝐸 (𝑋), 𝐸 (𝑌 )), (2)
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑋←←→𝑌 𝑠ℎ𝑎𝑟𝑒1 𝑏𝑔 𝑏𝑔
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Fig. 5. Examples from ELPR Dataset. The license plates come from 18 different
provinces, and all of them are captured from real traffic monitoring scenes.

𝐿𝑐𝑦𝑐𝑙𝑒
1 = |𝑋 − 𝐺𝑌 ←←→𝑋 (𝐸𝑠ℎ𝑎𝑟𝑒2(𝑌𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛), 𝐸𝑏𝑔(𝑋𝑏𝑔))|1, (3)

where | ⋅ | denotes the 𝑙1 norm, 𝐸𝑠ℎ𝑎𝑟𝑒2 is the shared encoder, 𝐺𝑌 ←←→𝑋
is the generator of enlarged license plate to text image, 𝐸𝑏𝑔 is the
background encoder, 𝑋𝑏𝑔 is the unified blue background image, and
𝑌𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 is the synthesized enlarged license plate.

Reconstruction loss. In order to maintain the consistency of the
generated background, we also introduce the reconstruction loss. Our
reconstruction is based on the shared-latent space assumption (Chen
et al., 2020). Reconstruction loss is to regularize the translation to be
near an identity mapping when real samples’ hidden vectors of the
source domain are provided as the input to the generator of the source
domain. It is expressed as follows:

𝐿𝑟𝑒𝑐𝑜𝑛
1 = |𝑋 − 𝐺𝑌 ←←→𝑋 (𝐸𝑠ℎ𝑎𝑟𝑒1(𝑋), 𝐸𝑏𝑔(𝑋𝑏𝑔))|1, (4)

where 𝐸𝑠ℎ𝑎𝑟𝑒1 is the shared encoder.

Mask constraint loss. In order to effectively ensure the integrity of
generated enlarged license plate, we design the mask constraint loss. It
is expressed as follows:

𝐿𝑚𝑎𝑠𝑘
1 = |𝐼𝑚𝑎𝑠𝑘 − 𝑌𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛|1, (5)

where 𝐼𝑚𝑎𝑠𝑘 is the mask image used to supervise the generation.

Full objective. The objective function is given by

𝐿 = 𝜆1 ⋅ 𝐿
𝑑𝑜𝑚𝑎𝑖𝑛
𝑎𝑑𝑣 + 𝜆2 ⋅ 𝐿

𝑟𝑒𝑐𝑜𝑛
1 + 𝜆3 ⋅ 𝐿

𝑐𝑦𝑐𝑙𝑒
1 + 𝜆4 ⋅ 𝐿

𝑚𝑎𝑠𝑘
1 , (6)

where 𝜆1, 𝜆2, 𝜆3 and 𝜆4 depict the hyper-parameters used to balance
the trade-off between different supervisions, which are empirically set
to 1.0, 10.0, 10.0, 15.0 respectively.

4. ELPR benchmark dataset

A large-scale dataset is crucial in enlarged license plate recognition
because it can be used not only to train deep recognition models, but
also to evaluate different recognition algorithms. Therefore, we provide
a unified dataset for enlarged license plate recognition, called ELPR. We
will introduce ELPR in detail.

4.1. Data creation

The current recognition field of enlarged license plate recognition
lacks a unified dataset, and we thus create a large-scale ELPR dataset.
Our goal is to provide a unified and highly diverse dataset to cover real-
world scenes and challenges. Therefore, we use surveillance cameras in
real traffic scenes to capture enlarged license plates of large vehicles.
Because the data come from real scenes, our ELPR contains most real
challenges such as occlusion, abnormal illumination, and blur. Fig. 5
6

Fig. 6. Examples of synthetic images. The proposed image generation approach can
effectively maintain text information and generate clear background information by the
mask constraint loss.

shows typical examples of ELPR dataset, and we can see that many
factors, such as complex background and various text styles, increase
the difficulty of ELPR. By the way, we collect a total of 9342 images,
including the license plates of 18 different provinces.

4.2. Annotation

In order to ensure the data quality, we train two professional anno-
tators to label enlarged license plates one by one. In addition, we also
ask professional checkers to prevent errors and inaccurate annotations.
In addition to the special challenges of enlarging license plate such as
complex background and high diversity in text size and position, some
common challenges such as abnormal illumination, blur, and occlusion
also seriously affect the recognition performance. Therefore, to better
evaluate the performance of different recognition algorithms, we anno-
tate each image with several challenges from the total 10 challenges,
including inclined angle, abnormal illumination, different spacing, size
variation, blur, abrasion, background clutter, non-standard character,
double-row plate, and occlusion. The challenges are defined in Tables 1
and 2 shows the number distribution of challenges of ELPR dataset.

4.3. Data split

There is no other dataset for enlarged license plate recognition, and
thus we divide it into a training set and a testing set to facilitate the
training and evaluation of recognition methods. In specific, inspired by
the standard license plate dataset CCPD (Xu et al., 2018), the testing set
is randomly sampled, accounting for about 20 % of the whole dataset.

5. Evaluation

In this section, we will provide the details of experiments and report
the experimental results on the benchmark dataset ELPR to validate the
effectiveness of our DGNet against the state-of-the-art methods.

5.1. Evaluation metrics

Like some GAN evaluation methods, we adopt the Kernel Inception
Distance (KID) (Bińkowski et al., 2018) and the Frechet Inception
Distance (FID) (Heusel et al., 2017) to evaluate the quality of image
generation. FID compares the statistics of generated data against real
data, and fits a Gaussian distribution to the hidden activations of In-
ceptionNet for each compared image set. Then, it computes the Frechet
distance between those Gaussians. Lower FID is better, corresponding
to more realistic generated images. KID is a metric similar to FID
but uses the squared maximum mean discrepancy between Inception
representations with a polynomial kernel. Unlike FID, KID has a simple
unbiased estimator, making it more reliable especially when there are
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Table 1
Descriptions of 10 different challenges in ELPR dataset.

Challenge Definition

Inclined angle The images of enlarged license plates are with different inclination angles.
Abnormal illumination The images are captured in high or low illumination conditions.
Different spacing In a enlarged license plate, the spaces of different characters is different.
Size variation In a enlarged license plate, the sizes of different characters are different.
Blur The images are blur caused by fast motion and inaccurate camera focus.
Abrasion The images are abraded due to the long-term use of vehicles, and some information of characters is missing.
Background clutter The background contains many noises which disturbs the recognition of enlarged license plate.
Non-standard character The characters are handwritten instead of standard printed.
Double-row plate The enlarged license plate is painted in two rows.
Occlusion Some characters are partially or completely occluded by other objects.
Fig. 7. Comparison of the generated images by CycleGAN, NICEGAN, DRIT, InST, CAP-VSTNet, Simulation, Script, Simulation-3D and our DGNet.
Table 2
Distribution of different challenges in ELPR dataset.

Challenge Total number (Train/Test)

Inclined angle 760 (590/170)
Abnormal illumination 1110 (807/303)
Different spacing 1970 (1492/478)
Size variation 347 (258/89)
Blur 860 (650/210)
Abrasion 2056 (1404/652)
Background clutter 2971 (2435/536)
Non-standard character 590 (485/105)
Double-row plate 32 (10/22)
Occlusion 814 (589/225)

much more Inception feature channels than image numbers. Lower KID
indicates high visual similarity between real and generated images.

In addition, our goal is to improve the recognition accuracy of
enlarged license plates. Therefore, we adopt two extra indicators of
enlarged license plate recognition accuracy (RA) and character recog-
nition accuracy (CRA) for qualitative evaluation. Enlarged license plate
recognition accuracy can be defined as:

𝑅𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑝𝑙𝑎𝑡𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑝𝑙𝑎𝑡𝑒𝑠
, (7)

while character recognition accuracy can be defined as:

𝐶𝑅𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
. (8)

5.2. Implementation details

Our network is implemented based on Pytorch and trained with
a single Tesla P40 GPU. We use the Adam optimizer to optimize the
proposed network with the learning rate 0.0001 and (𝛽1, 𝛽2) = (0.5,
.999) on Tesla P40 trained over 100K iterations. For the inputs, we
esize all images to the size of 256 × 256. In addition, we compute the
ean and standard deviation of all images in training set and normalize

he inputs. The batch size is set to 1, and the training speed is about 1.5
terations per second. In the testing phase, the generation of an enlarged
icense plate costs 2.0 ms on average.

.3. Comparison with state-of-the-art methods

In order to study the effectiveness of our synthesized enlarged li-
ense plates, we carry out experiments on several recent representative
7

Table 3
Comparison of three representative recognition methods with the synthetic images
generated by different methods.

Baseline GAN Method Training data RA CRA

Real Synthetic

Litman et al.

Script 7K 20K 76.82 94.40
NICEGAN 7K 20K 76.65 93.90
CycleGAN 7K 20K 76.40 93.92
DRIT 7K 20K 76.98 94.45
InST 7K 20K 76.48 94.32
CAP-VSTNet 7K 20K 76.20 94.24
Simulation 7K 20K 78.59 94.23
Simulation-3D 7K 20K 78.50 94.44
DGNet (Ours) 7K 20K 80.11 94.69

Yue et al.

Script 7K 20K 56.14 88.10
NICEGAN 7K 20K 57.79 88.47
CycleGAN 7K 20K 56.18 87.65
DRIT 7K 20K 57.00 88.09
InST 7K 20K 56.92 88.24
CAP-VSTNet 7K 20K 57.50 88.56
Simulation 7K 20K 58.94 89.05
Simulation-3D 7K 20K 56.64 88.11
DGNet (Ours) 7K 20K 60.62 89.12

Baek et al.

Script 7K 20K 61.94 90.17
NICEGAN 7K 20K 55.57 88.18
CycleGAN 7K 20K 58.36 89.05
DRIT 7K 20K 58.57 88.94
InST 7K 20K 59.43 89.22
CAP-VSTNet 7K 20K 61.20 89.83
Simulation 7K 20K 61.61 90.04
Simulation-3D 7K 20K 60.05 89.01
DGNet (Ours) 7K 20K 65.15 90.74

recognition algorithms, which are the models proposed by Litman et al.
(2020), Yue et al. (2020) and Baek et al. (2019) respectively. Baek
et al. propose a modular four-stage scene text recognition framework, in
which each component is interchangeable and different algorithms can
be integrated (this model is called as TPS-ResNet-BiLSTM-Attn). On this
basis, Litman et al. propose the stacked encoding and decoding modules
to achieve advanced performance. Yue et al. focus on context-free text
recognition with location attention, and show advanced performance
in semantic-free text recognition.

Overall performance. We use different methods to generate synthetic
data for experimental verification. First, to ensure the integrity and
diversity of the generated enlarged license plate, we use the image
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Table 4
FID and KID × 100 for different algorithms. Herein, the lower values
are better.
Method FID↓ KID ×100 ↓

CycleGAN 283.38 35.88
NICEGAN 216.60 22.17
DRIT 156.41 13.79
InST 168.94 15.63
CAP-VSTNet 432.44 42.23
Simulation 189.40 15.42
Simulation-3D 181.81 15.24
Script 164.26 15.27
DGNet (Ours) 101.32 7.46

Fig. 8. Some examples of synthetic images based on Unity, which can simulate
different weather environments and illumination changes.

processing technology to extract the character mask from the text image
and add it to the background template to obtain the synthetic image for
comparison. We name this method as Script in our paper. What is more,
based on the text images and virtual background images, we first gen-
erate the initial simulation images. Then, we use the traditional 2D and
3D simulation methods to simulate different attributes to generate the
final simulation images. Specifically, in the 2D simulation experiment,
the simulation of illumination and blur is based on OpenCV library, and
the simulation of occlusion is achieved by covering randomly selected
positions with pixel blocks of different sizes. We call this method as
Simulation. In the 3D simulation experiment, we use UniStorm2 to
imulate various scenarios in the real world. It is a plug-in software
ased on Unity, which can simulate complex weather systems such as
ainy days, snowy days and foggy days and time changes including
arly morning, noon, evening and midnight, etc. In specific, we put the
nitial simulation image into a set of random weather environments,
nd then randomly change the camera position to capture license
lates to obtain the final simulation image. We name this method as
imulation-3D in our paper and some simulation environments are
hown in Fig. 8.

The second one is to synthesize enlarged license plates using existing
AN methods, including CycleGAN (Zhu et al., 2017), NICEGAN (Chen
t al., 2020), DRIT (Lee et al., 2020), InST (Zhang et al., 2023) and CAP-
STNet (Wen et al., 2023). The final one is to use our proposed model

o generate enlarged license plates. We use four representative methods
o train with the above synthetic data respectively and evaluate them
n testing set. In addition, we have paid attention to some methods for
enerating synthetic standard license plate images, such as Sun et al.
2021) and Zhang et al. (2020). However, the code sources of these
ethods are not open, and thus we are unable to use these methods

o generate synthetic enlarged license plate images and compare them
ith our method.

As shown in Table 3, the results show that our method significantly
mproves the recognition accuracy of these recognition methods. In the
est recognition method (Litman et al., 2020), our method achieves

2 https://assetstore.unity.com/packages/tools/particles-effects/unistorm-
olumetric-clouds-sky-modular-weather-and-cloud-shadows-2714
8

3.46%, 3.71%, 3.29%, 3.13%, 3.63%, 3.91%, 1.52% and 1.61% higher
than NICEGAN (Chen et al., 2020), CycleGAN (Zhu et al., 2017), Script,
DRIT (Lee et al., 2020), InST (Zhang et al., 2023), CAP-VSTNet (Wen
et al., 2023), Simulation and Simulation-3D respectively. Compared
with our proposed method, it seems that the images generated by the
simulation methods seem more realistic in visualization, but perform
worse in different metrics. The results suggest that our method can
generate more effective data for the training of different recognizers,
while the generated data by other simulation methods might have
bigger gap with real data in feature level.

In addition, in the recognition framework proposed by Litman et al.
(2020) and Baek et al. (2019), Script achieves 0.42%, 0.17% and
3.58%, 6.37% higher than CycleGAN (Zhu et al., 2017) and NICE-
GAN (Chen et al., 2020) in RA, which can be explained that this
method can generate higher diverse license plates than CycleGAN (Zhu
et al., 2017) and NICEGAN (Zhu et al., 2017). However, our DGNet can
generate enlarged license plates with high diversity and small domain
gap, and thus our method outperforms Script in a large margin.

Note that the performance improvement of our synthesized data is
obvious in the recognition framework proposed by Yue et al. (2020).
The overall performance achieves 2.83%, 4.44%, 4.48%, 3.62%, 3.70%,
3.12%, 1.68% and 3.98% higher than NICEGAN (Chen et al., 2020), Cy-
cleGAN (Zhu et al., 2017), Script, DRIT (Lee et al., 2020), InST (Zhang
et al., 2023), CAP-VSTNet (Wen et al., 2023), Simulation and
Simulation-3D in RA, respectively. Yue et al. propose the recognition
method uses the positional attention enhancement to extract text
character features in images. Training data are not enough to cover
the position diversity of real scenes, which affects the performance of
enlarged license plate recognition. While our synthesized data show
high diversity in position, size and other attributes and effectively make
up for the shortage of training data, which can improve the robustness
of this recognition framework.

The evaluation of synthetic image quality is shown in Table 4. The
FID and KID scores of our proposed method are obviously smaller than
those of CycleGAN (Zhu et al., 2017), NICEGAN (Chen et al., 2020),
Script and other methods, which suggest that the enlarged license plates
generated by our DGNet are more similar to real data.

The visualization of enlarged license plates generated by different
methods is shown in Fig. 7. The first column is the input text image,
which determines the text of the output, and the last column is real
data and others are generated by different image translation methods.
What is more, the real data are unpaired with the generated images,
and it only serves as a reference for the style of the real enlarged license
plates. It can be found that although the synthesized data generated by
the Script have reliable text information, there is obvious domain differ-
ence with real enlarged license plates. CycleGAN (Zhu et al., 2017) and
NICEGAN (Chen et al., 2020) lose the text structure information in the
training process, which seriously affects the recognition performance.
DRIT (Lee et al., 2020) has the ability to maintain text information,
but it has a severe mode collapse and generates all images with white
backgrounds. InST (Zhang et al., 2023) can accurately distinguish the
character area and the background area and generate license plate
images with more realistic backgrounds, but its ability to generate char-
acters is insufficient. The wrong character structure will have negative
impact when training the recognition model. CAP-VSTNet (Wen et al.,
2023) transfers the background style of the enlarged license plate very
well, but has almost no impact on the character part, which is very
different from the styles in real enlarged license plates.

It is worth noting that our proposed method has additional back-
ground input compared with existing methods. It can be explained
from the following aspects. First, CycleGAN (Zhu et al., 2017), NICE-
GAN (Chen et al., 2020), InST (Zhang et al., 2023) and CAP-VSTNet
(Wen et al., 2023) use an unsupervised way to obtain the background
and content information from input image. DRIT (Lee et al., 2020)
extracts background and content information by disentangled repre-

sentation. These methods does not need additional background input

https://assetstore.unity.com/packages/tools/particles-effects/unistorm-volumetric-clouds-sky-modular-weather-and-cloud-shadows-2714
https://assetstore.unity.com/packages/tools/particles-effects/unistorm-volumetric-clouds-sky-modular-weather-and-cloud-shadows-2714
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Table 5
Comparison results of RA/CRA scores(%) of different recognition methods on different challenges in ELPR dataset, where R/S refers to real or synthetic data.

Baseline Method Training NOR IA AI DS SV BLU ABR BC NSC DRP OCC
R/S RA/CRA RA/CRA RA/CRA RA/CRA RA/CRA RA/CRA RA/CRA RA/CRA RA/CRA RA/CRA RA/CRA

Litman et al.

– 7K/0 85.33/97.41 82.35/96.64 67.33/91.37 78.03/94.8 75.28/95.5 66.19/90.88 59.97/90.73 70.71/93.52 71.43/94.69 0/31.17 59.11/90.41
CycleGAN 7K/20K 88.80/97.99 85.29/97.05 71.29/91.56 88.29/96.68 82.02/96.79 66.19/90.88 60.28/90.05 77.43/94.43 69.52/94.29 0/22.08 68.44/92.19
NICEGAN 7K/20K 88.42/97.77 89.41/97.73 69.31/91.75 84.52/95.40 70.79/95.02 69.52/90.82 62.42/90.75 76.49/93.74 73.77/95.10 0/25.97 69.78/92.51
DRIT 7K/20K 89.19/98.12 85.89/97.39 69.64/92.17 85.98/96.23 78.65/96.15 69.05/91.56 63.19/92.00 79.10/94.62 68.57/94.42 0/27.92 65.78/92.63
InST 7K/20K 89.58/98.07 84.71/97.23 68.65/91.65 87.24/96.86 69.66/94.70 70.48/91.70 62.58/91.04 77.43/94.99 72.38/94.69 0/32.47 65.78/92.38
CAP-VSTNet 7K/20K 88.80/97.90 84.71/97.06 68.32/91.61 86.19/96.74 75.28/95.51 69.05/91.90 61.20/90.75 78.17/95.12 72.38/94.42 0/27.27 63.56/92.19
Script 7K/20K 89.38/98.12 83.53/96.97 67.00/91.47 85.36/96.32 71.91/95.50 70.48/91.77 63.34/91.50 78.17/95.04 76.19/95.78 0/29.22 66.22/92.70
Simulation 7K/20K 90.15/97.99 85.29/97.31 68.65/91.70 89.12/96.83 76.40/95.99 73.33/92.52 64.88/90.91 79.85/95.10 69.52/93.33 0/25.97 70.67/92.70
Simulation-3D 7K/20K 92.66/ 98.51 86.47/97.14 68.32/91.56 87.66/96.44 82.02/96.95 68.57/91.36 64.11/90.95 78.92/94.99 74.29/94.97 0/28.57 70.22/93.97
DGNet (Ours) 7K/20K 92.86/98.43 88.24/97.73 71.95/92.27 89.33/96.56 83.15/97.43 70.00/91.29 65.64/91.56 80.97/94.94 78.10/95.92 0/24.68 70.67/93.46

Yue et al.

– 7K/0 17.95/71.4 15.29/66.39 10.23/62.47 9.00/63.09 12.36/65.33 14.76/65.1 11.96/64.48 8.77/62.39 14.29/67.07 0/24.03 10.22/62.6
CycleGAN 7K/20K 71.82/94.21 63.53/91.01 44.22/82.74 59.41/88.76 55.06/89.73 50.48/83.67 44.79/82.87 53.92/86.89 43.81/86.39 0/18.83 43.11/85.59
NICEGAN 7K/20K 73.17/95.01 63.94/91.85 46.21/83.22 62.55/90.71 57.30/91.01 48.57/84.97 46.47/84.98 55.03/87.50 53.55/87.48 0/18.18 44.89/85.90
DRIT 7K/20K 73.75/94.43 65.88/91.01 45.55/84.02 61.30/89.15 47.19/89.25 48.10/85.51 43.71/83.26 56.16/87.39 47.62/87.35 0/20.78 44.00/84.25
InST 7K/20K 74.52/94.65 59.41/89.83 45.87/84.30 59.00/89.48 48.31/88.44 50.00/85.78 44.33/84.27 53.36/86.65 54.29/87.07 0/21.43 42.22/85.14
CAP-VSTNet 7K/20K 73.55/95.06 58.82/91.43 46.53/84.06 63.60/90.35 55.06/90.21 48.10/84.49 45.40/84.38 54.66/87.29 51.43/87.48 0/22.73 40.44/85.27
Script 7K/20K 72.59/94.68 56.47/90.59 44.22/82.46 60.46/89.12 56.18/91.49 54.29/85.51 42.64/83.87 52.61/86.83 58.10/88.57 0/22.73 41.78/84.63
Simulation 7K/20K 74.52/95.06 62.94/91.68 46.20/83.92 65.06/91.36 53.93/89.73 53.33/86.33 46.01/84.97 55.41/88.19 48.87/85.85 0/22.08 47.11/86.67
Simulation-3D 7K/20K 73.75/94.51 60.59/91.18 45.54/83.59 64.23/90.71 53.93/88.76 48.57/84.97 42.79/83.24 56.53/87.63 48.57/85.85 0/21.43 39.56/84.38
DGNet (Ours) 7K/20K 76.64/95.26 65.88/92.86 51.16/84.77 65.06/90.68 65.17/92.46 50.00/85.17 46.78/84.40 59.52/88.83 49.52/87.48 0/17.53 46.67/86.98

Baek et al.

– 7K/0 66.41/92.2 56.47/89.16 42.9/82.84 52.09/86.28 50.56/88.93 53.81/85.85 42.95/83.11 50.37/85.79 48.57/88.57 0/22.73 37.78/82.67
CycleGAN 7K/20K 75.68/95.12 65.88/92.52 46.21/84.87 63.39/90.38 57.3/91.65 56.67/86.6 43.25/83.7 55.22/88.3 49.52/89.52 0/25.32 44/85.84
NICEGAN 7K/20K 72.01/94,43 66.47/92.94 44.88/83.4 59.41/89.15 49.44/90.21 50.95/85.17 42.49/83.39 54.29/87.87 42.86/88.03 0/27.92 39.11/82.6
DRIT 7K/20K 76.06/95.01 67.06/91.68 48.18/84.25 63.60/90.44 59.55/91.49 56.19/87.14 42.79/82.76 54.66/88.25 56.19/90.07 0/21.43 42.67/84.13
InST 7K/20K 76.06/95.15 67.06/91.85 45.87/83.69 65.27/90.82 55.06/91.17 53.81/87.35 44.17/84.33 57.28/88.91 51.43/88.98 0/29.87 45.33/86.22
CAP-VSTNet 7K/20K 77.22/95.84 67.06/93.03 51.16/85.81 65.27/90.56 56.18/91.17 50.48/86.94 46.32/85.06 61.75/89.61 56.19/89.25 0/26.62 50.67/87.62
Script 7K/20K 77.22/95.64 68.24/92.61 51.49/85.81 69.87/91.93 66.29/92.3 59.05/88.91 46.01/85.45 60.08/89.69 50.48/88.57 0/28.57 48.89/87.49
Simulation 7K/20K 76.06/95.34 62.94/91.93 52.15/84.91 67.15/91.27 62.92/92.13 57.62/87.21 47.55/84.86 61.38/89.66 54.29/88.44 0/25.32 47.56/86.10
Simulation-3D 7K/20K 78.76/95.84 67.06/92.35 46.53/84.44 69.67/91.81 56.18/91.01 54.76/87.41 41.41/82.73 58.02/89.29 57.14/90.88 0/25.97 42.67/86.22
DGNet (Ours) 7K/20K 79.92/96.25 74.71/94.45 51.49/85.90 74.48/92.62 66.29/93.58 59.05/88.50 48.62/85.43 65.30/91.15 60.95/90.20 0/25.33 45.78/87.62
Table 6
Comparison results of different recognition methods using different number of real data,
where the number of synthetic images is fixed.

Method Training data RA CRA

Real Synthetic

Litman et al.
2K 25K 73.36 93.05
5K 22K 77.47 94.42
7K 20K 80.11 94.69

Yue et al.
2K 25K 47.88 84.39
5K 22K 60.13 88.94
7K 20K 60.62 89.12

Baek et al.
2K 25K 58.90 88.70
5K 22K 64.04 90.51
7K 20K 65.15 90.74

and also cannot leverage additional background information. The target
domain images generated by these methods are uncontrollable and tend
to generate a fixed style, as shown in Fig. 7. Second, by adding an extra-
input background information, our generator is guided to generate
relevant target domain images, which not only effectively improves the
diversity, but also makes the background of generated enlarged license
plates controllable.

It can be seen that the synthesized data generated by any method
can improve the performance of the recognizer. It is because that even
though their character structures have been destroyed and cannot work
at the pixel level, they can still effectively train recognition models with
the feature level information.

Attribute-based performance. To analyze the performance under dif-
ferent challenges faced by existing recognition methods, we evaluate
our method against three algorithms on 11 challenge attributes includ-
ing inclined angle (IA), abnormal illumination (AI), different spacing
(DS), size variation (SV), blur (BLU), abrasion (ABR), background
clutter (BC), non-standard character (NSC), double-row plate (DRP) and
occlusion (OCC), as shown in Table 5. It can be seen from the results
that our DGNet achieves better results in most attributes compared with
all other image generation algorithms. Note that RA is more important
evaluation metric. Under the attributes of IA, AI, DS, SV, ABR, and BC,
our method is better than other methods in RA score, which further
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Table 7
Comparison results of different setting in our method in different recognition methods,
including without synthetic data and mask constraint loss respectively.

Baseline Method Training data RA CRA

Real Synthetic

Litman et al.

DGNet (Ours) 7K 0 72.13 93.42
DGNet (Ours) 7K 7K 77.52 94.39
DGNet (Ours) 7K 14K 78.05 94.59
DGNet w/o 𝐿𝑚𝑎𝑠𝑘 7K 20K 74.56 94.02
DGNet (Ours) 7K 20K 80.11 94.69

Yue et al.

DGNet (Ours) 7K 0 12.82 65.82
DGNet (Ours) 7K 7K 58.65 83.83
DGNet (Ours) 7K 14K 60.42 89.76
DGNet w/o 𝐿𝑚𝑎𝑠𝑘 7K 20K 51.38 86.03
DGNet (Ours) 7K 20K 60.62 89.12

Baek et al.

DGNet (Ours) 7K 0 52.53 86.68
DGNet (Ours) 7K 7K 63.17 90.00
DGNet (Ours) 7K 14K 63.34 91.00
DGNet w/o 𝐿𝑚𝑎𝑠𝑘 7K 20K 48.66 86.00
DGNet (Ours) 7K 20K 65.15 90.74

proves the diversity of our synthetic enlarged license plates and good
simulation to real data.

There are two key points here need to be explained. First, under
the attribute of DRP, the enlarged license plates are not recognized
well, because these recognition methods are based on single-line text
recognition, which will be invalidated in multi-line text recognition.
There are some solutions to handle this case. On the one hand, multi-
line text recognition is often converted to single-line text recognition
tasks using detection networks. However, for license plate recognition,
common detection networks usually require more computational re-
sources and interface time and are difficult to apply to real scenarios.
On the other hand, pre-processing is a better way to handle double-row
plates. Specifically, when the input is double-row plates, we crop and
split them into single-row license plates for recognition.

We set up an experiment to verify the effectiveness of our proposed
method by using this pre-processing method. As shown in Table 9,
when only real data are used for training, the performance is poor. If

the synthetic data proposed by our method are added, the performance
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Table 8
Comparison results of different Recognition methods only using a fixed number of
synthetic images.

Method Training data RA CRA

Real Synthetic

Litman et al.

0 25K(CycleGAN) 0.08 5.53
0 25K(NICEGAN) 0.37 30.48
0 25K(InST) 5.13 29.71
0 25K(CAP-VSTNet) 2.34 33.38
0 25K(Script) 1.03 16.61
0 25K(Simulation) 0.62 29.00
0 25K(Simulation-3D) 0.64 30.53
0 25K(Ours) 6.86 55.21

Yue et al.

0 25K(CycleGAN) 0.12 10.55
0 25K(NICEGAN) 0.45 31.17
0 25K(InST) 2.75 30.10
0 25K(CAP-VSTNet) 2.01 30.18
0 25K(Script) 1.19 32.19
0 25K(Simulation) 0.37 28.21
0 25K(Simulation-3D) 0.35 28.05
0 25K(Ours) 4.40 45.55

Baek et al.

0 25K(CycleGAN) 0.29 15.0
0 25K(NICEGAN) 1.89 45.00
0 25K(InST) 3.90 33.46
0 25K(CAP-VSTNet) 6.00 43.51
0 25K(Script) 2.80 30.00
0 25K(Simulation) 1.85 44.00
0 25K(Simulation-3D) 1.87 45.40
0 25K(Ours) 9.04 60.11

Table 9
RA/CRA results of our DGNet by using synthesizing data and pre-processing operation
on DRP attribute.

Method Real Synthetic Pre-processing RA CRA

Litman et al.

✓ ✗ ✗ 0 31.17
✓ ✓ ✗ 0 24.68
✓ ✗ ✓ 22.73 70.78
✓ ✓ ✓ 81.82 91.91

Yue et al.

✓ ✗ ✗ 0 24.03
✓ ✓ ✗ 0 17.53
✓ ✗ ✓ 18.18 58.44
✓ ✓ ✓ 40.91 77.27

Baek et al.

✓ ✗ ✗ 0 22.73
✓ ✓ ✗ 0 25.32
✓ ✗ ✓ 4.55 57.14
✓ ✓ ✓ 22.73 72.08

is improved from 22.73%, 18.18% and 4.55% to 81.82%, 40.91% and
22.73% respectively. In addition, we also visualize the double-row
plates generated by our method in Fig. 11. In this process, we just need
to change the position and style of the text image and without extra
training.

Second, our proposed method performs worse than other methods
on some attributes such as IA, BLU and NSC. The main reason is that
other methods have significant bias in training models under different
attributes. As shown in Table 5, there is a large gap in the proportion
of different attributes in the dataset, which causes the generators to
be biased to generate some fixed attributes. However, compared with
other methods, our proposed model achieves better results on most
attributes, which further shows that our DGNet can generate highly
diverse license plates. Other works tend to generate license plates
with specific attributes due to mode collapse. They will provide more
training data on these attributes and thus perform better than our
proposed method on these attributes.
10
Fig. 9. Comparison of the generated images using the mask constraint loss. (a) Input
text images. (b) Generated images without the mask constraint loss. (c) Generated
images with the mask constraint loss.

Fig. 10. Visualization samples of the mask images. The first and second columns denote
the input images include text images and background images, and the third column
denotes the generated mask images, and the last column denotes the generated enlarged
license plates.

5.4. Ablation study

In order to further study the role of real data, we set up an ablation
experiment to gradually increase the proportion of real data, including
2k, 5K and 7K respectively, and evaluate them on testing set. As shown
in Table 6, by increasing the proportion of real data step by step, the
mixing of data reduce the domain gap. Thus, the recognition accuracy
of the models is consistently improved. Through these experiments, it
can be found that our synthetic data can effectively be validated by
increasing the amount of real data.

Similarly, we also set up an ablation experiment to gradually in-
crease the proportion of synthetic data for further study the role of
synthetic data. The amount of synthetic images is set to 7K, 14k and
20K respectively and evaluate them on testing set. As shown in Table 7,
by increasing the proportion of synthetic data step by step, the mixing
of data will cover more real scenes, and the recognition accuracy of the
models is thus consistently improved. Through these experiments, it can
be found that our synthetic data can effectively improve the recognition
performance of enlarged license plates. Although we have not directly
set up relevant ablation experiments to verify the effectiveness of task-
level disentanglement, the effectiveness can be fully verified by the
comparisons with other image generation algorithms.

To verify the effectiveness of the mask constraint loss, we set up
an ablation experiment to compare the generated images without and



C. Li, X. Yang, G. Wang et al. Computer Vision and Image Understanding 238 (2024) 103880

a
d

Fig. 11. Visualization samples of the double-row plates. The first and second columns
re the input images include text images and background images, and the last column
enotes the generated enlarged license plates.

Fig. 12. Visualization samples of different colors of the text in generated enlarged
license plates.

with the mask constraint loss as shown in Fig. 9. It can be found that
the generated image quality is higher after adding the mask constraint
loss, which proves that the mask constraint loss contributes greatly to
the generated character quality and background. The mask constraint
loss supervises the generation at the pixel level, and thus effectively
maintains the structural information of text characters. As shown in
Table 7, with the help of the mask constraint loss, our DGNet improves
RA scores by 5.55%, 9.34%, and 16.49% respectively.

In addition, the mask images play an important role in the color,
position, size and other styles of generated images. As shown in Fig. 10,
the mask image is obtained by subtracting the blue background image
from the text image and as supervisory information for generated
images.

To further prove the effectiveness of our synthetic data, we set up an
ablation experiment to train recognition methods only using synthetic
data by different image translation methods including CycleGAN (Zhu
et al., 2017), NICEGAN (Chen et al., 2020) and Script. As shown in
Table 8, it can be found that for the recognition method proposed by
Litman et al. our proposed network achieves 6.78%, 6.49% and 5.83%
higher than CycleGAN (Zhu et al., 2017), NICEGAN (Chen et al., 2020)
and Script in RA respectively, which shows that we can narrow the
domain gap between real and generated data effectively. Of course,
there is still a certain domain gap, and we will study this issue in future
work.

In addition, we show some generated images using our proposed
method, as shown in Fig. 6. The results show that we can generate
complex backgrounds and multi-style texts. A problem in Fig. 6 is that
the color of all the generated text is white. However, it does not mean
that our DGNet can only generate this style. As shown in Fig. 12, we
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can generate other colors of texts like blue and red. These colors are
often on a white background, which is the same as in the real world.

Note that although we have not set up relevant ablation experiments
to verify the effectiveness of text and background image disentangle-
ment, we can verify it by comparing our method with other image
generation algorithms. Among these generation algorithms, DRIT is
based on disentanglement, while CycleGAN and NICEGAN are not
disentanglement. From the results it can be found that when using
the synthetic images generated by DRIT to train these recognizers,
its performance is better than those of CycleGAN and NICEGAN. In
addition, our method is better than DRIT, because DRIT extracts the
content and attribute information of the image through multiple en-
coders. However, due to the complexity and diversity of the text
and background from enlarged license plates, these encoders cannot
extract and completely separate the attribute and content information
of enlarged license plates. These results demonstrate the effectiveness
of text and background image disentanglement in enlarged license plate
recognition.

6. Conclusion

In this work, we construct a unified enlarged license plate recog-
nition dataset, which contains most of challenges in real scenes. We
also propose a task-level disentanglement generation framework based
on the disentangled generation network to effectively ensure the di-
versity and integrity of enlarged license plates, and thus greatly im-
prove the recognition accuracy. Extensive experiments on the dataset
demonstrate the effectiveness of our method in different recognition
frameworks. By releasing this dataset, we believe that it will help
the research and development of enlarged license plate recognition.
In addition, the proposed method is also suitable for the tasks whose
data can be decoupled and the decoupled data can be independently
generated by different generative models. According to the property, it
could be applied to some widely applicable scenarios such as medical
image analysis and self-driving system.

Although we have explored the way of synthesizing enlarged license
plates, there are still many potential problems to be solved. For exam-
ple, the domain difference between synthesized enlarged license plates
and real ones is large. How to use synthetic data to train the recognizer
more efficiently and how to design an effective recognition model to
address the special challenges of enlarging license plate recognition
are two unsolved issues. In the future, we will study more effective
recognition algorithms and image generation algorithms to further
improve the performance of enlarged license plate recognition, and
expand the dataset to cover more realistic scenes, e.g., changing the
fonts of characters or randomly erasing characters in the controllable
text constructor.
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