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Abstract—Vehicle re-identification (Re-ID) aims to retrieve
vehicles across non-overlapping cameras. Most studies consid-
er representation learning from single appearance information
of the vehicle images. Some works adopt the spatio-temporal
information to remove unreasonable vehicles to refine the re-
sults in the testing phase. However, they ignore the potential
topological relations among cameras under the Closed Circuit
Television (CCTV) camera systems in the training phase, which
usually leads to suboptimal results due to the high intra-identity
variations. To handle this problem, we propose a novel vehicle
re-identification framework, which explicitly models the camera
topological relations of all input images to aggregate neighbor
images and thus acquires camera-independent representations.
Specifically, we first construct a Camera Topology Graph (CTG)
to elucidate the topological relations among cameras. It takes
different cameras as nodes and constructs edges from four levels
of the camera system, position, orientation, and individual. Then,
we introduce a Camera Topology-based Graph Convolutional
Network (CT-GCN), which suppresses irrelevant neighbor images
and learns different camera representation functions. Finally,
we propose a topological cross-entropy loss to obtain the more
discriminative vehicle representations. The whole network is
trained in an end-to-end manner. Extensive experiments on
three benchmark datasets demonstrate the effectiveness of the
proposed method against state-of-the-art vehicle Re-ID methods.

Index Terms—Vehicle Re-identification, Closed Circuit Televi-
sion, Camera Topology Graph, Graph Convolutional Network

I. INTRODUCTION

VEHICLE re-identification (Re-ID) aims to identify vehi-
cle images from the gallery images captured from non-

overlapping surveillance cameras that share the same identity
as the given probe vehicle. It is an active and challenging task
and has drawn more attention due to its wide applications
in social security, smart city, and intelligent transportation.
Despite the remarkable success, it still faces severe challenges,
such as inner-camera occlusions, cross-camera illumination,

This research is supported in part by the National Natural Science
Foundation of China (61976002, 61972439, 62272006), the Natural Science
Foundation of Anhui Province (2108085MF214), the Key Program in the
Youth Elite Support Plan in Universities of Anhui Province (gxyqZD2020004),
and the University Synergy Innovation Program of Anhui Province (GXXT-
2021-007).

Hongchao Li, Liping Sun, Yonglong Luo are with Anhui Provincial Key
Laboratory of Network and Information Security, School of Computer and
Information, Anhui Normal University, Wuhu, 241003, China.

Aihua Zheng is with the Information Materials and Intelligent Sensing Lab-
oratory of Anhui Province, Anhui Provincial Key Laboratory of Multimodal
Cognitive Computation, School of Artificial Intelligence, Anhui University,
Hefei, 230601, China.

Corresponding author: Yonglong Luo. Email: ylluo@ustc.edu.cn.

70
75
80
85
90
95

100
all cam1

cam2

cam3

cam4

cam5

cam6

cam7

cam8
cam9cam10

cam11

cam12

cam13

cam14

cam15

cam16

cam17
cam19

70
75
80
85
90
95

100
all cam1

cam2

cam3

cam4

cam5

cam6

cam7

cam8
cam9cam10

cam11

cam12

cam13

cam14

cam15

cam16

cam17
cam19

（2）mAP performance under different cameras（1）Rank-1 performance under different cameras

（3）Eliminate top-ranked samples

Fig. 1. The phenomena of the strong Re-ID baseline [10] on the VeRi-776
dataset: (1) Rank-1 performance under each camera is lower than performance
under all cameras; (2) mAP performance under each camera is higher
than performance under all cameras; (3) Eliminating the top-ranked samples
(samples from the same camera and the same identity as top-1) significantly
degrades the Re-ID performance.

and viewpoint changes, which restricts its applications in
realistic complicated scenarios.

Recently, various efforts have emerged for vehicle Re-ID,
including viewpoint-based learning [1], [2], [3], part-based
learning [4], [5], [6] and path-based learning [7], [8], [9]
and so on. To alleviate viewpoint changes of the vehicle,
Zhou et al. [1] propose a viewpoint-aware attentive multi-view
inference (VAMI) model to infer multi-view features from
single-view image inputs. Lou et al. [2] propose an embedding
adversarial learning network (EALN) to support hard negative
and cross-view generation for more robust training in vehicle
Re-ID. Chu et al. [3] learn two metrics for similar and different
viewpoints respectively in two feature spaces and propose a
viewpoint-aware network (VANet) for vehicle Re-ID. To fur-
ther learn local details of vehicles, Khorramshahi et al. [4] pro-
pose a dual-path adaptive attention model to capture key points
related to parts for vehicle Re-ID (AAVER). Meng et al. [5]
investigate multiple part regions for each vehicle through a
U-Net part parser to generate discriminative features. Shen
et al. [6] adopt the traditional graph convolutional network
(GCN) [11] to model the correlation among regions for vehicle
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Re-ID. Note that the path information1 is generally available
due to the rapid popularization of Closed Circuit Television
(CCTV) camera systems, Shen et al. [8] investigate spatio-
temporal association to estimate the validness confidence of
the path. Lv et al. [12] construct spatio-temporal constraints
and refine the matching results for vehicle Re-ID. Prasad et
al. [13] use spatio-temporal information as physical constraints
to reduce the complexity of the matching algorithm. However,
these works mainly focus on mining the information inside a
single image and thus lack the interaction between different
images.

By analyzing the strong Re-ID baseline [10], we have found
the following three phenomena: Phenomena (1): the Rank-1
performance under the entire camera system is much higher
than the performance under each camera, as shown in Fig. 1
(a). This shows that the Rank-1 performance of the previous
methods is inflated, since it tends to retrieve easy positive sam-
ples2 under the entire camera system, and can not accurately
hit the positive samples across each camera. Phenomena (2):
the mAP performance under the entire camera system is much
lower than the performance under each camera, as shown in
Fig. 1 (b). This shows that the positive samples under each
camera are more clustered than those under the entire camera
system. Phenomena (3): Eliminating the top-ranked samples
significantly degrades the Re-ID performance as shown in
Fig. 1 (c). This shows that the Re-ID performance obtained
by the conventional methods is suboptimal and susceptible to
camera interference.

In addition, we observe that the information of each identity
under each camera is limited [14], [15], [16]. Our intuitive so-
lution is to aggregate the information of the vehicle under the
entire camera system, thus supplementing vehicle information
from different cameras. Therefore, we propose a novel Camera
Topology-based Graph Convolutional Network (CT-GCN) for
vehicle re-identification to fully explore the easy- and hard-
positive samples under the whole camera system and build the
bridge between representation models and camera systems.

Concretely, we first employ ResNet-50 [17] to obtain the
initial vehicle feature representations. Next, as shown in Fig. 2,
we construct the Camera Topology Graph (CTG) to model
the relationship of different vehicle images, which is simple
and general. The CTG takes different cameras as nodes and
builds edges based on the multiple relationships (e.g., position,
orientation) between cameras. The construction details of
the CTG are described in Section. III. Once we have the
camera topology graph, we argue that we do not need to
constrain all positive samples to present the same feature
representation, while only interacting with positive samples
under neighbor cameras to cover the entire CCTV camera
system. For example, given a query image from camera 3
to retrieve the vehicle-of-interest in the gallery set, we can
supplement the vehicle information with camera 8 and camera
9 on the driving route of the vehicle, and then retrieve the
vehicle-of-interest in the gallery set. As shown in Fig. 2 (c),

1Path information refers to the spatio-temporal state of vehicle movement.
2The positive samples belong to the same class as the query sample.
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Fig. 2. Illustration of generating a camera topology graph from the real-
world traffic scene, a medium for feature interaction of vehicle images. These
circled numbers represent camera labels on VeRi-776 dataset [7]. The black
arrow indicates the orientation of the camera. Cameras at two consecutive
junctions are close in position. There is a strong topological relationship
between two cameras only when they are oriented in the same direction and
spatially adjacent.

the information from the easy-positive samples3 is transferred
to the hard-positive samples4 along the camera topology graph,
which improves the ranking results. The ranking results as
shown in Fig. 2 (d). This means that the proposed camera
topology graph meaningfully links the vehicle representation
model and the CCTV camera system, which is rarely covered
by previous works.

Whereafter, we propose a novel Camera Topology-based
Graph Convolutional Network (CT-GCN) to learn the more
discriminative cross-camera vehicle feature representations. In
a traditional Graph Convolutional Network (GCN) [11], the
adjacency matrix of nodes is fixed and each node shares the
same weight matrix. The proposed CT-GCN aggregates only
the manageable neighbor nodes and learns different weight
matrices for different cameras. In general, CT-GCN retains
the ability of the traditional GCN to interact with graph nodes,
while introducing the learning of different camera topological
relations.

3For the sample of camera 8, the samples from camera 5/7 can be seen as
the easy-positive samples.

4For the sample of camera 3, the samples from camera 5/7 can be seen as
the hard-positive samples.
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Finally, we use the cross-entropy and triple losses to train
the whole network in an end-to-end way by following [4], [5],
[6]. However, traditional cross-entropy loss can not work with
topological relations between positive samples. To optimize
the topological relations between positive samples, we propose
a novel topological cross-entropy loss to force the network
paying more attention to positive samples from neighbor
cameras. Such topological cross-entropy loss is also the key
to aggregating vehicles under the neighbor cameras, which
makes the representation aggregation process more effective
and efficient.

Overall, The contributions of this paper can be summarized
as follows.

• We design a general way of constructing the camera
topology graph to preserve camera topological relations
under the real-world traffic scene. This strategy of build-
ing a camera topology graph can be expanded to any
traffic scene to connect vehicle representation models and
CCTV camera systems.

• We propose a novel Camera Topology-based Graph
Convolutional Network (CT-GCN) to learn cross-camera
vehicle representations. Compared with traditional GC-
N, CT-GCN has the advantage of adaptively assigning
weight matrixes for different cameras and aggregating
relevant neighbor nodes.

• We propose a novel topological cross-entropy loss to
optimize the feature learning of positive vehicle images.
In contrast to conventional cross-entropy loss, we also
consider the topological relationships between samples.
Our key idea is to preferentially train the easy-positive
samples instead of training all positive samples at once.

• Comprehensive experiments on three large-scale vehi-
cle datasets confirm the effectiveness of the proposed
framework. Furthermore, sufficient experiments verify the
complementarity and effectiveness of each component we
proposed.

II. RELATED WORK

We briefly review the related work in the following two
folds, i.e., Vehicle Re-identification and Graph Convolutional
Network (GCN).

A. Vehicle Re-identification

Because of its wide applications in video surveillance and
social security, the task of vehicle Re-ID has earned more and
more attention in recent years. Liu et al. [18] provide a deep
relative distance learning method for measuring the instance
difference between different vehicles. Yan et al. [19] propose
a multi-grain based list ranking (MGLR) approach to build the
relationships between vehicle images. Bai et al. [20] propose a
group-sensitive triplet embedding method to accelerate feature
learning and promote the discrimination power for vehicle Re-
ID. Different from the above methods exploring the global
features, He et al. [21] detect windows and lights through a
YOLO detector to learn part-regularized features for vehicle
Re-ID. Meng et al. [5] propose a parsing-based view-aware
embedding network (PVEN) to achieve the part alignment

and enhancement for vehicle Re-ID. Liu et al. [22] propose a
group-group loss-based global-regional feature learning frame-
work to optimize the distance within and across vehicle image
groups. Li et al. [23] propose a multi-scale knowledge-aware
transformer (MsKAT) to build a knowledge-guided multi-scale
feature alignment framework for vehicle Re-ID. Khorramshahi
et al. [24] present self-supervised attention for vehicle re-
identification (SAVER) to learn vehicle-specific discriminative
features. Zhao et al. [25] propose a Heterogeneous Relation-
al Complement Network (HRCN) by incorporating region-
specific features and cross-level features as complements for
the global feature. Li et al. [26] propose an attribute and state
guided structural embedding network (ASSEN) to achieve
discriminative feature learning by attribute-based enhancement
and state-based weakening.

To handle the camera variation issue in vehicle Re-ID,
Sochor et al. [27] learn a 3D orientation vector to decrease
classification error and boost verification average precision for
vehicle recognition. Zhou et al. [28] propose a cross-view
generative adversarial network to generate cross-view vehicle
images from an input view. Zhou et al. [1] adopt a viewpoint-
aware attention model and the adversarial training archi-
tecture to implement effective multi-view feature inference
from single-view input. Lou et al. [2] design an embedding
adversarial learning network (EALN) into the vehicle Re-ID
framework for hard negative and cross-view generation. Chu et
al. [3] propose two metrics for vehicle re-identification through
a viewpoint-aware network. By contrast, path-based methods
typically employ spatio-temporal cues to refine the search
space. Liu et al. [7] propose a spatio-temporal relation model
to re-rank vehicles and refine the final results for vehicle Re-
ID. Wang et al. [9] propose an orientation-invariant regulariza-
tion to describe the macroscopic embedding of vehicles with
constraints on spatio-temporal relationships. Shen et al. [8]
investigate spatio-temporal association for effectively refining
vehicle Re-ID results. Lv et al. [12] construct spatio-temporal
constraints and refine the retrieving results for vehicle Re-ID.
Prasad et al. [13] use spatio-temporal information as physical
constraints to reduce the complexity of the retrieving algorith-
m. Although these methods have made great progress in the
Re-ID problem, they ignore potential topological relations of
vehicle images under the CCTV camera systems, which still
limits their capability while handling the camera variations in
vehicle Re-ID. Different from the previous Re-ID methods,
our method jointly models multiple vehicle images guided by
the camera topology graph in a unified framework.

B. Graph Convolutional Network (GCN)

In recent years, Graph Convolutional Network (GCN) [11]
has become popular. GCN generalizes the capability of Con-
volutional Neural Network (CNN) by performing convolution
operations on graph-structured data. Traditional GCN mod-
els are widely used in computer vision tasks such as pose
estimation [29], [30], action recognition [31], [32], person re-
identification [33], [34], vehicle re-identification [35], [6], etc.
Zhao et al. [29] learn to capture pose information such as local
and global node relationships by semantic graph convolutional
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network (SemGCN). Hu et al. [30] propose spatio-temporal
conditional directed graph convolution to leverage varying
non-local dependence for different poses. Li et al. [31] propose
actional-structural graph convolution network (AS-GCN) to
extract useful spatial and temporal information for action
recognition. Chen et al. [32] propose multi-scale temporal
graph convolution to enrich the receptive field of the model
in spatial and temporal dimensions for action recognition. For
person re-identification, Shen et al. [33] propose a similarity-
guided graph neural network to incorporate the rich gallery-
gallery similarity information into the training process. Zhang
et al. [34] propose a heterogeneous local graph attention
network to model the inter-local relation and the intra-local re-
lation in a unified framework for person Re-ID. However, these
relations originate from sample similarity and are disturbed by
visual representation models. For vehicle re-identification, Liu
et al. [35] propose a parsing-guided cross-part reasoning net-
work (PCRNet) to learn discriminative feature representations
and model the correlation among parts. Shen et al. [6] propose
a hybrid pyramidal graph network (HPGN) to explore the spa-
tial significance of feature tensors at multiple scales for vehicle
re-identification. In contrast, our proposed method considers
potential topological relations under realistic traffic scenes.
More specifically, this paper proposes a camera topology-
based graph convolutional network to build a bridge between
visual representation models and Closed Circuit Television
camera systems.

III. METHOD

To connect Closed Circuit Television (CCTV) camera sys-
tems and vehicle representation models, we propose a camera
topology graph guided vehicle re-identification framework, as
shown in Fig. 3. We first describe the vehicle Re-ID setting and
the vanilla GCN [11] settings for learning topological feature,
followed by the Camera Topology Graph Construction and
introduce the Camera Topology-based Graph Convolutional
Network to propagate messages and update node features.
Finally, we describe the Topological Cross-entropy Loss for
the whole network training.

A. Vehicle Re-ID Setting

Vehicle re-identification aims to retrieve vehicles of inter-
est across non-overlapping cameras. Given the training set
T = {xi, yi, y

cam
i }NT

i=1, where xi denotes the i-th image, NT

represents the number of images in the training set. yi ∈ ST

is the corresponding identity label, where ST contains the
identities of all the training vehicle images. ycami ∈ CT

is the corresponding camera label, where CT contains the
cameras in the training set. During the training phase, we
learn a vehicle representation model hi = F (xi) that extracts
discriminative vehicle representations hi ∈ Rd×1 per vehicle
image. In the testing phase, we have a query set U = {xi}N

U

i=1

with vehicles of interest, where NU represents the number of
images in the query set. Then given a gallery set G = {xi}N

G

i=1

for retrieval, we retrieve correct vehicles when comparing
query images against the images in the gallery set G, where
NG represents the number of images in the gallery set. The

identities of the vehicles in the query set SU are disjoint
from the identities available during the training phase, i.e.,
SU

⋂
ST = Ø. It is worth noting that CU ⊆ CT , which means

that the training set must contain the cameras in the query set.
CU ⊆ CT is the basic condition of vehicle Re-ID methods.
If CU

⋂
CT = Ø, then the problem of Re-ID translates to

Unsupervised Domain Adaptation Re-ID, which is discussed
in other related studies [36], [37], [38].

B. Learning Topological Features by vanilla GCN

In the vehicle Re-ID setting, we have no additional condi-
tions on the vehicle representation function F (·). Typically,
F (·) is computed on a single vehicle image, thus ignoring
any possible topological relations that may arise between
the representations of the same vehicle across cameras. To
explicitly account for such topological relations, we introduce
an aggregation function to update the image representation
vector, which can be formulated as:

h
′

i = agg(hi, {hj}Nj=1) =
∑
j

hjwij , (1)

where {hj}Nj=1 contains the representation vectors learned
by the representation function F (·) of all the input images
{xi}Ni=1. During the training phase, {xi}Ni=1 ⊂ T is a batch
sampled from the training set. While during the testing phase,
{xi}Ni=1 = U

⋃
G contains all the vehicle images from the

query set and the gallery set. wij is a learnable weight
between hi and hj , where

∑
j wij = 1. Recently, vanilla

Graph Convolutional Network (GCN) [11] has shown to be
particularly apt in modeling relations between elements in a
set. Inspired by this, we apply the vanilla GCN to the vehicle
Re-ID problem. Eq. (1) can be rewritten as:

h
′

i = agg(hi, {hj}Nj=1) = σ(
∑
j

Mhjnorm(A)ij), (2)

where σ(·) is the activation function, i.e., ReLU , A ∈ RN×N

is an affinity matrix that contains the feature affinities between
any two pairs of input representation vectors hi, hj , norm(·)
is a L2-normalization function to turn the affinities into
weights, M ∈ Rd×d is a learnable transformation matrix.

Remark. To apply vanilla GCN model to the vehicle re-
identification task, we believe that it is worth improving three
aspects.

• First, the affinity matrix is obtained by calculating the
visual feature similarities, ignoring the connection be-
tween vehicle representation models and CCTV camera
systems.

• Second, the computational cost of feature aggregation
is expensive, which presents a significant computational
burden because of the large input size N .

• Third, the result of feature aggregation is not robust
because it includes visual features and camera noise.

In the following subsections, we will describe the Camera
Topology Graph Construction and introduce a novel Camera
Topology-based Graph Convolutional Network (CT-GCN).
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Fig. 3. Pipeline of Camera Topology Graph Guided Vehicle Re-identification framework. Given the images {x1,x2, . . . ,xN}, we first extract the
corresponding visual features {h1,h2, . . . ,hN} ∈ Rd×N via ResNet-50. Next, we use the CCTV camera system guided camera topology graph to build an
adjacency matrix A ∈ RN×N between visual features. Then, we dot-multiply adjacency matrix A by Mask ∈ RN×N to eliminate irrelevant visual features.
Meanwhile, we weight transformation matrix M ∈ Rd×d by camera memory matrix Memory ∈ Rd×CT to store transformation matrices for different
cameras. Visual features are transformed into topological features through adjacency relations and specific transformation matrices in Camera Topology-based
Graph Convolutional Network. Moreover, we concatenate visual features and topological features into final vehicle features {f1, f2, . . . , fN} ∈ Rd×N . In
addition to the commonly used Re-ID loss, we encourage positive samples to be clustered from strong to weak according to the topological relation in
topological cross-entropy loss. Finally, our model is trained by the sum of Re-ID loss and topological cross-entropy loss.

C. Camera Topology Graph Construction

To display the CCTV camera system in the form of graphs,
we propose a simple and general method for constructing
the Camera Topology Graph. The Camera Topology Graph
G = (V,E) defines camera topological relations among
different cameras. In fact, V represents camera nodes V =
{V1, ...,VCT

}, where CT contains the camera numbers in
the training set. E refers to the edge set in the camera
topology graph, which contains four types of edges, i.e.,
E = {Es,Ep,Eo,Ei} denotes the four camera relationships
based on camera system, position, orientation and individ-
ual, respectively. For clearer description, we represent the
camera topology graph based on different relationships as
{Gs,Gp,Go,Gi}. Next, we will introduce these four camera
relationships in detail.

(1) Gs: Camera Topology Graph based on Camera
System. The IDs of the positive samples are equivalent
under the entire camera system. As shown in Fig. 4 (a),
numbers 1 − 20 represent the 20 cameras in the VeRi-776
dataset, the complete graph means that these 20 nodes have
edges between each other. The camera relationship of Gs is
the hardest because it requires positive samples from the entire
camera system to present a consistent feature representation.
Meanwhile, it is also the default relationship for all current
vehicle re-identification methods.

(2) Gp: Camera Topology Graph based on Camera
Position. The closer the cameras are to each other, the more
possible they are to capture positive samples. To clarify
this graph relationship, we first define the cameras at two
consecutive junctions as the nodes that are spatially adjacent.
According to the camera position in the CCTV camera system
(Fig. 2 (b)), we regard camera5, camera7, and camera8 as
neighbor nodes, and there are edges between these neighbor
nodes as shown in Fig. 4 (b). Compared with the camera
relationship of Gs, the camera relationship of Gp is easier
because it requires positive samples from the neighbor cameras
to present a consistent feature representation. Due to the
continuously moving vehicle can be captured by two neighbor
cameras, the camera relationship of Gposition conforms to
the vehicle driving logic. Gp aims to interact with positive
samples under neighbor cameras.

(3) Go: Camera Topology Graph based on Camera
Orientation. The more consistent the camera orientation,
the more consistent the appearance from positive samples.
As shown in Fig. 4 (c), camera3 and camera4 are neighbor
cameras, there is no edge between them because their cameras
are not oriented in the same direction. Compared with the
camera relationship of Gp, the camera relationship of Go is
easier because it ignores irrelevant nodes based on camera
orientation. It is worth noting that we consider cameras whose
two directions are orthogonal also as neighbor cameras, such
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Fig. 4. Illustration of the proposed camera topology graph on VeRi-776 dataset [7]. which contains four camera relationships: (a) Camera System, (b) Camera
Position, (c) Camera Orientation, (d) Camera Individual.

as camera5 and camera7 in Fig. 4 (c). Go aims to interact
with positive samples under cameras of consistent orientation.

(4) Gi: Camera Topology Graph based on Camera
Individual. A video sequence of the target vehicle can be
captured under the same camera. As shown in Fig. 4 (d),
any camera will have an edge over itself. The camera rela-
tionship of Gi is easiest because intra-class images captured
under one camera tend to have a large information overlap. Gi

aims to interact with positive samples under the same camera.
Learning camera system, position, orientation and individual

relationships help to reduce the feature interaction range in
the feature learning stage and the evaluation stage. In the
above four subgraphs, if there is an edge between nodes,
the value is 1, otherwise the value is 0. We use these four
subgraphs together to build the camera topology graph. In
a camera topology graph G = (V,E), the edges of two
cameras can be expressed as Eij , and the larger the value,
the stronger the relationship between the cameras. With four
types of topological relations between cameras, our goal is
to obtain hierarchically aggregated topological features. Such
topological features are complementary to visual features,
which make the final features more adequate and robust.

D. Camera Topology-based Graph Convolutional Network

After obtaining the camera topology graph, we design a
Camera Topology-based Graph Convolutional Network (CT-
GCN) to effectively propagate messages and update node
features. To be specific, Given a batch of training data T =
{xi, yi, y

cam
i }Ni=1, N represents batch size. The corresponding

vehicle feature vector encoded by the network is denoted as
hi = F (xi). To embed the topological relationship into the
feature representation model, we transform the topological re-
lationship between cameras to the sample pairs. Formally, the
topological relationship (Aij) of two vehicle feature vectors
(hi and hj) in the training set can be expressed as:

Aij = Eycam
i ycam

j
(3)

where Eycam
i ycam

j
denotes the edge between the ycami -th

camera and the ycamj -th camera in camera topology graph G.
It can be seen from Eq. (3) that we use the camera relationship
between samples to represent the feature relationship between
samples. This is because the stronger the camera relationship

between the samples, the more overlap between the vehicle
images as described in Section. III-C. However, this process
incorporates many irrelevant samples and imposes a huge
computational burden.

To discard irrelevant samples and reduce the computational
burden, we introduce a mask matrix. We assume that if two
vehicle images are visual neighbors in feature space, they are
likely to be relevant. To this end, we propose to compute a
top-k neighbor mask Mask ∈ RN×N from visual similarities,
which will attend to the top-k value of similarities per row:

Maskij =

{
1,

0,

if j ∈ topk(Simi,:),

otherwise,
(4)

where Simi,j denotes the feature similarity between the i-th
image and the j-th image. For each element Maskij , the value
will be set to 1 if j is top-k visual neighbor of i, 0 otherwise.
By adding this mask matrix Mask to the affinity matrix, we
achieve feature aggregation only occurring in neighbors, which
increases the focus on more relevant images. Compared with
Eq. (2), the feature aggregation can be defined as follows:

h
′

i = σ(
∑
j

Mhjnorm(Mask �A)ij), (5)

where � is the element-wise product. Since most irrelevant
visual neighbors are set to zero and thus relations are restricted
to relevant neighbors, which makes the aggregation process
more robust.

In addition, although Eq. (5) obtains more robust aggre-
gated features while reducing computational complexity, this
aggregation process introduces unwanted camera noise. The
reason is that it shares a feature transformation matrix M
for each node and thus prevents the graph convolutional
network from learning camera-independent features. To solve
this problem, we design a learnable camera memory matrix
Memory ∈ RCT×d, where CT contains the cameras in the
training set. The motivation of the camera memory matric
Memory is to relax the original feature transformation matrix
M. Camera Topology-based Graph Convolutional Network
uses a shared transformation matrix M as in the vanilla GCN
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but learns a different camera memory vector Memoryycam
i

for
each node i. Mathematically,

h
′

i = σ(
∑
j

(Memoryycam
i
�M)hjnorm(Mask �A)ij),

(6)
where Memoryycam

i
∈ R

d is a learnable weight vector
for camera ycami (ycami = {1, ..., CT }), � denotes element-
wise multiplication but should broadcast properly. Specifically,
(Memoryycam

i
�M) means the d-th row of M ∈ Rd×d is

scaled by the d-th element of Memoryycam
i

, and the result is
of the same dimension as M, i.e., d × d. M converts nodes
from different cameras equally, (Memoryycam

i
�M) repre-

sents the feature transformation matrix for ycami -th camera.
From Eq. (6), we can understand the camera memory matrix
as storing memory items to fine-tune the feature transformation
matrix, which obtains camera-independent features and avoids
aggregating camera noise during the feature aggregation pro-
cess.

E. Topological Cross-entropy Loss
After obtaining the topological feature h

′

i, it is concatenated
with the visual feature hi and denoted as fi = Concat(hi,h

′

i).
Note that hi is the original visual feature, and h

′

i is the
combination of neighbor features. The joint representation fi
learns more meaningful features by the network. Then fi is fed
into a fully-connected layer to further obtain class prediction
results. The class prediction results are finally optimized by
Re-ID loss LReID in the form of,

LReID = −yilog(Softmax(FC(fi)))+

max(0, ‖fi − fi,p)‖+m− ‖fi − fi,n)‖),
(7)

where FC denotes a fully-connected layer that predicts the re-
sult of classification, Softmax denotes the Softmax function
that gets the normalized probability, ‖·‖ denotes the L2−norm
distance, subscripts i, p and i, n indicate the hardest positive
and hardest negative feature index in each mini-batch for the
sample xi, and m = 0.3 denotes the triplet distance margin.
LReID denotes the widely-used cross-entropy loss [39], and
triplet loss [40] with batch hard mining on the Re-ID feature
vectors. Although these two loss functions derived from image
classification tasks are widely used in the field of vehicle
re-identification, they have a limitation in that they can not
consider the topological relationship between samples.

As described in Section. III-C, the stronger the camera
relationship between the samples, the more overlap between
the vehicle images. Our key idea is to preferentially train the
easy-positive samples instead of training all positive samples
at once. To incorporate the camera topological relationship
in the training phase, we first calculate the class prediction
results of the anchor sample and neighbor samples. We then
give different learning weights of neighbor samples based on
camera topological relationship. Finally, we propose a novel
topological cross-entropy loss:

LTCE = − 1

Si

Si∑
j=1

norm(A)ijnorm(Softplus(FC(fj)))∗

log(Softmax(FC(fi))),
(8)

where Si represents the number of positive samples of the
i−th image, norm(A)ij denotes the topological relationship
between two positive pairs fi and fj . Softplus denotes the
Softplus function that gets the non-negative probability. The
topological cross-entropy loss forces positive samples to learn
vehicle representation from easy to hard. The final objective
function for our model rewrite as:

Ltotal = LReID + λLTCE , (9)

where only λ is used to balance the Re-ID loss and topological
cross-entropy loss.

In the inference/testing stage, we first use the pre-trained
ResNet-50 [17] to learn visual features. Then we send the
visual features and the adjacent matrix to the pre-trained CT-
GCN to learn topological features. Eventually we connect
visual features and topological features to obtain the final
features for identification. It is worth noting that camera labels
of the testing images are used to build adjacent matrix and
filter out samples from the gallery with the same ID and the
same camera as the query.

IV. EXPERIMENTS

We evaluate our method on three vehicle Re-ID datasets
VeRi-776 [7], VERI-Wild [41] and VehicleID [18] comparing
to the state-of-the-art methods in this section. We adopt
the mean average precision (mAP), Rank-1 (R-1) accuracy
and Rank-5 (R-5) accuracy as the evaluation metric. mAP
measures the mean of all queries of average precision (the
area under the Precision Recall curve) which reflects the recall.
Rank-score is an estimation of finding the correct match in the
Top-k returned results.

A. Datasets

VeRi-776 dataset [7] consists of 49357 images of 776 distinct
vehicles captured by 20 non-overlapping cameras in differ-
ent orientations and lighting conditions. Among them, 576
identities (37778 images) and 200 identities (11579 images)
are assigned as training and testing respectively. Furthermore,
1678 images from 200 identities are selected as the query from
the testing set.
VERI-Wild dataset [41] is a large-scale dataset containing
416314 images of 40671 vehicles captured by 174 cameras.
The training set consists of 277797 images of 30671 vehicles.
There are 138517 images of 10000 identities in the test set,
which consists of three different scale testing subsets, i.e.,
Test3000 (Small), Test5000 (Medium), and Test10000 (Large).
In this dataset, we do not know the specific position and
orientation of the camera and thus are unable to construct a
camera topology graph directly. Instead, we use camera labels
to train a camera classification network and then use it to
calculate the features and relationships of cameras. In this way,
we can also achieve the purpose of constructing the camera
topology graph.
VehicleID dataset [18] is a large-scale dataset used for vehicle
retrieval tasks and is composed of 221567 images from 26328
unique vehicles. The training set contains 110178 images of
13134 vehicles, while the testing set contains 111585 images
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TABLE I
COMPARISON RESULTS OF OUR METHOD AGAINST THE

STATE-OF-THE-ART METHODS ON VERI-776 DATASET [7].

Methods mAP Rank-1 Rank-5
LOMO [42] 0.096 0.253 0.465
GoogLeNet [43] 0.170 0.498 0.712
FACT [44] 0.188 0.522 0.729
SCPL [8] 0.583 0.835 0.900
OIFE [9] 0.480 0.659 0.877
NuFACT [45] 0.485 0.769 0.914
VAMI [1] 0.501 0.770 0.908
GSTE [20] 0.578 0.958 0.965
EALN [2] 0.574 0.844 0.941
AAVER [4] 0.612 0.890 0.947
VANet [3] 0.663 0.898 0.960
PRN [21] 0.743 0.943 0.989
UMTS [46] 0.759 0.958 -
PVEN [5] 0.795 0.956 0.984
SAVER [24] 0.796 0.964 0.986
HPGN [6] 0.802 0.967 -
MsKAT [23] 0.820 0.971 0.990
Baseline [10] 0.766 0.957 0.980
OURS 0.827 0.971 0.990

of 13133 vehicles. There are 6 testing splits with various
gallery sizes as 800, 1600, 2400, 3200, 6000, and 13164.
Following the protocol in [18], [21], [5], we use the first
three splits Small (S), Medium (M) and Large (L) for testing.
During the testing phase, one single image of each identity is
randomly selected to form the gallery set while the rest of the
images are as the query. This procedure is repeated ten times
and the averaged metrics. Furthermore, the camera position,
orientation and label are also not available. To better evaluate
our proposed model, we generate a camera topology graph by
the pre-trained camera classification network from VERI-Wild
dataset [41] for VehicleID dataset [18].

B. Implementation details

In our experiments, we adopt ResNet-50 [17] pretrained on
ImageNet [48] without the last spatial down-sampling layer as
the backbone model followed by [10]. We use the Adam [49]
optimizer with the initial learning rate of 3.5e− 5. We adopt
a warmup [50] mechanism to bootstrap the network, which
takes 10 epochs to linearly increase the learning rate from
3.5e− 5 to 3.5e− 4. The learning rate decays to 3.5e− 5 and
3.5e − 6 at the 40-th epoch and the 70-th epoch respectively
(overall 120 epochs). The training protocol follows the Re-
ID strong baseline (BOT [10]) using random cropping and
erasing for data augmentation. In our implementation, all the
input images are resized to 256× 256. The dimension of both
visual and topological features is d = 2048. We set 16 IDs,
and 4 instances with the batch size of 64 in the training for
the three datasets. We run our experiments on two NVIDIA
GeForce RTX 2080Ti GPUs with 11GB RAM. Compared with
the baseline model, we add two parameter tensors that need to
be trained, which are the camera memory matrix Memory and
the feature transformation matrix M . The Memory weights
and M weights are randomly initialized.

(a) VeRi-776

(b) VERI-Wild

Fig. 5. Top five returned results of the baseline model versus our model on
VeRi-776 and VERI-Wild datasets. 188-C12 means that the identity label of
the vehicle is 188 and the camera label is 12. The images with green bounding
boxes and the rest ones indicate the correct and wrong matchings respectively.

TABLE IV
COMPARISON RESULTS OF OUR METHOD AGAINST THE

STATE-OF-THE-ART METHODS ON VEHICLEID DATASET [18].

Methods Small Medium Large
R-1 R-5 R-1 R-5 R-1 R-5

LOMO [42] 0.197 0.321 0.189 0.295 0.153 0.256
GoogLeNet [43] 0.479 0.674 0.435 0.635 0.382 0.595
FACT [44] 0.495 0.680 0.446 0.642 0.399 0.605
OIFE [9] - - - - 0.670 0.823
VAMI [1] 0.631 0.833 0.529 0.751 0.473 0.703
RAM [51] 0.752 0.915 0.723 0.870 0.677 0.845
EALN [2] 0.751 0.881 0.718 0.839 0.693 0.814
AAVER [4] 0.747 0.938 0.686 0.900 0.635 0.856
VANet [3] 0.833 0.960 0.811 0.947 0.772 0.929
PRN [21] 0.784 0.923 0.750 0.883 0.742 0.864
PVEN [5] 0.847 0.970 0.806 0.945 0.778 0.920
HPGN [6] 0.839 - 0.800 - 0.773 -
MsKAT [23] 0.863 0.974 0.818 0.955 0.794 0.939
Baseline [10] 0.802 0.914 0.775 0.887 0.738 0.849
OURS 0.870 0.979 0.826 0.962 0.806 0.944

C. Comparison to State-of-the-art Methods

Evaluation Results on VeRi-776 [7]. Table I reports the
performance comparison of our method against the state-of-
the-art methods on VeRi-776 dataset [7]. We can observe
that our approach significantly beats the state-of-the-art meth-
ods as 82.7% on mAP. Although the second-best method
MsKAT [23] outperforms the third-best one HPGN [6] by
a large margin by exploring the identity-related information
in the vehicle image, it requires additional attribute and
state annotations. HPGN [6] learns hierarchical part features
through traditional graph convolutional networks. However,
HPGN [6] lacks consideration of removing camera noise
and only interacts with the part features. By capturing the
topological information across cameras in different images,
our method learns more robust feature representations as
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TABLE II
COMPARISON RESULTS OF OUR METHOD AGAINST THE STATE-OF-THE-ART METHODS ON VERI-WILD DATASET.

Methods Small Middle Large
mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Unlabled-GAN [47] 0.299 0.581 0.796 0.247 0.516 0.744 0.182 0.436 0.655
GSTE [20] 0.314 0.605 0.801 0.262 0.521 0.749 0.195 0.454 0.665
FDA-Net [41] 0.351 0.640 0.828 0.298 0.578 0.783 0.228 0.494 0.705
UMTS [46] 0.727 0.845 - 0.661 0.793 - 0.542 0.728 -
AAVER [4] 0.622 0.758 0.927 0.537 0.682 0.889 0.417 0.587 0.876
SAVER [24] 0.809 0.945 0.981 0.753 0.927 0.974 0.677 0.895 0.958
PVEN [5] 0.825 0.967 0.992 0.770 0.954 0.988 0.697 0.934 0.978
HPGN [6] 0.804 0.914 - 0.752 0.882 - 0.650 0.827 -
MsKAT [23] 0.840 0.973 0.993 0.787 0.956 0.990 0.722 0.939 0.983
Baseline [10] 0.762 0.918 0.966 0.680 0.873 0.945 0.578 0.835 0.917
OURS 0.860 0.973 0.996 0.812 0.958 0.991 0.734 0.939 0.985

TABLE III
ABLATION STUDY ON VERI-776, VEHICLEID AND VERI-WILD.

Variant
VeRi-776 VehicleID VERI-Wild

Small Medium Large Small Medium Large
mAP R-1 R-1 R-5 R-1 R-5 R-1 R-5 mAP R-1 mAP R-1 mAP R-1

(a) Baseline 0.766 0.957 0.802 0.914 0.775 0.887 0.738 0.849 0.762 0.918 0.680 0.873 0.578 0.835
(b) w/o CTG 0.798 0.961 0.836 0.957 0.803 0.946 0.764 0.914 0.836 0.958 0.776 0.924 0.669 0.906
(c) w/o CT-GCN 0.792 0.963 0.821 0.938 0.794 0.925 0.753 0.871 0.794 0.940 0.744 0.912 0.638 0.884
(d) w/o TCE Loss 0.815 0.968 0.856 0.970 0.810 0.958 0.780 0.939 0.853 0.969 0.803 0.946 0.726 0.930
(e) OURS 0.827 0.971 0.870 0.979 0.826 0.962 0.806 0.944 0.860 0.973 0.812 0.958 0.734 0.939

shown in Fig. 5 (a).
Evaluation Results on VehicleID [18]. Table IV shows the
comparison results of VehicleID [18] on three different testing
sets. We compare the Rank-1 (R-1) and Rank-5 (R-5) scores on
this dataset since there is only one ground-truth for each query
in the gallery. Our method merges the query and gallery into
a collection that requires feature interaction. In general, our
method achieves promising performance compared to state-
of-the-art methods. The main reason is, that previous methods
consider learning representations from a single vehicle image,
ignoring any potential interactions between images. Compared
with the baseline, our proposed model significantly improves
Rank-1 by 6.8%, 5.1%, and 6.8% on three different testing
sets respectively. This shows the promising achievement of
using Graph Convolutional Network for feature aggregation
under multiple neighbor images.
Evaluation Results on VERI-Wild [41]. Table II reports
the comparison results of VERI-Wild [41] on three different
testing sets. As shown in Table II, our approach significant-
ly beats the second-best method MsKAT [23] by 86.0%,
81.2% and 73.4% on three different testing sets respectively.
Through the effective interaction of feature vectors and graph
representation learning, our proposed approach improves the
mAP of three different testing sets by 2.0%, 2.5%, and 1.2%
respectively. As shown in Fig. 5 (b), it can be observed that
our method outperforms the retrieval performance of baseline
model, which indicates the robust generalization ability of the
proposed model in large-scale datasets.

D. Ablation Study

The contribution components of our model are mainly
in three aspects, Camera Topology Graph (CTG), Camer-
a Topology-based Graph Convolutional Network (CT-GCN),
and Topological Cross-entropy Loss (TCE Loss).

（2）mAP performance under different cameras（1）Rank-1 performance under different cameras
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Fig. 6. Comparison results of our model against the Baseline model under
different cameras on VeRi-776 dataset.

TABLE V
ANALYSIS OF CAMERA TOPOLOGY GRAPH ON VERI-776 (IN %).

Component mAP Rank-1 Rank-5
1) Baseline 76.6 95.7 98.0
2) + Gs 79.8 96.1 98.5
3) + Gp 80.5 96.7 98.7
4) + Go 80.2 96.5 98.7
5) + Gi 77.5 95.8 98.4
6) + Gs + Gp 80.9 96.8 98.7
7) + Gs + Gp + Go 82.3 96.9 98.9
8) + Gs + Gp + Go + Gi 82.7 97.1 99.0

Effectiveness of Each Component. To verify the contribution
of the components in our model, we implement several variants
of our method on the three datasets, as reported in Table III.
Our baseline model is ResNet-50 pretrained on ImageNet [48],
which follows the Re-ID strong baseline [10] in the experi-
mental setting. Since the Camera Topology Graph (CTG) is an
adjacency matrix, which can only be used in combination with
the Camera Topology-based Graph Convolutional Network
(CT-GCN) or Topological Cross-entropy Loss (TCE Loss). In
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Fig. 7. Analysis of Camera Topology-based Graph Convolutional Network.

the first variant (OURS w/o CTG), we consider the complete
graph of the camera-based system Gs, and then keep the
Camera Topology-based Graph Convolutional Network (CT-
GCN) or Topological Cross-entropy Loss (TCE Loss).

Comparing Table III (b) and Table III (a), we can find
that the Camera Topology Graph (CTG) plays an important
role in the entire model, which indicates that topological
relations between images can effectively learn cross-camera
representations. By removing the Camera Topology-based
Graph Convolutional Network (CT-GCN, Table III (c)), and
the Topological Cross-entropy Loss (TCE Loss, Table III
(d)) respectively, both mAP, and Rank-1 scores significantly
decrease on all the three datasets with different test settings.
This demonstrates the effectiveness of each component in
our method. In addition to this, we compare the performance
results of our model and the baseline model under different
cameras. As shown in Fig. 6 (1), Our model significantly
improves the Rank-1 performance under different cameras,
which indicates that the proposed model can effectively miti-
gate the influence of camera changes on Rank-1 performance.
As shown in Fig. 6 (2), our model mainly improves mAP
performance under several more challenging cameras, which
indicates that learning cross-camera feature representations
can effectively alleviate the influence of complex cameras on
mAP performance.

The limitation of the proposed framework can be seen in
Fig. 6 (2), our method cannot improve mAP performance
compared to the baseline model under each camera. The
potential reason may be that the proposed method does not
balance the importance of camera relationships. To address this
issue, in the future, we will consider designing a multi-head
graph convolutional network that allows us to dynamically
assign different weights for different graph relationships.
Analysis of Camera Topology Graph. The Camera Topology
Graph (CTG) is an adjacency matrix determined by the CCTV
camera system. The graph G is actually a combination of four
camera relationships G = {Gs,Gp,Go,Gi} as described in
Section. III-C. To better evaluate four camera relationships of
our model, we consider several variants on VeRi-776 dataset
by progressively introducing the Gs, Gp, Go and Gi into
the ”Baseline” as shown in Table. V. Clearly, both mAP,
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Fig. 10. Parameter analysis at mAP on VeRi-776 dataset.

and Rank-1 scores consistently increase, which verifies the
effectiveness of each graph relation.
Analysis of Camera Topology-based Graph Convolutional
Network. As we discussed, the Camera Topology-based Graph
Convolutional Network (CT-GCN) captures the relationship
between the vehicle images from different cameras, extracts
and embeds topological features into the visual features for
vehicle Re-ID. Compared with the traditional GCN, the pro-
posed CT-GCN has two main differences: i.e., the camera
topology graph guided adjacency matrix A and the camera
memory matrix Memory. To better analyze the proposed CT-
GCN, we consider several variants of CT-GCN. 1) CT-GCN
(Mask�A) represents the proposed CT-GCN guided by the
camera topology graph. 2) CT-GCN (Mask�Ones) denotes
the value of the matrix is all 1. 3) CT-GCN (Mask � Sim)
indicates that the value of the matrix is the feature similarity.
4) CT-GCN (w/o Memory) denotes the proposed CT-GCN
without camera memory matrix Memory. As shown in Fig. 7,
embedding the camera topology graph significantly increases
all the metrics on VeRi-776 [7] dataset. We introduce the
camera memory matrix Memory into the CT-GCN. Both
mAP, Rank-1 and Rank-5 scores significantly increase on
VeRi-776 [7] dataset as shown in Fig. 7.

To further verify the effectiveness of the proposed CT-
GCN, we use other GCN-based methods to replace the pro-
posed CT-GCN. Specifically, we compare our method with
GraphSAGE [54] and FastGCN [55], as reported in Fig. 8.
It is worth noting that GraphSAGE [54] is similar to our
method of sampling neighbors. Compared to FastGCN [55],
GraphSAGE [54] has exhibited markedly superior perfor-
mance, demonstrating the effectiveness of sampling neighbors
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Fig. 9. Feature visualization of fourteen vehicle identities T-SNE [52]. Fourteen identities with gray color and pickup type are selected from the VeRi-776
and their IDs are listed on the right side of graphs. The nodes in different colors indicate the image features of different vehicles.

TABLE VI
COMPARISON RESULTS OF DIFFERENT BASELINE MODELS ON VERI-776, VEHICLEID AND VERI-WILD.

Variant
VeRi-776 VehicleID VERI-Wild

Small Medium Large Small Medium Large
mAP R-1 R-1 R-5 R-1 R-5 R-1 R-5 mAP R-1 mAP R-1 mAP R-1

Strong Baseline [10] 0.766 0.957 0.802 0.914 0.775 0.887 0.738 0.849 0.762 0.918 0.680 0.873 0.578 0.835
Strong Baseline [10] + OURS 0.827 0.971 0.870 0.979 0.826 0.962 0.806 0.944 0.860 0.973 0.812 0.958 0.734 0.939
FastReID [53] 0.804 0.965 0.823 0.955 0.807 0.927 0.778 0.901 0.819 0.963 0.757 0.945 0.667 0.911
FastReID [53] + OURS 0.831 0.973 0.865 0.976 0.828 0.957 0.810 0.941 0.854 0.970 0.808 0.951 0.721 0.932
HRCN [25] 0.818 0.964 0.873 0.980 0.817 0.961 0.797 0.943 0.842 0.940 0.791 0.927 0.710 0.899
HRCN [25] + OURS 0.836 0.973 0.882 0.983 0.835 0.967 0.831 0.945 0.866 0.952 0.818 0.948 0.734 0.913

for the vehicle Re-ID task. Compared to GraphSAGE [54],
the proposed CT-GCN has achieved higher performance, the
reason may be that it takes into account the camera memory
matrix to extract various camera representation functions. This
verifies that the Camera Topology-based Graph Convolutional
Network (CT-GCN) guides more discriminative feature learn-
ing for vehicle Re-ID.
Analysis of Topological Cross-entropy Loss. The Topolog-
ical Cross-entropy Loss aims to close the distance between
positive samples by topological relations. To better visualize
the contribution of the Topological Cross-entropy Loss, We
show the visual feature distribution graph as shown in Fig. 9.
From Fig. 9 (a), we can see that the model variant (OURS
w/o TCE Loss) obtains suboptimal vehicle features at visual-
ization space. Especially, the features of “V82” appear to be
aggregated under the same camera, and still appear discretely
distributed under different cameras (“c1”, “c2”, “c13”, and
“c17”). This in turn means the inter-class distance and the
intra-class similarity are not well guaranteed in the model
variant (OURS w/o TCE Loss). By considering the proposed
Topological Cross-entropy Loss, our model significantly im-
proves the feature learning by aggregating the image features
of the same vehicle from different cameras, as shown in Fig. 9
(b). This shows that our method learns more robust feature

representations against the diverse camera changes for the
vehicle re-identification task.

E. Parameter Analysis

There are two important parameters in our model. λ bal-
ances the Re-ID Loss and Topological Cross-entropy Loss,
while k control the number of neighbor nodes respectively.
For the balanced parameter λ, as shown in Fig. 10 (a), we can
observe that it is relatively insensitive when we slightly adjust
it in range (0.02, 0.07). The value of the balanced parameter λ
cannot be too large, as it will affect the training of the ground-
truth labels. For the top-k of numbers of neighbors, as shown
in Fig. 10 (b), we find that the performance of our method
increases until k = 5. The number of neighbor nodes can not
be too large, it will aggregate the information of irrelevant
samples. As a result, we empirically set λ = 0.07, k = 5.

F. Baseline Analysis

To verify the effectiveness of our proposed model, we
change the baseline model of our method and implement
the baseline study on VeRi-776, VehicleID and VERI-Wild
datasets, as reported in Table VI. Specifically, we adopt Strong
Baseline [10], FastReID [53], HRCN [25] as our baseline
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models. From Table VI we find that all three baseline models
have improved performance by introducing our method, which
demonstrates the effectiveness of our proposed model. It is
important to note that these baseline models focus on the
acquisition of visual information, while our method focuses
on the supplementation of visual information. In other words,
our method can be seen as a plug-and-play module that is
applicable to integrate into any vehicle representation model.

V. CONCLUSION

We propose a novel camera topology graph guided vehicle
re-identification framework for topological vehicle feature
aggregation in end-to-end learning. Specifically, we propose a
Camera Topology Graph to build a connecting bridge between
vehicle representation models and CCTV camera systems
under real-world traffic scenarios. Moreover, we design a novel
Camera Topology-based Graph Convolutional Network and
Topological Cross-entropy loss to learn more robust cross-
camera features for the Re-ID task. Our method achieves
superior performance and offers a more reasonable solution
for vehicle Re-ID regarding cross-camera recognition. It is a
trend for vehicle re-identification tasks to closely link vehicle
representation models with real-world traffic systems. In the
future, we will combine more information in the form of a
multi-head graph convolutional network to establish the more
powerful vehicle Re-ID solution.
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