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A B S T R A C T

Recently, Swin Transformer has been widely explored as a general backbone for computer vision, which
helps to improve the performance of vision tasks due to the ability to establish associations for long-range
dependencies of different spatial locations. By implementing the pedestrian attribute recognition with Swin
Transformer, we observe that Swin Transformer tends to focus on a relatively small number of local regions
within which attributes may be correlated with other attributes, which leads Swin Transformer to predict
attributes in those neglected regions based on such correlation. In fact, discriminative information may exist
within these neglected regions, which is crucial for attribute identification. To address this problem, we propose
a novel diverse features discovery transformer (DFDT) which can find more attribute relationship regions
for robust pedestrian attribute recognition. First, Swin Transformer is used as a feature extraction network
to acquire attribute features with the long-distance association, which predicts the corresponding attribute
information. Second, we propose a diverse features suppression module (DFSM) to obtain semantic features
directly associated with attributes by suppressing the peak locations of the most discriminative features and
randomly selected feature regions to spread the feature regions that Swin Transformer is interested in. Third,
we plug the diverse features suppression module into different stages of Swin Transformer to learn detailed
texture features to help recognition. In addition, we have divided the attribute features into multiple vertical
feature regions to improve the focus on local attribute features. Experiments on three benchmark datasets
validate the effectiveness of the proposed algorithm.
. Introduction

Pedestrian attribute recognition aims to learn predefined attributes
rom any given pedestrian image, which are a specific predefined set
f attributes, such as age, gender, long/short hair, long/short sleeves,
tc. Pedestrian attribute recognition is a fundamental task in computer
ision, which has a wide range of applications in many practical
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applications such as pedestrian re-identification (Layne et al., 2012;
Wang et al., 2018), face verification (Kumar et al., 2009; Vo et al.,
2021), and pedestrian retrieval (Feris et al., 2014; Siddiquie et al.,
2011).

Recently, attributes recognition has attracted many studies by re-
searchers and has made great developments. Due to the presence of
some objective factors, such as varying illumination, local occlusion,
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Fig. 1. The problem of prediction by inter-attribute correlation. (a) represents that there is some correlation between pedestrian attributes, in which the dotted line indicates a
weak correlation and the solid line indicates a strong correlation. For example, when a pedestrian has long hair, there is a high probability that the pedestrian is a female, so
there is a strong correlation between long hair and female. When a pedestrian wears long sleeves, there is a certain probability that the pedestrian is wearing trousers, so there is
a weak correlation between long sleeves and trousers. (b) mainly expresses the process of Swin Transformer utilizes correlation between attributes for prediction, where the dotted
and solid lines represent the same meaning as (b), the yellow attributes indicate the attributes that Swin Transformer focus on, and the green attributes indicate the attributes
that Swin Transformer predicts based on the correlation.
low resolution, background clutter, etc., pedestrian attribute recogni-
tion is still a very challenging task.

In the past few years, Convolutional Neural Networks (CNNs) (Long
et al., 2015; Tran et al., 2015; Zhang and Suganthan, 2016) have
been the dominant architectures of pedestrian attribute recognition. Li
et al. (2015) propose two networks where one identifies each attribute
independently and the other learns all attributes jointly. However, these
two networks extract features from an entire image without considering
the fine-grained information in the image. To overcome the above-
mentioned problem, Zhu et al. (2015), Li et al. (2018a), and Liu et al.
(2018a) utilize auxiliary techniques such as part segmentation (Li et al.,
2021), pose estimation, and region proposals, respectively, to capture
local area features which are combined with global features to jointly
predict pedestrian attributes. Although these methods can further im-
prove recognition performance, the computation of localized parts is
complex. In addition, they ignore the intrinsic connections between
pedestrian attributes. Wang et al. (2017) combine CNN and Long Short-
Term Memory (LSTM) to establish the dependence of labels. Zhao
et al. (2019) further employ Convolutional Long Short-Term Memory
(ConvLSTM) network to establish the spatial correlation of attributes.
However, these networks fail to perform parallel computation which is
less efficient in practical applications. Some works devote to integrat-
ing Graph Convolutional Network (GCN) into the pedestrian attribute
recognition task. Li et al. (2019a) exploit the human parsing model to
locate body regions and adopted GCN to obtain corresponding group
features. Tan et al. (2020) propose an end-to-end unified framework,
which employs GCN to capture both the attribute and contextual
relations for pedestrian attribute recognition. However, GCN-based
methods need to pre-define the graph structure, which is difficult to
apply flexibly in practical situations.

CNN-based models (Peng et al., 2021) have advantages in local
feature extraction by collecting local features in a hierarchical manner
for better image representation, but most existing CNN-based pedes-
trian attribute recognition methods have the following two limitations.
First, the CNN-based models have still difficulty in modeling global
content-dependent interactions among different image regions, since
the coverage of the receptive field of the CNN model is limited and
narrow. The lack of global relations among pedestrian attribute features
may weaken the ability of representation learning. Second, the mod-
eling of attributes inter-relationships is not flexible enough, since the
sequence-based algorithms only establish one-way relationships, and

GCN-based algorithms require predefined graph structure.

2

Recently, Transformer (Dosovitskiy et al., 2020; Carion et al., 2020;
Zheng et al., 2021; Wei et al., 2022; Guo et al., 2021) has attracted
extensive interest in the computer vision domain. In contrast to CNN,
vision Transformers use self-attention layers to capture global inter-
actions between contexts, and is able to learn semantic correlations
between different spatial locations. Especially, Swin Transformer (Liu
et al., 2021) has shown great promise as it integrates the advantages of
both CNN and Transformer. It can learn both local feature information
and long-range dependencies of different localities in large-size images.
Inspired by the advantages of Swin Transformer, this paper devotes
itself to exploring Swin Transformer to adaptively model the corre-
lation between pedestrian attributes, and obtain representations with
attribute semantic interactions for attribute classification. However,
one cannot directly employ Swin Transformer for pedestrian attribute
recognition. The main reason is, compared to learning richer attribute
features, Swin Transformer prefers to utilize correlations between at-
tributes to identify all attributes. When such correlation does not exist
in a pedestrian, Swin Transformer results in dramatic prediction errors.
As shown in Fig. 1(b), for pedestrian A, Swin Transformer focuses on
the skirt attribute region and can identify pedestrian A as a female with
long hair based on their correlations to the skirt. However, for pedes-
trian B with short hair instead of long hair, the correlation between the
skirt and long hair does not exist. In this case, Swin Transformer still
tends to use the prior correlation to predict via focusing on the skirt
attribute region, which results in incorrectly predicting the short hair
as long hair attribute for pedestrian B.

To alleviate the problem that Swin Transformer tends to rely on
correlations between attributes when predicting attributes, we propose
a diverse features suppression module, which forces Swin Transformer
to learn more attribute features for classification rather than relying
only on a local region and correlations. Therein, the diverse features
suppression module contains two types of feature suppression, namely
peak regions suppression and random regions suppression. First, the
peak regions are the most discriminative feature regions for classifica-
tion, and the attributes of this region often have a strong correlation
with those of other regions. By suppressing the peak regions, Swin
Transformer is forced to learn the features of the attribute being
correlated and thus mitigating to some extent the negative impact of
misuse of correlation in Swin Transformer. Second, there are other
discriminative regions that contain subtle features for attribute predic-
tion that help Swin Transformer distinguish the difference between two

similar attributes, such as a stripe coat and a plaid coat. In order to
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Table 1
Comparison of seventeen state-of-the-art pedestrian attributes recognition methods in five categories.

Category Method Advantages Disadvantages

Global based ACN (Sudowe et al., 2015)
DeepMar (Li et al., 2015)
MTCNN (Abdulnabi et al., 2015)

Sharing network features,
simple and effective.

Lack of consideration of fine-grained
features,
limited performance.

Part-based DeepCAMP (Diba et al., 2016)
PGDM (Li et al., 2018a)
LGNet (Liu et al., 2018a)
AR-BiFPN (Moghaddam et al., 2021)

Fine-grained information,
both global and local features.

Dependence on the accuracy of
local localization.

Attention-based HPNet (Liu et al., 2017)
VeSPA (Sarfraz et al., 2017)
JLPLS_PAA (Tan et al., 2019)

Multiple scales features on ,
Multi-channel features.

Limited performance,
additional design of new attention
model.

Sequence-based RNN–CNN (Wang et al., 2016)
JRL (Wang et al., 2017)

Transforming attribute categories into
sequential models,
exploring the constraints between attributes.

Difficult to establish bi-directional
relations of attributes,
cannot perform parallel computation.

GCN-based DCSA (Wang et al., 2017)
A-AOG (Park et al., 2017)
VSGR (Li et al., 2019b)
JLAC (Tan et al., 2020)
MTSA (Ji et al., 2020)

Modeling Semantic Relationships between
attributes,
modeling spatial relationships between
image regions.

Complex,
difficult to apply in practical scenarios.
mine more subtle features, we employ random regions suppression to
enforce Swin Transformer to randomly learn detailed information in
pedestrian images. In addition, to learn more shallow detail attribute
features simultaneously, we plug the diverse features structure module
on both the shallow and deep features of Swin Transformer.

Our contribution can be summarized as follows:
(1) We propose an end-to-end framework based on Swin Trans-

former for pedestrian attribute recognition, which can adaptively learn
the correlation between attributes without complex modules to model
this correlation.

(2) We propose a plug-and-play diverse features suppression module
that drives Swin Transformer to learn more attribute features and
weakens the reliance of Swin Transformer on the correlation between
attributes. To enable Swin Transformer learns detailed and global
features separately, we inserted the module into different stages of Swin
Transformer.

(3) We divide the attribute features into multiple vertical regions to
improve Swin Transformer’s focus on local attribute feature regions,
which is due to the fact that attributes are distributed from top to
bottom on the entire body of the pedestrian.

(4) Experiments show the superiority of the proposed method over
recent methods and the effectiveness of our framework for pedestrian
attribute recognition.

The rest of this paper is organized as follows. Section 2 provides
an overview of the works related to pedestrian attribute recognition.
Section 3 describes the backbone for pedestrian attribute recognition.
Section 4 systematically elaborates on the proposed DFDT, including
peak region suppression mechanism and random region suppression
mechanism. Section 5 shows the comprehensive experimental results of
DFDT. Finally, Section 6 concludes the paper together with the future
directions.

2. Related works

2.1. Pedeatrian attribute recognition

Pedestrian attribute recognition is a popular field of study in com-
puter vision and has been widely employed in a variety of vision
tasks, such as person retrieval (Siddiquie et al., 2011) and person
re-identification (Layne et al., 2012; Hadjkacem et al., 2020; Ruiz
et al., 2020). We research seventeen state-of-the-art pedestrian attribute
recognition methods in terms of five categories and analyze the ad-
vantages and disadvantages of each category of methods as shown in
Table 1.

Early methods (Sudowe et al., 2015; Li et al., 2015; Abdulnabi
et al., 2015) take the whole image as input and try to learn global
3

attribute representation. However, those methods neglect a focus on
fine-grained information. Later, some methods are successively pro-
posed to alleviate the insufficiency of fine-grained information extrac-
tion. DeepCAMP (Diba et al., 2016) chunks the images to learn the
attribute features of each block of images. Li et al. (2018a) first utilize
a human pose to guide the network to locate key points in pedestrian
images, then extract local region features depending on these key
points. (Liu et al., 2018a) propose a Localization Guided Network
to extract attribute-related local features. (Moghaddam et al., 2021)
combine human semantic parsing and pedestrian attribute recognition
to mine semantic and spatial information.

Some other methods (Liu et al., 2017; Sarfraz et al., 2017; Guo
et al., 2017; Sarafianos et al., 2018; Tan et al., 2019) utilize attention
mechanisms to improve the performance of attribute recognition. Liu
et al. (2017) propose a multi-directional attention model that consists
of a CNN and an attention feature network. Sarfraz et al. (2017) incor-
porate a view predictor in attribute recognition networks to estimate
the weights of views. DIAA (Guo et al., 2017) framework aggregates
multi-scale visual attention and weighted focal loss for deep imbal-
anced classification as a way to improve recognition performance. Tan
et al. (2019) take a multi-task-like way to simultaneously learn various
attentional mechanisms, i.e., parsing attention, labeled attention, and
spatial attention, to explore relevant and complementary information.

Despite the great improvement in recognition performance, the
aforementioned methods fail to model potential relations between at-
tributes. Other works (Wang et al., 2016, 2017; Zhao et al., 2018; Liu
et al., 2018b; Zhao et al., 2019) analyze pedestrian attribute identi-
fication tasks starting from relations between attributes. Wang et al.
(2016) first employ Recurrent Neural Network (RNN) to model the
dependency between labels. In order to better mine relevant informa-
tion, JRL (Wang et al., 2017) employ RNN based recurrent sequential
prediction model to capture high-order dependencies of attributes.
On the other hand, some methods introduce GCN to mine relation-
ships in multiple attributes. DCSA (Chen et al., 2012) model utilizes
a conditional random field to model the correlation between human
attributes. A-AOG (Park et al., 2017) is proposed explicitly to represent
the decomposition and articulation of body parts, and account for the
correlations between poses and attributes. Li et al. (2019b) consider
the existence of complex relationships between attributes and different
regions and propose a graph reasoning network to jointly model the
spatial and semantic relationships of region–region, attribute–attribute,
and region-attribute. JLAC (Tan et al., 2020) framework consists of two
graph modules, called the attribute-relationship module and contextual
relationship module, which are used to discover and capture attribute
and contextual relationships, respectively. Ji et al. (2020) propose a
new multiple time steps attention mechanism to boost the modeling of
the relations between images and attributes.
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2.2. Vision transformer

With the development of deep learning in recent years, more
and more creative works have been proposed in which the Trans-
former (Vaswani et al., 2017) is one of the typical representatives.
The Transformer (Vaswani et al., 2017) is a deep neural network
mainly based on the self-attention mechanism, which is initially applied
in the field of Natural Language Processing (NLP). Inspired by the
powerful representation ability of Transformer, researchers propose
to extend Transformer to computer vision tasks. Vision Transformer
(ViT) (Dosovitskiy et al., 2020) utilizes a pure Transformer for image
block sequences directly as well as achieves superior performance on
multiple image recognition benchmarks. Afterward, Data-efficient im-
age Transformer (DeiT) (Touvron et al., 2021) distill ViT (Dosovitskiy
et al., 2020) by using a teacher-student network to obtain a more
lightweight model. Although these Transformers can capture remote
dependencies between patches, they ignore local feature extraction.
Tokens-to-Token ViT (T2T) (Yuan et al., 2021) proposes a progressive
tokenization module that can gradually model local structural infor-
mation in the process of reducing the length of tokens by aggregating
adjacent tokens into one token. Han et al. (2021) propose a Transformer
in Transformer (TNT) architecture that further divides patchs into
multiple sub-patchs based on ViT, which extracts local features from
pixel embeddings through internal transformer blocks. Swin Trans-
former (Liu et al., 2021) introduce the hierarchical structure which is
frequently used in CNN to build hierarchical Transformer based on ViT.
In addition, it adopts shifted windows approach to computing attention
which greatly reduces computational complexity. By aggregating the
advantages of CNN and Transformer, Swin Transformer has more
potential to become a general-purpose backbone for computer vision
compared to other Transformer architectures. More surprisingly, Swin
Transformer continues to dominate in several downstream sub-tasks,
which once again proves that Transformer structure is more suitable
than CNN to solve computer vision problems.

3. Backbone

To learn attributes representations with relationships between at-
tributes adaptively, we use Swin Transformer (Liu et al., 2021) as the
attribute feature extractor. Swin Transformer employs a hierarchical
transformer to extract hierarchical feature maps and uses the shifted
windows approach to calculate the relationship between patches in
the whole feature map. The shifted windowing scheme brings linear
computational complexity by limiting self-attention computation to
non-overlapping local windows while also allowing the cross-window
connection.

In this work, Swin Transformer consists of four stages, each of which
has multiple Swin Transformer blocks. Firstly, the pedestrian image
𝐼 is divided into a set of non-overlapping image patches. And then
these image blocks are fed into the linear embedding layer and the
Swin Transformer block to extract features. As shown in Fig. 2, a Swin
Transformer block consists of a window based multi-head self-attention
(W-MSA) module or a shifted window based multi-head self-attention
(SW-MSA) module and a 2-layer multi-layer perceptron (MLP) with
Gaussian error linear unit (GELU). A LayerNorm (LN) layer is inserted
before each multi-headed self-attention (MSA) module and each MLP
module. In addition, a residual connection is applied after each module.
Successive Swin Transformer blocks are computed as follows:

𝐳̂𝒍 = W-MSA(LN(ẑ𝑙−1)) + z𝑙−1, (1)

𝒍 = MLP(LN(ẑ𝑙)) + ẑ𝑙 , (2)

̂ 𝒍+𝟏 = SW-MSA(LN(z𝑙)) + z𝑙 , (3)

𝒍+𝟏 ̂ 𝑙+1 ̂ 𝑙+1
= MLP(LN(z )) + z , (4)

4

here ẑ𝑙 and z𝑙 denote the output features of the (S)W-MSA module
and the MLP module for block 𝑙, respectively; W-MSA and SW-MSA de-
note window based multi-head self-attention using regular and shifted
window partitioning configurations, respectively.

4. Approaches

In this paper, we propose an attribute recognition framework for
mining feature diversity called Diverse Feature Discovery Transformer
(DFDT).

As shown in Fig. 3, our framework consists of a backbone in
Section 3 and one main module, namely Diverse Features Suppression
Module (DFSM). DFSM contains two types of suppression, namely peak
regions suppression (PRS) and random regions suppression (RRS).

4.1. Diverse features suppression module

To alleviate the limitation of Swin Transformer which only focuses
on a local region to predict attributes, we propose a diverse features
suppression module (DFSM) inspired by Sun et al. (2020), which drives
Swin Transformer to pay more attention to the other informative
regions and obtain more diverse expressions. First, in order to reduce
computational complexity, we compress the channel dimension of the
features sent into the DFSM module, and the obtained features are
represented by 𝐅 = {𝐅𝑐 ∶ 𝑐 ∈ [1, 𝐶]}, where 𝐅𝑐 ∈ R𝐻×𝑊 . Then, the
DFSM can generate binary masks 𝐌 = {𝐌𝑐 ∶ 𝑐 ∈ [1, 𝐶]}, where 𝐌𝑐 ∈
R𝐻×𝑊 based on 𝐅 locating the feature regions to be suppressed. Each
element in mask 𝐌𝑐 is in the domain {0,1}, where 1 means the cor-
responding position is suppressed and 0 indicates that no suppression
has been performed. As can be seen from Fig. 3, the mask localization
is determined by both peak regions and random regions.

4.1.1. Peak regions suppression
To enable Swin Transformer to learn as many features as possible

instead of using the correlation between attributes as the dominant
factor for recognition, we propose a peak regions suppression mech-
anism, which enables Swin Transformer to find alternative feature
regions that are related to recognition. The peak region features rep-
resent the regions that Swin Transformer pays the most attention to,
which typically has correlations between attributes in other regions.
By suppressing the peak regions, Swin Transformer learns the features
of attributes predicted by the correlation, thereby mitigating the effect
of this correlation on attribute recognition to some degree. Let 𝐌𝑃

𝑐 be
the location of the peak maps from the feature map 𝐅𝑐 and denoted as:

𝐌𝑃
𝑐 (𝑖, 𝑗) =

{

1, 𝑖𝑓 𝐅𝑐 (𝑖, 𝑗) = 𝑚𝑎𝑥(𝐅𝑐 ),
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)

here 𝑚𝑎𝑥(𝐅𝑐 ) denotes the maximum of activation maps matrix 𝐅𝑐 . The
and 𝑗 correspond to the rows and columns of the index matrix. We
erform peak regions suppression on the features of each channel di-
ension and let 𝐌𝑃 denote the final obtained peak regions suppression
ask which is denoted as follows:
𝑃 = {𝐌𝑃

𝑐 ∶ 𝑐 ∈ [1, 𝐶]}, 𝑤ℎ𝑒𝑟𝑒 𝐌𝑃
𝑐 ∈ R𝐻×𝑊 . (6)

.1.2. Random regions suppression
In addition to suppressing the most discriminative regions that the

etwork focuses on, some other local features should also be appro-
riately suppressed. These regions often contain subtle features that
re crucial for attribute prediction, which can help Swin Transformer
istinguish the difference between two similar attributes. To mine more
ubtle features, we propose a random regions suppression approach,
hich forces Swin Transformer to randomly learn detailed information

n pedestrian images. Next, we describe how to randomly select the
ocal area to be suppressed on the feature map 𝐅𝑐 . First, we define the
ize of the region to be suppressed in the feature map 𝐅 based on the
𝑐
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Fig. 2. Two successive Swin Transformer blocks structure.
Fig. 3. Overview of our overall architecture. The input instance is fed into the gray backbone which has four stages. Then we perform feature suppression on the features in
different stages to mine diversity features. The structure of DFSM is shown in the blue part on the right, which contains two suppression mechanisms, namely peak regions
suppression (PRS) and random regions suppression (RRS).
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random masking rate 𝑟. Based on our experimental setup, we set 𝑟 =
1/4 which means that 1/4 of the region in 𝐅𝑐 is to be suppressed. Then

e randomly select 1/4 of the pixels on the all-zero mask with the same
ize as 𝐅𝑐 and set their value to 1 as the random mask 𝐌𝑅

𝑐 . We perform
andom regions suppression on the features of each channel dimension
nd let 𝐌𝑅 denote the total random region suppression mask which is
enoted as follows:
𝑅 = {𝐌𝑅

𝑐 ∶ 𝑐 ∈ [1, 𝐶]}, 𝑤ℎ𝑒𝑟𝑒 𝐌𝑅
𝑐 ∈ R𝐻×𝑊 . (7)

.1.3. Joint suppression
During training, we jointly employ peak regions suppression and

andom regions suppression to mine various features. The final mask
osition 𝐌 corresponding to the feature 𝐅 is derived as:

= 𝐌𝑃 +𝐌𝑅. (8)

By suppressing the feature 𝐅 corresponding to the mask region
, we obtain the joint suppressed features 𝐅𝑠, which is calculated as

follows:

𝐅𝑠 = 𝐅 − 𝛼(𝐌⊙ 𝐅), (9)

where 𝛼 indicates the suppressing factor and ⊙ refers to the element-
wise product. In practice, we set 𝛼 as a higher number. In our experi-

ental setup, we set 𝛼 to 0.9 for the best performance.

.2. Training phase

As the network deepens, the receptive field of neurons gradually
ncreases, which allows more global information to be contained in the
eatures. However, only the feature suppression operation on the last
ayer of features will ignore the local details mining. In order to utilize
ore diverse features, we insert DFSM into the shallow and deep stages

f Swin Transformer to enforce Swin Transformer to learn global and
ocal features respectively.

First, in order to learn more detailed information, we perform a
uppression operation on 𝒇 ∈ R𝑁×𝐻×𝑊 , which is the feature of
3 𝒇

5

the third stage of Swin Transformer. Due to the rich structural prior
knowledge of pedestrians, pedestrian attributes can usually be divided
into different parts based on the human structure to learn the features
of each part separately. Accordingly, we chunk the features to learn
the attribute information specific to each part, and the number of parts
is denoted as 𝑛. Generally, there is a strong correlation between upper
body region attributes and lower body region attributes of a pedestrian,
such as long sleeves and long pants and shorts and short sleeves. To
disentangle this entanglement between upper and lower local region
attributes and to learn more subtle features, we set 𝑛 = 2 which is
to divide the shallow feature 𝒇 3 into two parts 𝒑1 ∈ R𝑁×𝐻

2 ×𝑊 , 𝒑2 ∈
R𝑁×𝐻

2 ×𝑊 in 𝐻 dimension. Then, we perform feature suppression in
ach part to learn the detailed information. We denote the calculation
unction of the Diverse Features Suppression Module by 𝐃𝐅𝐒𝐌(⋅) and
he two suppressed part features are denoted as 𝒑𝑠1 and 𝒑𝑠2 respectively,
hich are calculated as follows:
𝑠
1 = 𝐃𝐅𝐒𝐌(𝒑1), (10)

𝑠
2 = 𝐃𝐅𝐒𝐌(𝒑2). (11)

Then, we use two classifiers 𝜙1 and 𝜙2 to classify 𝒑𝑠1 and 𝒑𝑠2 sepa-
ately, and the two prediction vectors are denoted as:

𝑦̂1 = 𝜙1(𝒑𝑠1), (12)

𝑦̂2 = 𝜙2(𝒑𝑠2). (13)

Second, in order to obtain more global information, We apply the
iverse Features Suppression Module to the output feature 𝒇 4 of the

inal stage of Swin Transformer. In addition, to ensure that the global
nformation of the deep features is not broken, we do the suppression
irectly on the whole features instead of chunking them and then
uppressing them separately. We denote the suppressed features as 𝒇 𝑠

4
ith the following formula:
𝑠 (14)
4 = 𝐃𝐅𝐒𝐌(𝒇 4).
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Then we feed 𝒇 𝑠
4 into the classifier 𝜙3 and the prediction vector is

denoted by 𝑦̂3. The formula is as follows:

𝑦̂3 = 𝜙3(𝒇 𝑠
4). (15)

Finally, to maintain the ability of Swin Transformer that model
associations between attributes, We directly classify the feature maps
𝒇 4 with the classifier 𝜙4, and the corresponding prediction vector 𝑦̂4 is
enoted by:

𝑦̂4 = 𝜙4(𝒇 4). (16)

.3. Loss function

The entire framework is end-to-end trained with the binary cross-
ntropy loss function, which is defined as follows:

𝑘 = − 1
𝑁

𝐶
∑

𝑖=1

𝑁
∑

𝑗=1
𝑦𝑖𝑗 log(𝑝𝑖𝑗𝑘 ) + (1 − 𝑦𝑖𝑗 ) log(1 − 𝑝𝑖𝑗𝑘 ), (17)

where 𝑝𝑘 = 𝛿(𝑦̂𝑘) is the prediction probability of prediction vector
𝑦̂𝑘, 𝛿(𝑥) = 1∕(1 + 𝑒−𝑥) is the sigmoid function, 𝑝𝑖𝑗𝑘 ∈ [0, 1] indicates
the probability that the 𝑖th attribute appears in the 𝑗th image, and 𝑦𝑖𝑗

represents the ground truth for the 𝑖th attribute that appears in the 𝑗th
image.

Finally, the total training loss is calculated by summing over the
four individual loss:

𝑙𝑜𝑠𝑠 =
4
∑

𝑘=1
𝑘. (18)

5. Experiments

5.1. Datasets

To evaluate the effectiveness of our framework, we conduct ex-
periments on three general datasets as PETA (Deng et al., 2014),
PA100k (Liu et al., 2017), and RAPv1 (Li et al., 2016) and a newer
dataset as RAPv2 (Li et al., 2018b).

The PETA (Deng et al., 2014) dataset contains 8,705 pedestrians
with 19,000 pedestrian images, which is divided into 9,500 images
as the training set, 1,900 as the validation set, and 7,600 as the test
set. Each pedestrian is labeled with 65 attributes, including binary
and multi-valued attributes. For the evaluation, we follow the common
experimental protocol in Deng et al. (2014) of using only the 35
attributes with a positive rate greater than 5%.

The PA100k (Liu et al., 2017) dataset contains 100,000 pedestrian
images from 598 real outdoor surveillance cameras, which is the largest
pedestrian attribute recognition dataset. It is randomly divided into a
training set, a validation set and a test set in the ratio of 8:1:1. Each
image is labeled with 26 binary attributes.

The RAPv1 (Li et al., 2016) attribute dataset contains 41,585 pedes-
trian images extracted from 26 indoor surveillance cameras, which is
divided into 33,268 images for the training set and 8,317 for the test
set. Each image is labeled with 69 binary attributes and 3 multi-class
attributes. According to the protocol in Li et al. (2016), 51 binary
attributes are used to evaluate the recognition performance.

The RAPv2 (Li et al., 2018b) attribute dataset consists of 84,298
images extracted from 25 cameras, in which 50,957 images are used for
training, 16,986 images for verifying, and 16,985 images for testing. In
consistence with RAPv1, it has 72 attribute labels.

5.2. Evaluation metrics

To evaluate the performance of pedestrian attribute recognition,
two types of metrics are adopted. (1) Class-based metric: The mean
6

Accuracy (mA) is commonly used as a class-based metric (Deng et al.,
2014). We calculate the average of the classification accuracy of pos-
itive samples and negative samples for each attribute label as the
metric for each attribute. Then we take the average of all attributes
as the mean accuracy. (2) Instance-based metric: The instance-based
metrics (Li et al., 2016) include accuracy, precision, recall rate, and
F1-score. For accuracy, precision and recall, we first compute the
scores of predicted attributes against the ground truth for each test
image and then average the scores for overall test images. The F1-
score is computed based on precision and recall, therefore F1-score is a
comprehensive metric of precision and recall. Compared to mA, which
assumes independence between attributes, instance-based metrics take
into account the inter-attribute correlation.

5.3. Implementation details

The baseline model of Swin Transformer (Liu et al., 2021) is used as
the backbone which uses pre-training on ImageNet (Krizhevsky et al.,
2012) as the initialization. The input shape of images is reshaped to
224 × 224 with the data augmentations of randomly flip and crop. The
network is optimized by stochastic gradient descent algorithm with a
batch size of 16, a momentum of 0.9, and a weight decay of 0.0005.
The initial learning rate is set to 0.0001. The network is trained for 80
epochs. All experiments were implemented in Pytorch with one NVIDIA
RTX 3090.

5.4. Quantitative results

We compare the performance of the proposed method with 12 state-
of-the-art methods on three general datasets such as the PETA dataset,
the PA100k dataset, and the RAPv1 dataset, as shown in Table 2. In
addition, we compare the performance of the proposed method with
the current state-of-the-art methods on a newer dataset called RAPv2,
as shown in Table 3. These methods can be divided into four categories:
(1) The conventional methods based on whole image or part, such as
DeepMar (Li et al., 2015), PGDM (Li et al., 2018a), LGNet (Liu et al.,
2018a), and ALM (Tang et al., 2019). (2) The methods based on the
Sequence model, such as JRL (Wang et al., 2017) and MTSA (Ji et al.,
2020). (3) The methods based on GCN, such as VRKD (Li et al., 2019a)
and JLAC (Tan et al., 2020). (4) The methods based on attention and
prior knowledge, like HPNet (Liu et al., 2017), JLPLS-PAA (Tan et al.,
2019), CoCNN (Han et al., 2019) and SSC (Jia et al., 2021).

The results in Table 2 show that our method achieves the best
results for the instance-based metrics on three general datasets, which
demonstrates that our method can better model the correlation between
attributes than GCN-based and sequence-model-based algorithms. For
the class-based metric, our method achieves the best performance on
the PETA dataset, the PA100k dataset, and comparable performance
on the RAPv1 dataset. Compared to the PETA dataset and the PA100k
dataset, there are 51 attributes to be evaluated on the RAPv1 dataset,
which means the network needs to learn more fine-grained information
to predict these 51 attributes. JLAC and SSC achieve the best and
second-best performance in terms of mA on the RAPv1 dataset. JLAC
focuses on the significant feature regions which are related to the
attributes by modeling the contextual relation of the image with GCN.
SSC extracts more accurate attribute features by designing a spatial
consistency regularization to locate the spatial location of attributes
exactly. Although both methods achieve excellent results on mA, these
methods cannot fully utilize the association between attributes result-
ing in the performance of instance-based metrics is not very high. In
a comprehensive comparison, our method achieves relatively superior
performance. The comparison of two classical and latest methods on
RAPv2 dataset is shown in Table 3. Consistently, our method achieves
the best performance on all metrics.

Specifically, on the PETA dataset, our method improves 0.47%,
0.22%, and 0.28% than the second-best method on mA, Accu, and F1
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Table 2
Quantitative results. Comparison results with state-of-the-art methods on the PETA dataset, the PA100k dataset, and the RAPv1 dataset. The first and second results are highlighted
in bold fonts and underlined, respectively.

Methods Venue PETA PA100k RAPv1

mA Accu Prec Recall F1 mA Accu Prec Recall F1 mA Accu Prec Recall F1

DeepMar IAPR2015 82.89 75.07 83.68 83.14 83.41 72.70 70.39 82.24 80.42 81.32 73.79 62.02 74.92 76.21 75.56
PGDM ICME2018 82.97 78.08 86.86 84.68 85.76 74.95 73.08 84.36 82.24 83.29 74.31 64.57 78.86 75.90 77.35
LGNet BMVC2018 – – – – – 76.96 75.55 86.99 83.17 85.04 78.68 68.00 80.36 79.82 80.09
ALM ICCV2019 86.30 79.52 85.65 88.09 86.85 80.68 77.08 84.21 88.84 86.46 81.87 68.17 74.71 86.48 80.16

JRL ICCV2017 85.67 – 86.03 85.34 85.42 – – – – – 77.81 – 78.11 78.98 78.58
MTSA PRL2020 84.62 78.80 85.67 86.42 86.04 – – – – – 77.62 67.17 79.72 78.44 79.07

VRKD IJCAI2019 84.90 80.95 88.37 87.47 87.91 77.87 78.49 88.42 86.08 87.24 78.30 69.79 82.13 80.35 81.23
JLAC AAAI2020 86.96 80.38 87.81 87.09 87.45 82.31 79.47 87.45 87.77 87.61 83.69 69.15 79.31 82.40 80.82

HPNet ICCV2017 81.77 76.13 84.92 83.24 84.07 74.21 72.19 82.97 82.09 82.53 76.12 65.39 77.33 78.79 78.05
JLPLS-PAA TIP2019 84.88 79.46 87.42 86.33 86.87 81.61 78.89 86.83 87.73 87.27 81.25 67.91 78.56 81.45 79.98
CoCNN IJCAI2019 86.97 79.95 87.58 87.73 87.65 80.56 78.30 89.49 84.36 86.85 81.42 68.37 81.04 80.27 80.65
SSC ICCV2021 86.52 78.95 86.02 87.12 86.99 81.87 78.89 85.98 89.10 86.87 82.77 68.37 75.05 87.49 80.43

DFDT Ours 87.44±0.12 81.17±0.09 87.44±0.09 88.96±0.10 88.19±0.06 83.63±0.16 81.24±0.10 88.02±0.09 89.48±0.10 88.74±0.11 82.34±0.8 70.89±0.11 80.36±0.08 84.32±0.07 82.15±0.09
Table 3
Quantitative results. Comparison results with state-of-the-art methods on the RAPv2 dataset. The first and second results are highlighted in bold
fonts and underlined, respectively.

Methods Venue RAPv2

mA Accu Prec Recall F1

ALM ICCV2019 79.79 64.79 73.93 82.03 77.77
JLAC AAAI2020 79.23 64.42 75.69 79.18 77.40
DFDT Ours 79.96 ± 0.11 69.30 ± 0.10 79.38 ± 0.08 82.62 ± 0.10 80.97 ± 0.09
Table 4
Ablation study results. The validation of each component of the model was performed on PETA dataset, PA100k dataset, and RAPv1 dataset. The first and second results are
highlighted in bold fonts and underlined, respectively.

Methods Params FLOPs PETA PA100K RAPv1

mA Accu Prec Recall F1 mA Accu Prec Recall F1 mA Accu Prec Recall F1

Baseline 86.78M 15.12G 86.42 80.31 87.12 88.38 87.74 82.27 80.73 88.01 89.19 88.60 80.20 70.61 80.51 83.65 82.05
+ PRS 87.20M 15.13G 86.80 80.87 87.32 88.62 87.96 82.84 81.00 88.08 89.29 88.68 81.87 70.81 80.17 84.17 82.12
+ RRS 87.15M 15.13G 87.24 80.78 87.28 88.50 87.89 83.20 81.16 88.16 89.26 88.71 81.65 70.71 80.37 83.74 82.02
+ PRS + RRS (Ours) 87.59M 15.14G 87.44 81.17 87.44 88.96 88.19 83.63 81.24 88.02 89.48 88.74 82.34 70.89 80.36 84.32 82.15
respectively; which improves 1.32%, 1.77%, and 1.13% on the PA100k
dataset and 0.17%, 4.51%, and 3.2% on RAPv2 dataset. Although the
mA measure of our method is slightly overshadowed on the RAPv1
dataset, our method still improves by 1.1% and 0.92% on Accu and F1
respectively. Our method substantially outperforms the state-of-the-art
methods on the large-scale PA100k and RAPv2 datasets compared to
the PETA dataset and the RAPv1 dataset, indicating that the proposed
method is more adequately trained on larger datasets. In addition, we
have evaluated the sensitiveness of the proposed model by 5 random
trials as updated in Tables 2 and 3. We can observe that the fluctuation
of each metric is around 0.10, which demonstrates that the proposed
model is robust.

5.5. Qualitative results

To highlight the performance of the attribute-specific result of the
proposed method, we compare the mean accuracy of 35 attributes
in the PETA dataset between our method and baseline, as shown
in Fig. 4. The bars are sorted in descending order according to the
mean accuracy between the two methods at one attribute. It is evident
that our method achieves different degrees of improvement on most
attributes of the PETA dataset compared to the baseline. For some
attributes which either require detailed textures to assist in recognition
(‘‘UpperBodyThinStripe’’ and ‘‘UpperBodyLogo’’) or only cover small
parts of the images (‘‘V-neck’’ and ‘‘Sandals’’), the improvement is
particularly prominent. This evidences the effectiveness of the diverse
features suppression module in attribute recognition.

5.6. Ablation study

To verify how each module proposed in the network performance,
we perform ablation experiments on PETA dataset, PA100k dataset,
7

and RAPv1 dataset. The experimental results are shown in Table 4. We
first introduce a baseline model without using any suppression method,
then separately add Peak Regions Suppression (i.e., PRS) and Random
Regions Suppression (i.e., RRS) to the baseline model. Finally, the two
suppression methods are jointly integrated (i.e., Ours) in the baseline.

PRS and RRS boost the performance of attribute recognition on all
three datasets compared to baseline, especially in the metrics of mA
and acc, which shows the effectiveness of these two suppression mech-
anisms. Integrating both PRS and RRS further improves the recognition
performance on all three datasets, which shows that the complementary
and correlated features are learned. In addition, The proposed model
has 87.59M parameters and 15.14G computational complexity, which
only introduces 0.81M more parameters and 0.02G more computational
complexity compared with the baseline. This demonstrates that the pro-
posed model achieves superior performance with only a slight increase
in the number of parameters and the computational complexity. We
also observe that the recognition performance of baseline is impressive,
reaching comparable results with previous state-of-the-art methods.
This is because there are different degrees of correlations between
pedestrian attributes, as shown in Fig. 5, and Swin Transformer has
an excellent spatial semantic interaction modeling capability for the
pedestrian attribute recognition task. Note that the proposed method
in this paper generally achieves low precision and high recall, with an
occasional increase in one metrical leading to a decrease in another.
However, as a comprehensive measure between the precision and
recall, F1 is significantly improved by introducing two components.

5.7. Hyperparameter evaluation

There are mainly three key hyperparameters in our method, sup-
pressing factor 𝛼, the number of parts 𝑛, and random masking rate 𝑟. We

set 𝛼 = 0.9, 𝑛 = 2, and 𝑟 = 0.25 for the best performance. To demonstrate
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Fig. 4. Qualitative results. The mean accuracy comparison results between baseline and our method of all attributes on PETA dataset.

Fig. 5. The visualization of the correlation between attributes on PA100k dataset. The warm and dark colors means the strong and the weak relations respectively.

8
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Table 5
Hyperparameter evaluation results. Experiments on the suppressing factor 𝛼, the number of part 𝑛, and the random masking rate 𝑟. The first and second results are highlighted in
bold fonts and underlined, respectively.

𝛼 𝑛 𝑟

1 0.9 0.8 0.7 0 1 2 3 4 1/20 1/10 1/4 1/2

mA 87.32 87.44 87.28 87.09 86.42 87.04 87.44 87.21 87.50 87.08 87.25 87.44 87.14
Accu 81.00 81.17 81.05 80.97 80.31 80.99 81.17 80.45 81.27 81.14 80.85 81.17 81.15
Prec 87.33 87.44 87.72 87.50 87.12 87.45 87.44 86.82 87.70 87.62 87.17 87.44 87.74
Recall 88.79 88.96 88.44 88.49 88.38 88.60 88.96 88.46 88.76 88.65 88.68 88.96 88.55
F1 88.06 88.19 88.08 87.99 87.74 88.02 88.19 87.63 88.23 88.13 87.91 88.19 88.14
Fig. 6. Visualization. We use Grad-Cam (Selvaraju et al., 2017) to show the regions that network pays attention to. The parts with warm colors represent where the network
pays attention to. The first and the second line show the results on the input images with baseline and our framework respectively. We also show the prediction results for these
images using both the baseline and our method. Where the green attributes indicate attributes that were predicted correctly and the red attributes indicate attributes that were
predicted incorrectly.
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the effect of hyperparameters, we adopt the control variable method
to obtain the optimal value of one parameter by adjusting the value
of this parameter while fixing the other parameters. We conduct the
evaluation on the PETA dataset as reported in Table 5.

Suppressing factor 𝛼 in Eq. (9) indicates the degree of feature sup-
pression. With the increase of the 𝛼, there is a significant performance
mprovement in mA from 86.42 to 87.44. This indicates that setting 𝛼
o a larger value has a greater improvement than without the diverse
eature suppression module (𝛼 = 0). Especially, 𝛼 = 0.9 for the best

performance.
The number of parts 𝑛 denotes the number of shallow feature chunks

n the training phase. To be able to learn the detailed features that assist
n attribute classification, we chunk the features in the 𝐻 dimension,
nd then each chunk feature is trained separately. Compared to no
hunking in the shallow features (𝑛 = 1), chunking the features can
oost the performance. The best performance for attribute recognition
s achieved when the features are chunked into 4 parts (𝑛 = 4).
onsidering the computational complexity, we set 𝑛 = 2 to the default
alue, which achieves comparable performance with 𝑛 = 4.

Random masking rate 𝑟 indicates the percentage of suppressed
egions in the feature. The experimental results show that the perfor-
ance gained by larger or smaller 𝑟 is not very desirable. A larger r
eans that a larger number of feature regions are suppressed, and a

elatively limited number of attribute features are left for the network
o learn, which makes it difficult to further improve the attribute
ecognition performance. Smaller r means that only a small portion of
eature regions are suppressed, and these suppressed regions may not
e relevant to attribute recognition, which may not drive the network
o learn other attribute features. When 𝑟 = 1/4, the best performance
f attribute recognition is achieved.

.8. Visualization

We demonstrate the features extracted by baseline and our method
or visualization as shown in Fig. 6. Obviously, compared to base-

ine, our method focuses on a larger number of attribute regions, s

9

hich indicates that our proposed diverse feature suppression module
s able to mine more effective features for attribute recognition. In
ddition, we display the prediction results of the baseline and our
ethod for these images. The first pedestrian with short hair and a

kirt was predicted reliably by baseline to be ‘‘Female’’, ‘‘Age18–60’’,
nd ‘‘UpperShortSleeve’’, whilst the baseline only focuses on the skirt
ttribute region. This illustrates that Swin Transformer is capable of
daptively learning the correlation between attributes, and can use
his correlation to help predict attributes. But the baseline incorrectly
redicts pedestrian ‘‘ShortHair’’ attributes to ‘‘LongHair’’ attributes,
hich means that predictions by using the correlation after focusing
n an attribute region are sometimes unreliable, especially when such
orrelations do not exist for some pedestrians. In contrast, our method
ccurately predicts all attributes of the pedestrian by focusing on more
ttribute regions. This demonstrates that our proposed diverse features
uppression module can effectively alleviate the problem that Swin
ransformer relies excessively on attribute correlations for prediction.
herefore, our method enables Swin Transformer to learn meaningful
ttribute features. In addition, for the third pedestrian, the baseline
annot predict the style of the pedestrian’s upper clothes, while our
ethod accurately predicts that the pedestrian’s upper clothes are

tripped by mining into the detailed features of the upper clothes. This
llustrates that our method mines more detailed features to help Swin
ransformer distinguish the attributes with high similarity.

.9. Experiment on vehicle attribute recognition

To verify the generalization of our method, we conducted exper-
ments on the non-pedestrian attribute dataset called VeRi776 (Liu
t al., 2016). The VeRi776 (Liu et al., 2016) dataset is a vehicle dataset
ontaining over 50,000 images of 776 vehicles, with the training set
ontaining 37,778 images and the test set including 11,579 images.
ach image was captured in a real-world unconstrained surveillance

cene and labeled with a different attribute. We predict 19 attributes
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Table 6
Experimental results on the VeRi776 dataset. The first and second results are
highlighted in bold fonts and underlined, respectively.

Methods mA Accu Prec Recall F1

Baseline 50.55 20.46 39.10 21.28 27.56
+PRS 52.09 21.78 44.55 22.27 29.70
+RRS 51.67 21.34 44.05 22.27 29.59
+PRS+RRS(Ours) 52.98 22.77 45.54 22.77 30.36

on the VeRi776 (Liu et al., 2016) dataset, including 10 color attributes
and 9 vehicle type attributes. The experimental results are reported in
Table 6. In consistent with the human datasets, our method improves
the performance a lot compared to baseline and achieves promising
performance on vehicle dataset, which further evidences the generality
of the proposed method in attribute recognition.

6. Conclusion

To our best knowledge, this is the first work to resolve the Trans-
former applied to the pedestrian attribute recognition problem by fea-
ture suppression. In this paper, we first argue that the challenging factor
of Transformer applied to PAR is that Transformer relies excessively on
inter-attribute correlations to classify attributes. We have contributed
an end-to-end network (DFDT) based on diverse feature mining, fol-
lowed by two feature suppression mechanisms: peak region suppression
and random region suppression. Compared with state-of-the-art pedes-
trian attribute recognition methods, extensive experiments demonstrate
the promising performance of the proposed method. In addition, the
proposed DFDT can be extended to other multi-label learning tasks,
such as face attribute recognition and multi-object classification. In
the future, we will consider combining DFDT with the idea of mining
fine-grained attribute information for pedestrian re-identification tasks.
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