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Looking and Hearing Into Details: Dual-Enhanced
Siamese Adversarial Network

for Audio-Visual Matching
Jiaxiang Wang , Chenglong Li , Aihua Zheng , Jin Tang , and Bin Luo

Abstract—Audio-visual cross-modal matching aims to explore
the intrinsic correspondence between face images and audio clips.
Existing methods usually focus on the salient features of identities
between visual images and voice clips, while neglecting their
subtle differences, which are crucial to distinguishing cross-modal
samples. To deal with this problem, we propose a novel Dual-
enhanced Siamese Adversarial Network (DSANet), which pursues
the adversarial dual enhancement to highlight both salient and
subtle features for robust audio-visual cross-modal matching.
First, we designed a dual enhancement mechanism to enhance
potential subtle features by randomly selecting a region feature
for salient feature suppression, while enhancing salient features in
the corresponding region to ensure the global discriminative ability.
Second, to establish the correlation of subtle features in the process
of eliminating cross-modal heterogeneity, we design a siamese
adversarial structure to perform modal heterogeneity elimination
for both enhanced salient and subtle features in a parallel manner.
Moreover, we propose an adaptive masked cross-entropy loss to
force the network to focus on the feature differences among hard
classes. Experiments on public benchmark datasets validate the
effectiveness of the proposed algorithm.

Index Terms—Adaptive masked cross-entropy, audio-visual
cross-modal matching, dual enhancement mechanism, siamese
adversarial network.

I. INTRODUCTION

THE human brain can effectively link the perception be-
tween voice audio and facial information, as concluded by

the renowned psychologists Bruce and Young [1]. After associa-
tive memory with a person’s identity via face images and emitted
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audio, it is possible to access a specific person’s face by means
of audio information, and vice versa [2], [3]. Recently, there
emerge research works on this frontier topic, named audio-visual
learning, which aims to explore the connection between hearing
and vision in artificial intelligence. It has the potential appli-
cation to enhance conventional machine learning tasks, such as
audio-visual speech separation [4], audio-video localization [5],
[6], and audio-visual recognition [7], [8].

As a representative audio-visual learning task, audio-visual
matching devotes to exploring the correlation between face im-
ages and speech clips with the same identity. Nagrani et al. [9]
first propose an audio-visual cross-modal matching task and de-
sign a binary classification network to accomplish the classifi-
cation task by identity supervision. However, the huge cross-
modal heterogeneity restricts the performance considerably.
Wang et al. [10] and Nawaz et al. [11] map two modal fea-
tures through a common space and mitigate cross-modal dif-
ferences by metric constraints. However, the metric only con-
strains the distance of features between classes, while cannot
deceive the network’s perception of modality. It is well known
that generative adversarial networks (GAN) [12] can achieve
Nash equilibrium via a minimax two-player game. Therefore,
Zheng et al. [13] and Cheng et al. [14] employ GAN to elimi-
nate audio-visual cross-modal heterogeneity. Despite the recent
progress in audio-visual cross-modal matching, there are still
three problems not well addressed.

The first problem is that the salient features learned by con-
volutional neural networks (CNNs) may neglect to learn subtle
features of important information [15]. However, the hard sam-
ples are similar under different identities, and the same identity
is multi-variant in appearance under different scenarios. For this
reason, we should pay attention to subtle features to help narrow
intra-class differences and enlarge inter-class distances. There-
fore, Sun et al. [16] and Chen et al. [15] propose the salient
feature suppression module, which allows the network to learn
more subtle features. Among them, suppression for randomly
selected features is an important tool, which can make the net-
work distracted to focusing on more feature regions. However,
the salient features are significantly weakened which leads to a
decrease in the inter-class distance. In this work, we propose a
dual enhancement mechanism (DEM) to simultaneously learn
enhancement salient features while retaining the enhancement
subtle features learning. The enhancement of salient features is
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Fig. 1. Comparison of the feature distribution between the dual-enhanced
Siamese adversarial network and the one-layer adversarial network. Herein, five
identities are selected to compare their feature distributions, where each identity
has 15 samples indicated by the same color.

TABLE I
FEATURE DROPOUT RATE AND LEARNING RATE COMPARISON OF

GAN AND SAS, RESPECTIVELY, WHERE p IS THE FEATURE

DROPOUT RATE OF EACH GENERATOR

to maximize the discrimination keeping of salient features, while
the enhancement of subtle features is to improve the learning of
inter-class differences and intra-class compactness. As shown in
Fig. 1, compared with the feature distribution of a one-layer ad-
versarial network, the features extracted with dual enhancement
siamese adversarial can both improve the intra-class compact-
ness in different scenarios of the same identity and increase the
inter-class distance for similar samples of different identities.

The second issue is the existence of data heterogeneity be-
tween audio and visual modalities. Despite the achievement of
GANs [13], [14] to eliminate cross-modal data differences, a
single GAN tends to focus on salient feature learning while ig-
noring the elimination of modal heterogeneity of subtle features,
which leads to difficulties in distinguishing inter-class variations
when identifying hard samples. To solve this problem, we de-
sign GANs as a dual-stream structure, called the siamese adver-
sarial structure (SAS), which is composed of two GANs. One
GAN is used to deal with enhanced salient features to elimi-
nate modal heterogeneity to achieve cross-modal salient feature
associations, while the other GAN learns discriminative subtle
feature associations. The two GANs that share parameters learn
different features to update the model parameters separately.
Since SAS is a two-stream structure with shared parameters, the
same feature is considered unlearned in SAS only if it is dropped
twice, otherwise it can still learn cross-modal associations. As
shown in Table I, the SAS has a higher feature loss rate and
feature learning rate. The high feature dropout rate can suppress
network overfitting [17] and the high feature learning rate learns
diverse features generated from the dual enhancement mecha-
nism to increase the generalization of the network [18].

Fig. 2. Illustration of cross-entropy loss (LCE ) and our proposed AMCE loss
(LAMCE ). The audio and image matching probabilities are given the same
mask value on cross-entropy for all negative classes, while AMCE assigns the
mask of the class with a lower matching probability to 0.

The third problem is that the existing methods do not pur-
posely focus on hard samples, which may lead to slower conver-
gence and low recall [16]. However, popular loss functions for
classification tasks, such as cross-entropy, assign an equal prob-
ability of being misclassified in any of the hard negative classes,
which does not prevent misclassification among them. There-
fore, Sun et al. [16] proposed gradient-boosting cross-entropy
(GBCE) loss to resolve the ambiguity between closely related
hard negative classes. However, not every small batch has hard
negative class samples, and GBCE performs gradient optimiza-
tion by fixing the number of candidate negative classes, which
increases the optimization computation. In this paper, we pro-
pose the adaptive masked cross-entropy loss (LAMCE), which
allows the selection of hard negative classes by threshold. As
shown in Fig. 2(b), adaptive masked cross-entropy performs
gradient optimization by calculating the loss of hard negative
classes while ignoring the loss of easily distinguishable classes
to further improve inter-class discrimination.

Overall, the main contributions of this work can be summed
up as follows:
� We propose the dual enhancement mechanism that forces

the network to focus on more feature regions to find subtle
differences between identity categories.

� We propose the siamese adversarial structure which can
learn enhanced salient and subtle features with pattern-
independent audio-visual feature associations in a parallel
manner.

� We propose adaptive masked cross-entropy which enables
adaptive selection of hard negative classes to learn inter-
class distinguishability.

� A comparison with the state-of-the-art algorithm to achieve
optimal performance on the audio-visual cross-modal
matching task illustrates the effectiveness of the proposed
dual-enhanced siamese adversarial network. To verify the
general applicability of the model, we extended the model
to cross-modal audio-visual retrieval tasks as well.
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Fig. 3. Overview of our overall architecture. Our approach contains three new components: dual enhancement mechanism, siamese adversarial structure, and
adaptive masked cross-entropy loss. The DEM is used to enhance salient features to maintain discriminative ability while enhancing the learned subtle features to
help the model learn intra-class similarity and inter-class dissimilarity. The SAS removes modal heterogeneity by separating the enhanced salient features from the
enhanced subtle features. The AMCE forces the network to focus on hard negative class samples to learn inter-class variation.

II. RELATED WORK

A. Audio-Visual Matching

Audio-visual association matching has attracted a lot of re-
search attention in recent years. To the best of our knowl-
edge, Nagrani et al. [9] first proposed sound (face) to face
(voice) matching as a binary classification task. And by de-
signing two-stream deep neural networks were able to achieve
classification performance comparable to the human baseline.
Nagrani et al. [19] extended the audio-visual matching task
to verification and retrieval, which proposed a joint curricu-
lum learning and contrast loss optimization embedding net-
work. To learn a shared representation instead of directly as-
sociating audio clips and face images, Wen et al. [20] adopt
more attribute information, such as nationality and gender, com-
bined to co-supervise network training. Wang et al. [10] pro-
posed an end-to-end joint embedding network for learning face-
voice discriminative features with bi-directional ranking con-
straints, identity constraints, and centrality constraints in a small
batch of data. To discriminate between classes by using salient
and subtle features in both audio and visual data, we propose
an adversarial dual enhancement-based audio-visual match-
ing network, which is called DSANet in this paper, as shown
in Fig. 3.

Despite the great progress of the above methods in audio-
visual matching, there are still some unresolved issues. The first
problem is that the contrast loss function can only learn local
information in small batches of data, which may lead to slow
convergence of the network. The second problem is that some
hard identities are difficult to be learned effectively by the net-
work which should be ignored for this part of the sample. Wen
et al. [21] proposed a two-level modal alignment approach that
is performed for global information. Hard but valuable identi-
ties are better learned by a dynamic re-weighting scheme, while
identities that are difficult for the network to learn should be fil-
tered out. Existing work can effectively handle the task of match-
ing, verification, and retrieval between audio-visual identities,
but fails to address the heterogeneity between the two modalities,
which is an unavoidable problem. Zheng et al. [13] proposed
an adversarial measurement learning model for audio-visual
matching. The modality-independent feature representation is
learned by generative adversarial networks and combined with
similarity measures to render the learned networks more robust.

B. Cross-Modal Heterogeneity Elimination

To address the problem of cross-modal heterogeneity, Zhen
et al. [22] and Li et al. [23] proposed to mitigate modal
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heterogeneity by feature embedding layers. In contrast to the
feature embedding approach, previous studies [24], [25], [26]
proposed the GAN-based model to eliminate modal heterogene-
ity, which is an effective way to bridge cross-modal feature asso-
ciations. The method is widely applied to cross-modal retrieval,
cross-spectrum face recognition, and audio-video matching.

GAN is an effective method to mitigate modal heterogene-
ity. However, there are many differences in the final results of
selecting different adversarial models, which are determined
by the convergence of GAN. For the design of GAN, here
GANs [27], LSGANs [28] and WGANs [29] are representa-
tive network models. These GANs network models are ap-
plied to audio-visual matching to verify the effectiveness of the
models in eliminating modal heterogeneity. Therefore, Zheng
et al. [13] proposed the Wasserstein generative adversarial net-
work (WGAN) for learning modality-aligned embedding to
eliminate modal heterogeneity. Cheng et al. [14] proposed a new
adversarial deep semantic matching network to learn the inter-
action of face and voice to build associations. And triplet loss
and multimodal center loss are jointly used to explicitly regular-
ize the correspondence between them. To learn the correlation
of effective features, we adopt the Self-Attention Generative
Adversarial Network (SAGAN) proposed by Zhang et al. [30]
as the backbone of our adversarial network. Spectral parame-
ter regularization and large gradient truncation operations are
imposed on the adversarial network to achieve more stable con-
vergence. More detailed and effective methods can be read in
the audio-visual review proposed by Zhu et al. [26].

III. METHOD

We propose the Dual-enhanced Siamese Adversarial Network
(DSANet) to learn the intrinsic association between audio and
visual cross-modal data in the audio-visual matching task. In
particular, to maximize the discrimination of salient and subtle
features simultaneously, we propose a dual enhancement mecha-
nism (DEM) to maintain the discriminative ability for salient fea-
tures while learning subtle features to help expand the inter-class
feature distance and increase the intra-class compactness. Then,
we propose a siamese adversarial structure (SAS) to handle the
heterogeneity of salient and subtle features between audio and
visual data. Finally, we design the adaptive mask cross-entropy
(AMCE) loss, which enables the network to focus on hard neg-
ative class learning distinctions.

A. Dual Enhancement Mechanism

First, audio and facial image features are extracted by re-
spective convolutional networks to obtain activation maps cor-
responding to the features, such that the extracted audio and
face images activation mappings are fa ∈ RC×H×W and fv ∈
RC×H×W , respectively. Here, C is the number of channels of
activation maps, and H and W are the height and width of
the activation maps, respectively. Then, the DEM can find the
mask region M ∈ RC×HW based on the activation maps, so
that the network can enhance and suppress the activation maps
in the selected region. To make the activation maps correspond
to the mask dimension, we represent the activation maps of the

previous audio-visual features uniformly with the F ∈ RC×HW

of the transform matrix dimension. As can be seen from Fig. 3,
the mask localization is determined by both peak and patch.

Peak location: The peak mask is selected as the location of
the response value of the maximum activation map because it
is the most discriminative activation map for classification. Let
Pmax be the location of the peak maps from the activation maps
F and denoted as:

Pmax(i, j) =

{
1, if F(i, j) = max(F)
0, otherwise

, (1)

wheremax(F) denotes the maximum of activation maps matrix
F. The i and j correspond to the rows and columns of the index
matrix.

Patch location: To clarify salient and subtle features, we use
average features as thresholds for definition. For subsequent
processing, we determine the position Ps representation corre-
sponding to the salient features on the activation map as follows:

Ps(i, j) =

{
1, if F(i, j) > mean(F)
0, otherwise

. (2)

Next, we describe how to select the patch localization on the
activation mapsF. We divide eachF into a grid of patches, where
each patch Mg(l,m) is set to a fixed size r × c and indexed by
row l and columnm. The indexes of all such patches on the grid
are represented as follows:

Mg(l,m) ∈ R
C
r ×HW

c , l ∈
[
1,
C

r

]
,m ∈

[
1,
HW

c

]
, (3)

where r and c are fixed-length values for dividing activation
maps. The positions corresponding to the patch mask Mg are
set to 1 by randomly selecting l andm. Otherwise, the elements
of Mg are set to 0.

The final position of the activation maps corresponding to the
selected patch is determined by Ps and Mg together. Psg is
the corresponding position of the salient feature in the selected
patch, which is denoted as:

Psg = Ps �Mg, (4)

where � refers to the element-wise product.
Considering that the peak position may overlap with the se-

lected patch position, we set the position corresponding to the
peak in the patch to 0. The formula is as follows:

Psg(x, y) = 0, if Mg(x, y) = max(F). (5)

The final mask position corresponding to the selected activa-
tion maps is derived as:

M = Psg +Pmax. (6)

Dual enhancement: The salient features corresponding to the
patch mask can be expressed as:

Fs = M� F. (7)

The salient features can identify easily distinguishable classes
while learning more subtle features can help the network further
distinguish hard classes. Therefore, we implement the enhance-
ment of the salient features corresponding to the patch mask by
the activation factor, which is calculated as follows:

fsal = F+ α ∗ Fs, (8)
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Fig. 4. The feature activation mapping values, where the red and blue dots
represent the values higher and lower than the corresponding mean value re-
spectively. The red boxes in (a) and (c) locate the selected salient and subtle
features respectively.

where α denotes the enhancing factor. In the same way, en-
hancing the subtle features is done by suppressing the features
Fs corresponding to the activation maps mask region, which is
calculated as follows:

fsub = F− β ∗ Fs, (9)

where β denotes the suppressing factor. In general, setting both
α and β to higher numbers achieves better performance. Based
on our experimental setup, we set α to 1 and β to 0.9.

As shown in Fig. 4(b), the red features are above-average
features, which the network focuses on learning to match the
corresponding candidate identities. As shown in Fig. 4(a) and
(c), both enhancement techniques force the network to learn
different feature activation mappings, which leads to a more
robust feature representation. The results are discussed in the
experimental section.

B. Siamese Adversarial Structure

Given a matching data tuple is composed of an audio clip fa
i0

and k visual face images fv
i = {fv

i1, . . . ,f
v
ik}. The features of

the audio clip and visual face image after the dual enhancement
mechanism the features become fasal

i0 ,fasub
i0 , fvsal

ik and fvsub

ik

respectively. The dimension of each feature f ik isC ×H ×W .
The purpose of audio-visual cross-modal matching is to find
the face images in the corresponding candidate identities by
audio information and vice versa, where i is denoted as the i-th
matching data tuple. The corresponding identity is represented
by the label Li ∈ [1, k]. Note that where k = 2 denotes binary
matching and k > 2 is multi-way matching.

To alleviate the modal heterogeneity between audio and face
images, we propose to learn modality-independent representa-
tions by the SAS. The SAS consists of two generators G and
two discriminators D that share parameters during the training
process. In the following, we use the audio and visual image fea-
tures with enhanced salient features as examples to illustrate the
generative adversarial process. Audio featuresfasal

i0 and face im-
ages {fvsal

i1 , . . . ,fvsal

ik } are used as inputs toG, which generates
modality-independent features {hsal

i0 , . . . ,h
sal
ik } ∈ H. The fea-

tures {hsal
i0 , . . . ,h

sal
ik } ∈ H asD inputs are adopted by a modal

classifier to distinguish the modality of audio and face features.
Each modal feature finds the modality-independent feature space
H by a min-max game.

Generator: We use SAGAN [14] as the backbone of the
adversarial network. The generator G with parameters θG is
constructed using self-attention and fully connected (FC) layers.
The feature function after mapping throughG is represented as:

hi0 = ψ (φ (fasal
i0 ; θG)) , (10)

hij = ψ
(
φ
(
fvsal
ij ; θG

))
, j ∈ [1, k], (11)

where ψ and φ are the two FC layers and self-attention, respec-
tively, which are used to map the audio fasal

i0 and face image
features {fvsal

i1 , . . . ,fvsal

ik } to a modality-independent feature
space. Similarly, the process is used to deal with the enhanced
subtle features in the generative network.

Discriminator: The discriminator D is a binary FC network
with training parameter θD, which is used to discriminate hsal

ij

features from the original audio-visual modality. The discrimi-
nator is trained by minimizing:

Lsal
disc = − 1

N

N∑
i=1

k∑
j=0

Yij logD
(
hsal
ij ; θD

)
, (12)

where Yij represents the modality label of the j-th sample in
the i-th data tuple, D(hsal

ij ; θD) is the modality probability of
the output of D. N denotes the number of training data tuples.
Similarly, the process is used to deal with the enhanced subtle
features in the discriminator network. The loss computed for
the subtle features enhanced under the discriminator is Lsub

disc,
which has a similar form of computation to Lsal

disc. The total
discriminative loss can be represented as:

Ltotal
disc = Lsal

disc + Lsub
disc. (13)

C. Adaptive Mask Cross-Entropy Loss

To learn the distinguishability of hard samples, we propose
the adaptive mask cross-entropy (AMCE) loss, which can focus
on hard negative classes to learn inter-class variance.

Adaptive Mask Cross-entropy: As the features extracted by
the network are divided into two enhanced feature outputs via
a dual enhancement mechanism, we propose the adaptive mask
cross-entropy by calculating the loss of the enhanced salient
features. For audio fasal

i0 matching face fvsal

ik , the AMCE can
be written as follows:

Lsal
AMCE = −

k∑
j=1

ωj log
(
psalj

)
, (14)

where binary mask term ωj is a non-zero i.e. one. If ωj is all
ones, all negative samples are taken into account in the loss.

Given a probe is an instance from one modality and is utilized
to find a match among k candidates in another modality. msal

j

denotes the j-th value of the output k candidates of the classi-
fication network. By applying the sigmoid activation function,
the output probability psalj is represented by the formula shown
below:

psalj =
1

1 + e−msal
j

, (15)

where the maximum probability value for each match is pmax
j .

By setting the hyperparameters η, the corresponding masksωsal
j
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are defined as follows:

ωsal
j =

⎧⎨
⎩
1, if Li = j
1, if Li �= j and psalj − Pmax

j + η > 0
0, if Li �= j and psalj − Pmax

j + η < 0
, (16)

whereLi = j denotes the same identity for different modalities.
Based on our experiments, we set η to 0.1. The gradient formsal

i ,
is derived as:

∂Lsal
AMCE

msal
i

=

{
psalj − 1, if Li = j
ωsal
j psalj , if Li �= j

. (17)

Compared to the gradient of the binary cross-entropy loss,

∂Lsal
BCE

msal
i

=

{
psalj − 1, if Li = j
0, if Li �= j

, (18)

clearly, we have,

∂Lsal
AMCE

msal
i

>
∂Lsal

BCE

msal
i

. (19)

The larger gradient forces the network to learn to distinguish
between hard sample classes and ground truth classes.

Similarly, in the adaptive mask cross-entropy, the loss of en-
hanced subtle features is Lsub

AMCE which has the same computa-
tional form as Lsal

AMCE . The total classification loss is summed
as:

Ltotal
AMCE = Lsal

AMCE + Lsub
AMCE . (20)

D. Joint Learning Algorithm

Inspired by Peng et al. [31], we propose a structured metric to
constrain the intra-class compactness and inter-class variability
of audio-visual data, which is formulated as:

Lsal
metric =

1

2N

N∑
i=1

max
(
0, Esal

i

)
, (21)

Esal
i = log

(
max
j∈[2,k]

eθ−dsal
i0,ij + max

q∈[2,k]
eθ−dsal

i1,iq

)
+ dsali0,i1,

(22)

where dsali0,i1 measures the Euclidean distance between the cross-
modal anchor data hsali0 and the positive sample hsali1 , and dsali1,iq

measures the Euclidean distance between the same-modal an-
chor data hsali1 and the negative sample hsaliq . Considering dif-
ferent numbers of dsali0,i1 and dsali1,iq may lead to optimization
imbalance problems. Only use a negative instance that reaches
the maximum value is activated so that the imbalance problem
can be naturally avoided. θ is a hyper-parameter that controls
the margin of the distance between the negative set and positive
pair. Esal

i is used to measure the distance between the anchor
and the positive sample and the negative sample.

Equivalently, the loss of the enhanced subtle features in the
structure metric is calculated as Lsub

metric which is calculated
in the same form as the distance metric of Lsal

metric. The total
structural metric loss is denoted as:

Lm
metric = Lsal

metric + Lsub
metric. (23)

Our model uses the learned modality-independent feature rep-
resentations for classification loss and integrates structured met-
ric loss into adversarial learning. The total loss is calculated as

follows:

Lm
total = Ltotal

disc + λLm
metric + μLtotal

AMCE , (24)

where λ and μ are hyper-parameters.

E. Extension to Audio-Visual Cross-Model Retrieval

To verify the generality of the proposed DSANet, we extend
it to the more challenging task, audio-visual retrieval, which
aims to retrieve one or more matching samples from the entire
gallery for each cross-modal probe. It is a more challenging task
since the retrieved candidates are variable in appearance and
background, which leads to learning difficulty in distinguishing
a relative number of hard samples. In the retrieval training, the
original matching network is kept unchanged, and the data input
is changed to the audio-visual pair data.

In contrast to the total loss in the matching task as shown
in (24), the retrieval task learns modality-independent feature
representations by generating adversarial networks G,D and
combining global classificationCR and metric learningLr

metric.
The total loss is represented as follows:

Lr
total = Ltotal

disc + λ1Lr
metric + μ1Lcls, (25)

Lcls = − 1

N

N∑
i=1

k∑
j=1

li logCR

({
hsub
i0 − hsub

ij

}
; θCR

)

− 1

N

N∑
i=1

k∑
j=1

li logCR

({
hsal
i0 − hsal

ij

}
; θCR

)
,

(26)

Lr
metric = Lm

metric +
1

N

N∑
i=1

||hsub
i − csubLi

||

+
1

N

N∑
i=1

||hsal
i − csalLi

||, (27)

where θCR
denotes network parameters of classification network

CR.CR

({
hsal
i0 − hsal

ij

}
; θCR

)
andCR

({
hsub
i0 − hsub

ij

}
; θCR

)
are the distance between the enhanced audio and face modalities
of salient features and subtle features respectively.Li is the label
of the i-th image in a mini-batch. ci denotes theLi-th class center
of deep features [32]. λ1 and μ1 are hyper-parameters.

IV. EXPERIMENTS

A. Implementation Details

Network architecture: We conduct our experiments on
NVIDIA GeForce RTX 3090 graphic card. The PyTorch archi-
tecture with python version 3.7 is used to execute the commands.
We employ ResNet18 [33] as the feature extractor backbone.
The inputs are face image with the shape of 224 ∗ 224 ∗ 3 and
audio clip spectrogram with 224 ∗ 125 ∗ 1. We transfer the au-
dio and image separately to the corresponding feature extrac-
tors to obtain features with the same size of 12 ∗ 12 ∗ 32. In the
adversarial learning process, the generation module contains a
self-attention and FC layers with spectral parametric regulariza-
tion, and transforms the 4068-dimensional features of audio and
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TABLE II
THE DATA SPLITTING TO TRAINING, VALIDATION, AND TESTING AFTER

SAMPLING

visual modalities into 256-dimensions, and then to 128 dimen-
sions. Then, the discriminator is a binary classification network
that outputs a 2-dimensional representation of the probability be-
longing to the corresponding modality. For the matching task, the
feature combination of the anchor sample and k candidate match-
ing samples is (k + 1) ∗ 128 dimension, which is classified as
k-dimensional output to represent the probability of matching
between them. For the retrieval task, the distance between the
anchor samples and each candidate sample is represented as a
128-dimensional feature that is categorized as a 1-dimensional
output to denote the matching relationship between the
samples.

Evaluation protocol: The cross-modal matching performance
is measured in terms of accuracy (ACC). During the match-
ing training process, we set the batch size to 50 and use
Adam [34] with a momentum of 0.9 and weight decay of 0.0005
to fine-tune the network. The initial learning rate of the siamese
generator, the siamese discriminator, and the classification are
5e− 3, 5e− 3, and 5e− 2 respectively. The learning rates of
the siamese-generator and siamese-discriminator are both de-
layed from 5e− 3 to 5e− 5, while from 5e− 2 to 5e− 4 for
the classifiers. The retrieval results are reported in terms of mean
average precision (mAP). During the retrieval training process,
we used Adam [34] as the optimizer, where the batch size and
momentum were set to 128 and 0.9, respectively. Siamese gen-
erator, Siamese discriminator, and classifier learning rates were
initialized to 5e− 3, 5e− 3, and 5e− 2 respectively, and de-
cayed by 0.1 in 600 and 1 k iterations with a maximum iteration
Tmax of 1.2 k.

Dataset: The performance of the proposed algorithm is evalu-
ated on Voxceleb [35] and VGGFace [36] public datasets, which
contain 149354 speech segments for 1225 speaker identities and
137060 face images for 1225 face identities, respectively, where
the speech identities are aligned with the face identities. For a
fair comparison, the number of sampled data and the segmenta-
tion scheme is referred to [20], [21], where the validation set is
composed of data with the names of people starting with [’A,’
‘B’], and the test set has consisted of data with the names of
people starting with [’C,’ ‘D,’ ‘E’], and the rest of people were
selected as the training set. Table II shows the information on
the data splitting.

B. Comparison Results

In order to evaluate the effectiveness of the proposed method
(DSANet), Table IV reports the comparison results with five
state-of-the-art algorithms, including AML [13], Wen et al. [21],
SVHF [9], DIMNet [20] and Wang et al. [10], followed by the

TABLE III
COMPARISON RESULTS OF AUDIO-VISUAL MATCHING WITH THE

STATE-OF-THE-ART METHOD IN THE BINARY (k = 2) AND MULTI-BINARY

(k = 10) CASES

Fig. 5. The quantitative results of 1 : k matching task in V-F and F-V scenario,
where k indicates the number of matching candidates in the gallery.

data splitting scheme in Wen et al. [21]. We can see that our
model outperforms the other algorithms in both audio-visual
matching and retrieval tasks in both V-F and F-V scenarios, with
an average improvement of about 1.5%, which evidences the ef-
fectiveness of the proposed DSANet for correlating cross-modal
audio and visual information. Note that the performance of F-V
is generally inferior to the V-F scenario in both binary and
multi-way cases. The main reason is, as the visual informa-
tion, audio signals are more sensitive to the environment and
present higher inter-class similarity compared with the facial
images [37]. This leads to relative difficulty to distinguish the
voice audio features in the F-V scenario. Furthermore, for a
fair comparison, we conduct the experiments in the audio-visual
matching task following the data splitting scheme in PINs [19]
as shown in Table III. Consistently, our DSANet significantly
outperforms the state-of-the-art methods on all the metrics.

To further validate the superiority of our method, we compare
the 1 : k multi-way matching results in Fig. 5 . In multi-way
matching, the accuracy decreases as the number of matching
candidates increases, but our method maintains a better perfor-
mance overall, especially in V-F multi-way cases, where we
have a smaller drop than any other algorithms, which also val-
idates the robustness of our proposed model. The retrieval re-
sults present really poor performance as shown in Table IV since
the retrieved candidates are variable in appearance and context,
which leads to difficulties in learning robust intrinsic associa-
tions for audio-visual data. Even though, we are still able to
achieve the most superior performance with the dual-enhanced
siamese adversarial network, which demonstrates that it can
learn relatively robust associations between audio-visual data.
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TABLE IV
THE QUALITATIVE RESULTS OF MATCHING AND RETRIEVAL TASKS. BINARY DENOTES THE 1:2 MATCHING WHILE MULTI-WAY

DENOTES THE 1:k (k = 10) MATCHING

TABLE V
ABLATION STUDY OF PROPOSED DSANET ON THE AUDIO-VISUAL

MATCHING TASK IN BINARY (WHEN k = 2) CASES

Due to the extremely low performance of the retrieval, we eval-
uate the following experiments only on matching tasks.

C. Ablation Study

Effects of different components: To verify the effectiveness
of our proposed three components, we perform ablation exper-
iments on the proposed dual enhancement mechanism (DEM),
siamese adversarial structure (SAS), and adaptive mask cross-
entropy (AMCE) loss respectively in the binary-way matching
task. The performance of V-F and F-V matching on the base-
line model is 90.2% and 86.6%, respectively in Table V(a).
Integrating siamese adversarial structure and adaptive mask
cross-entropy loss effectively improves the performance of the
baseline, as shown in Table V(c) and (d). As shown in Ta-
ble V(b), direct integrating the dual enhancement mechanism
(DEM) slightly decreases the matching performance of the base-
line. The main reason is that the subtle features mined by DEM
are not guaranteed to eliminate pattern heterogeneity in a sin-
gle GAN. Meanwhile, the two enhanced features have relatively
abundant common information, which also degrades the perfor-
mance due to information redundancy. However, based on the
siamese adversarial structure, the dual enhancement mechanism
significantly improves the performance, comparing Table V(e)
with (c), or comparing Table V(g) with (f). This demonstrates

Fig. 6. Demonstration of the three dual enhancement mechanism schemes,
where the numbers 2, 6, and 14 denote the number of GANs [30] in the siamese
adversarial structure with shared parameters, respectively.

TABLE VI
THE NEW NETWORK STRUCTURE IS FORMED BY CASCADING

MULTIPLE LAYERS OF DEM MODULES

that each of our proposed components makes a positive contri-
bution. Utilizing all three components achieves the best perfor-
mance.

Evaluation on Dual Enhancement Mechanism: To further
evaluate the effectiveness of the proposed dual enhancement
mechanism, we design three dual enhancement structures as
shown in Fig. 6(a), (b), and (c). Note that cascading multiple
dual enhancement mechanisms in a network framework does
not significantly improve network performance as shown in
Table VI. Considering the complexity of the model, we use the
1-layer dual enhancement mechanism in the training network if
not specified. Furthermore, our proposed DSANet model uses
only a 1-layer dual enhancement mechanism. We demonstrate
the features extracted by DSANet for visualization as shown in
Fig. 7. Our DSANet with the dual enhancement mechanism of
1-layer can focus on relatively sufficient feature regions. The
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Fig. 7. Class activation maps (CAM) generated by the proposed DSANet
compared with the baseline.

TABLE VII
THE IMPACT OF THE PRESENCE AND ABSENCE OF SAS ON THE MODEL IS

COMPARED IN THE BINARY AUDIO-VISUAL MATCHING TASK

dual enhancement mechanism is too diverse for the extracted
features, which forces the network to focus on different feature
regions. However, the multi-layer dual enhancement mechanism
only increases the number of diverse features which may not
learn more associations between audio and visual feature re-
gions. As can be seen from Fig. 7, the network tends to focus
on the forehead and mouth more compared to the eyes. This is
because the face motion of the same identity varies greatly in
the data, while the information on the forehead and mouth is
relatively stable, which enables the features of this region to be
easily learned as well as associated with the audio clip features.

Evaluation on Siamese Adversarial Structure: To further vali-
date the effectiveness of the proposed siamese adversarial struc-
ture, we compare the performance of the enhanced features by
handling enhanced features in two adversarial forms. To demon-
strate each scheme, we combine the feature enhancement ap-
proach and the adversarial forms into five structures, as shown
in Fig. 8(a), (b), (c), (d), and (e). Among them, Fig. 8(a), (b),
and (c) are only subtle features, only salient features and salient
and subtle features combined are enhanced, respectively, and the
matching performance is obtained by the single-stream adver-
sarial structure. While Fig. 8(d) and (e) are enhanced with only
subtle features and only salient features, respectively, and the
matching performance is obtained by the siamese adversarial
structure. As shown in Table VII, the single-stream adversarial

Fig. 8. Five combinations of feature enhancement methods and adversarial
approaches.

structure obtains lower performance than the siamese adversar-
ial structure in all cases. Our proposed DSANet is a parallel
input of enhanced salient features and enhanced subtle features
into the siamese adversarial structure, which can capture more
regions of features for model robustness, thus it is outperformed
by the baseline network. This further validates that the designed
siamese adversarial structure is effective.

Evaluation on Adaptive Mask Cross-entropy loss: To learn to
distinguish hard samples, we introduce LAMCE loss to focus on
hard negative class samples for learning inter-class variability.
To verify the effectiveness of AMCE, we compared it with three
state-of-the-art cross-entropy methods, binary cross-entropy
(LBCE) [13], gradient-boosting cross-entropy (LGBCE) [16]
and focal loss (LFocal) [38], on binary and multi-way matching
tasks. LGBCE has low performance in the binary matching case
due to a smaller number of negative sample comparisons, while
LFocal does not eliminate simple samples compared to LAMCE

to learn distinction for hard samples. The other cross entropy
directly replaces the adaptive mask cross entropy to calculate
the matching probability loss of the classification. As shown in
Table VIII, LAMCE outperforms the other two losses in the bi-
nary task and can also perform comparably in the multi-way
case.

Evaluation on Adversarial Network: To verify the impact
of modal heterogeneity elimination on network performance,
we use multiple adversarial networks on DSANet to evalu-
ate the ability to handle modal heterogeneity. Specifically, all
three original GAN [12], Wasserstein GAN (WGAN) [29] and
self-attention GAN (SAGAN) [30] were designed to compare
the output performance of the siamese structure. It can be seen
from Table IX that superior performance can be achieved when
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TABLE VIII
COMPARISON OF THE PERFORMANCE IMPACT OF FOUR CROSS-ENTROPY

LOSSES ON BINARY AND MULTI-WAY 1: k (k=10) CASES FOR

AUDIO-VISUAL MATCHING

TABLE IX
COMPARISON TO DIFFERENT ADVERSARIAL NETWORK METHODS ON

AUDIO-VISUAL MATCHING TASK

TABLE X
COMPARISON TO DIFFERENT METRIC LOSS ON AUDIO-VISUAL

MATCHING TASK

the SAGAN is used. This also validates that generative ad-
versarial networks can play an important role in audio-visual
cross-modal matching tasks.

Evaluation on Metric Learning: To evaluate the dependence
of the proposed DSANet method on metric loss, our proposed
structural metric is compared with the commonly used the triplet
loss [39] and the lifted struct loss [40]. In the audio-visual
cross-modal matching task, we propose a structural metric
with both intra-modal metric (positive-negative) and inter-modal
(anchor-positive and anchor-negative) metric constraints. The
triplet loss [39] is simply a comparison of the inter-modal dis-
tance (anchor-positive) with the intra-modal distance (positive-
negative). Compared to the triple loss, the structural metric can
better constrain the identity feature distribution to reach a more
robust performance. The lifted structure loss [40] and structure
metric loss have the same distance constraint. And there is only
one negative class sample in the binary matching such that the
results are consistent under the metric constraint. In the case
of multi-way matching, the former sums over all negative class
sample distances while the latter selects the minimum nega-
tive class sample distance, which naturally avoids the positive
and negative sample distance statistical imbalance problem. The
comparison results are shown in Table X, which verifies that the
structure metric is more effective in the cross-modal matching
of audio and visuals.

TABLE XI
COMPARISON OF DIFFERENT FEATURE SELECTION STRATEGIES IN THE

BINARY AUDIO-VISUAL MATCHING TASK

TABLE XII
THE EFFECTS OF HYPERPARAMETERS OF λ, μ, α, β, c, AND r ON BINARY

MATCHING TASK AND THE EFFECTS OF λ1 AND μ1 ON RETRIEVAL TASK

Evaluation on Feature Selection Strategy: To verify the ef-
fects of different feature selection strategies, we evaluate mul-
tiple different feature selection strategies and two feature ma-
nipulation techniques in our network. The feature suppres-
sion technique helps the network focus on more subtle feature
regions [15], [16]. However, with only one feature selection
strategy, the model falls slightly below the superior performance,
as shown in Table XI(a-b). The feature enhancement technique
also helps to improve the performance of the model, which is
less affected by the feature selection strategy, as shown in Ta-
ble XI(c-d). Therefore, we operate both feature enhancement
and feature suppression techniques under the peak region, the
randomly selected region, and the combined region of the two
regions. As can be seen in Table XI(e-g), we achieve the best per-
formance by simultaneously performing the dual enhancement
mechanism on the features selected from both selection strate-
gies, which indicates the effectiveness of both feature selection
strategies.

D. Hyper-Parameters Analysis

We analyze the hyperparameters of λ, μ, α, β, c, r, λ1 and μ1

in this paper. Specifically, λ and μ in (24) indicate the weights
of structured metric and adaptive masked cross-entropy in the
matching loss, α and β in (8) and (9) indicate the factors of
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salient features and subtle feature enhancement, respectively. c
and r in (3) determine the random patch locations, while λ1 and
μ1 in (25) indicate the weights in the retrieval loss. As shown in
Table XII, the matching task is not sensitive to the hyperparam-
eters λ, μ, α, and β, while the superior performance is achieved
when λ = 2, μ = 3, α = 1, β = 0.9, c = 4, and r = 4. By con-
trast, the retrieval task is more sensitive to the hyperparameters
λ1 and μ1 since the overall performance of the retrieval task
is extremely poor due to the huge challenge of retrieving the
cross-modality audio-visual data. Therefore, how to balance the
global classification loss and metric loss is very important for
the model to obtain robust performance.

V. CONCLUSION

The association present between the visual and audio infor-
mation has attracted the attention of researchers. To find a highly
matching relationship between the audio-visual cross-modal
data, we developed a novel Dual-enhanced Siamese Adversar-
ial Network (DSANet). Specifically, we first randomly select
a region in which salient features are enhanced to maintain
inter-class discriminability while salient features are suppressed
for enhancing subtle features to help improve intra-class com-
pactness and inter-class discriminability. Then, to uncouple the
mutual impact between enhanced subtle and salient features,
we eliminate the modal heterogeneity between enhanced salient
and subtle features by siamese adversarial networks in a paral-
lel manner. In addition, the network is further forced to focus
on learning feature variances between hard classes by the adap-
tive masked cross-entropy loss. Experimental results on audio
and face image data validate that the proposed DSANet com-
pares favorably with state-of-the-art audio-visual cross-modal
matching algorithms. In the future, we will apply the proposed
DSANet model to other cross-modal data to implement tasks
such as recognition and localization to prove the generalization
of the model.
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