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Highlights

ProxyMix: Proxy-based Mixup Training with Label Refinery for Source-Free
Domain Adaptation

Yuhe Ding, Lijun Sheng, Jian Liang, Aihua Zheng, Ran He

• We propose a simple yet effective method, ProxyMix, for source-free do-
main adaptation, which aims to discover a proxy source domain and utilize
mixup training to implicitly bridge the gap between the target domain and
the unseen source domain.

• To obtain a reliable proxy source domain, we exploit the network weights
of the source model and select source-like samples from the target domain
in an efficient and accurate way.

• To refine the noisy pseudo labels during alignment, we further propose a
new frequency-weighted aggregation strategy, compacting the target feature
clusters and avoiding bias to the majority and easy classes.
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ProxyMix: Proxy-based Mixup Training with Label
Refinery for Source-Free Domain Adaptation

Yuhe Ding1, Lijun Sheng3,4, Jian Liang3,∗, Aihua Zheng2, Ran He3

Abstract

Due to privacy concerns and data transmission issues, Source-free Unsupervised
Domain Adaptation (SFDA) has gained popularity. It exploits pre-trained source
models, rather than raw source data for target learning, to transfer knowledge from
a labeled source domain to an unlabeled target domain. Existing methods solve
this problem typically with additional parameters or noisy pseudo labels, and we
propose an effective method named Proxy-based Mixup training with label refin-
ery (ProxyMix) to avoid these drawbacks. To avoid additional parameters and
leverages information in the source model, ProxyMix defines classifier weights as
class prototypes and creates a class-balanced proxy source domain using nearest
neighbors of the prototypes. To improve the reliability of pseudo labels, we fur-
ther propose the frequency-weighted aggregation strategy to generate soft pseudo
labels for unlabeled target data. Our strategy utilizes target features’ internal struc-
ture, increases weights of low-frequency class samples, and aligns the proxy and
target domains using inter- and intra-domain mixup regularization. This mitigates
the negative impact of noisy labels. Experiments on three 2D image and 3D point
cloud object recognition benchmarks demonstrate that ProxyMix yields state-of-
the-art performance for source-free UDA tasks.

⋆Code is available at https://github.com/YuheD/ProxyMix.
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1. Introduction

The standard practice in the deep learning era—learning with massively la-
beled data—becomes expensive and laborious in many real-world scenarios. Be-
sides, the learned models often perform poorly in generalization to new unlabeled
domains due to the domain discrepancy [1]. Hence, considerable efforts are de-
voted to unsupervised domain adaptation (UDA) [2, 3, 4, 5], which aims to trans-
fer knowledge from a labeled source dataset to an unlabeled target dataset. In
recent years, UDA methods have been widely explored in various tasks such as
image classification [4] and semantic segmentation [6]. The key problem of UDA
is to alleviate the gap across different domains. Prior UDA methods mainly fall
into three paradigms. The first paradigm aims to pull the statistical moments of
different feature distributions closer [7, 8], and the second paradigm introduces ad-
versarial training with additional discriminators [4, 9]. The last paradigm adopts
various regularizations on the target network outputs like self-training or entropy-
related objectives [10, 11]. Despite the impressive progress, it is important to
note that the availability of source data remains essential for domain alignment.
However, this requirement can raise data privacy concerns in today’s world.

The practical demand directly motivates a novel UDA setting named source-
free domain adaptation (SFDA) [12, 13], where only the well-trained source
model instead of the well-annotated source dataset is provided to the target do-
main. The booming efforts in the SFDA community are either generation-based
or pseudo label-based. The generation-based methods [13, 14, 15] introduce ex-
tra generative modules to recover the unseen source domain at image-level or
feature-level, and then address this problem from a UDA perspective. Neverthe-
less, generative modules introduce additional parameters, and the recovered vir-
tual source domain usually suffers from a mode collapse problem, which results in
low-quality images or features. The pseudo label-based methods [15, 16, 17, 18]
label the target samples based on the present model’s prediction or feature struc-
ture. However, due to the extreme domain shift, the noises are inescapable, result-
ing in an inaccurate decision boundary.

To address the issues above (additional parameters and noisy labels), we pro-
pose a new and effective method called Proxy-based Mixup training with label
refinery (ProxyMix), to deal with the source-free domain adaptation problem. To
bridge the gap between the unseen source domain and the target domain while
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Figure 1: The motivation of ProxyMix, which aligns the unseen source domain and target
domain by two aspects: 1) aligning the proxy and target domain; and 2) refining the
pseudo labels.

Figure 2: The accuracies per task of proxy source domain on Office-home.

avoiding introducing extra parameters, we first select part of source-similar sam-
ples from the target domain rather than synthesize virtual images to construct a
proxy source domain. Specifically, we define the weights of the source classi-
fier as the class prototypes [19], then select the nearest neighbors for each class
prototype in angle space to construct the proxy source domain. Priors methods
with proxy source domain primarily employ entropy-criterion [16, 20], which se-
lect samples with lower entropy for each class from pseudo-labeled target data.
In practice, as shown in Fig. 2, we observe that the mean accuracy of our angle-
induced proxy source domain is clearly higher than the entropy criterion. Another
significant benefit is that our pseudo labels are determined by the corresponding
prototype, rather than the predictions from the source model, allowing us to create
a class-balanced proxy source domain.

To improve the reliability of pseudo labels, we propose a frequency-weighted
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aggregation pseudo-labeling strategy (FA) as pseudo label refinery. FA includes
three operations applied to the predictions: sharpening, re-weighting, and aggre-
gation. Specifically, to avoid the ambiguous, we first sharpen the predictions of
the classifier. At the same time, we take the frequency of each class into account
and re-weight the probability of each class, to improve the contribution of low-
frequency classes and avoid bias to the majority and easy classes in the target
domain during gradient updating. Then we introduce a non-parametric neigh-
borhood aggregation strategy to pull the unlabeled target features close to their
semantic neighbors, aiming to reduce the impact of outlier noisy labels and com-
pact the semantic clusters.

With the proxy source domain, we tackle the challenging SFDA problem using
a semi-supervised style with the aid of refined pseudo labels. To align the proxy
and target domain, while alleviating the negative consequence of noisy labels, two
mixup regularizations [21, 22, 23, 24], i.e., inter-domain and intra-domain mixup,
are incorporated into our framework, enforcing the model to maintain consistency,
thus improving the robustness against noisy labels. As illustrated in Fig. 1, the
FA strategy refines the pseudo labels and compacts the feature clusters while the
mixup training aligns the two domains, obtaining clear decision boundaries.

To summarize, the main contributions of this work are listed below in three-
fold:

• We propose a simple yet effective method, ProxyMix, for source-free do-
main adaptation, which aims to discover a proxy source domain and utilize
mixup training to implicitly bridge the gap between the target domain and
the unseen source domain.

• To obtain a reliable proxy source domain, we exploit the network weights
of the source model and select source-like samples from the target domain
in an efficient and accurate way.

• To refine the noisy pseudo labels during alignment, we further propose a
new frequency-weighted aggregation strategy, compacting the target feature
clusters and avoiding bias to the majority and easy classes.

We conduct ablation studies to verify the contribution and effectiveness of
both proxy source domain construction and pseudo label refinery. Extensive re-
sults on four datasets further validate that ProxyMix yields comparable or superior
performance to the state-of-the-art SFDA methods.
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2. Related Work

2.1. Unsupervised Domain Adaptation (UDA)
UDA aims to transfer knowledge from a label-rich source domain to an unla-

beled target domain. UDA problems can be classified into four cases according to
the relationship between the source and target domain, i.e., closed-set [25], partial-
set [26], open-set [27], and universal [28]. As a typical example of transfer learn-
ing, UDA provides methods to bridge domain gaps for various applications such
as object recognition [29, 4, 2, 30, 3, 31, 32] and semantic segmentation [6, 10].
The most prevailing paradigm for UDA is to extract domain-invariant features to
align different domains while preserving the category information from the la-
beled source domain. Roughly speaking, existing feature-level domain alignment
could be divided into two different categories. The first line [4, 9, 5] aligns repre-
sentations by fooling a domain discriminator through adversarial training, while
the second line [29, 33] directly minimizes different discrepancy metrics (e.g.,
statistical moments) to match the feature distributions. Besides, another line [34]
focuses on the image space alignment and converts the target image into a source-
style image (and visa versa). By contrast, output-level regularization methods
[11, 35] achieve implicit domain alignment by forcing the target outputs to be di-
verse one-hot encodings. [36] proposes an auxiliary classifier for target data to get
the high-quality pseudo labels and [37] introduces cycle self-training by utilizing
target pseudo labels to train another head and enforce them to perform well on
the source domain. [38, 39] are the two most closely related works that introduce
mixup training into adversarial UDA. However, our method does not require ac-
cess to source data and develops a new pseudo label refinery strategy instead of
focusing on the mixing manner.

2.2. Source-free Domain Adaptation (SFDA)
SFDA can be seen as a special case of Test-Time Adaptation (TTA) [40],

which involves adapting a pre-trained model from the source domain to unlabeled
data in the target domain before making predictions. Different from the other
types of TTA methods [41, 42, 43, 44], SFDA involves utilizing all test data (target
data) during adaptation and performing multi-epoch adaptation before generating
final predictions. Before the deep learning era, there are a number of transfer
learning works [45, 46, 47, 48, 49] without source data that have been empirically
successful. The last two years have witnessed an increasing number of SFDA ap-
proaches [15, 16, 17, 18], most of which are generation-based [13, 14, 15, 50, 51]
or self-training [12, 52, 53, 54, 55, 56, 57, 58] based methods. Generation-based
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methods [14, 15, 13, 59, 20, 51] generate virtual high-level features of the source
domain to bridge the unseen source and target distribution. Self-training-based
methods seek to refine the source model by using self-supervised techniques, with
the pseudo label technique [12, 52] being the most extensively employed. How-
ever, generating source samples usually introduces additional modules such as
generators or discriminators, while pseudo-labeling might lead to wrong labels
due to domain shift, both of which cause negative effects on the adaptation proce-
dure. Another practice [59, 20, 16] is selecting part of the target data as a pseudo
source domain, to compensate for the unseen source domain. A typical method
is entropy-criterion [16], which constructs the pseudo source domain by estimat-
ing a split ratio using the target dataset’s mean and maximum entropy, and then
uses the split ratio to choose samples with lower entropy for all pseudo-labeled
target domains within each class. The entropy criterion provides a proxy source
domain with a huge number of samples. However, the existence of hard classes
and domain shift, causes the entropy criterion to suffer from a severe class imbal-
ance problem. Despite the fact that [20] attempts to tackle this problem by simply
choosing the same number for each class, there is no data in some hard classes,
so the class-imbalance problem is unavoidable. Unlike the previous works, our
method builds the proxy source domain directly from the target domain using the
source classifier weights, which is flexible and works well for SFDA. Besides,
our mixup training strategy is also different from theirs, which transfers the label
information from the proxy source to the unlabeled target domain.

2.3. Semi-Supervised Learning (SSL)
SSL aims to combine supervised learning and unsupervised learning, lever-

aging the vast amount of unlabeled data with limited labeled data to improve the
performance of the classifier and to deal with the scenarios where labeled data is
scarce [60]. As opposed to the domain adaptation problem, SSL deals with sam-
ples from two identical domains. SSL has flourished in recent years [61, 62, 63],
temporal ensemble [64] introduces self-ensembling, forming a consensus predic-
tion of the unknown labels using the outputs of the network-in-training on dif-
ferent epochs; MixMatch [22] proposes a holistic approach for data-augmented
unlabeled examples and mixing labeled and unlabeled data using mixup; ReMix-
Match [23] aligns the distribution of labeled and unlabeled data. FixMatch [65]
demonstrates the strong performance of consistency regularizations and pseudo
labels; SoftMatch [66] derives a truncated Gaussian function to weight samples
based on their confidence; AdaMatch [24] proposes a unified approach to solve the
unsupervised domain adaptation, semi-supervised learning, and semi-supervised

6
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Figure 3: Overview of ProxyMix on solving source-free domain adaptation. We treat the
weights of the classifier as class prototypes to choose a series of confident samples to con-
struct a class-balanced proxy source domain. Then the proxy source samples participate
in two types of mixup training based on the proposed frequency-weighted soft label.

domain adaptation problems. Existing methods demonstrate the usefulness of
mixup training in aligning distributions, and the growing popularity of SSL mo-
tivates us to convert the SFDA problem to an SSL challenge. Such methods use
true labels, which are not available in our task, and these labels provide strong and
diverse supervision. Our data is pseudo-labeled, with little diversity and a lot of
noise, so these semi-supervised learning approaches cannot be directly applied to
our problem.

3. Methodology

This paper mainly follows the problem definition of SHOT [12] and focuses on
a K-way visual classification task. We aim to learn a target model ft : Xt → Yt,
and predict the label yit ∈ Yt for an input target image xi

t ∈ Xt with only target
data Xt and the well-trained source model fs : Xs → Ys. The model consists of
two modules: the feature extractor g : X → Rd and the classifier h : Rd → RK .

Following the standard paradigm of SFDA [12], as a preliminary, we train the
source model fs with the label smoothing [67] technique:

Lls
src (fs;Xs,Ys) = −E(xs,ys)∈Xs×Ys

K∑

k=1

lsk log δk (fs (xs)) , (1)

7
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where lsk = (1 − α)qsk + α/K, qs is the one-hot encoding of ys, α = 0.1 is
the smoothing parameter, and δk(a) = exp(ak)∑

i exp(ai)
is the soft-max output of the

K-dimensional vector a ∈ RK .
During adaptation, we directly initialize the target model with the well-trained

source model ft = fs, then freeze the classifier and fine-tune the feature extractor
to ensure the target features are implicitly aligned with unseen source features via
a same hypothesis. It is worth noting that we do not adopt the special design of
normalization techniques of SHOT [12] for simplicity and commonality.

3.1. Proxy Source Domain Construction by Prototypes
Recently, semi-supervised learning approaches [22, 23] have also shown im-

pressive achievements on the UDA problem, and Rukhovich et al. [68] even wins
the VisDA competition by directly exploiting MixMatch [22] in 2019. Inspired
by them, we construct the proxy source domain by pseudo-labeling portions of
confident samples (source-similar samples) and try to solve the SFDA task in a
semi-supervised style. Since the source data Xs is unavailable, we expect to mine
the source information from the model fs. Previous works [69, 70] leverage the
weights of the classifier as class prototypes in other fields, and obtain positive re-
sults. Another classical practice [19] exposes that the classifier weight vector of
a well-trained last-layer classifier converges to a high-dimension geometry struc-
ture, which maximally separates the pair-wise angles of all classes in the classifier.
Therefore, inspired by these works, it is natural to select the nearest neighbors of
classifiers’ weights in angle space to construct the proxy source domain. Con-
cretely, we first define the weights {w1, w2, ...wK}Kk=1 of the classifier hs as the
class prototypes, where K is the number of categories. We use the class prototype
wk as the cluster centroid to search and pseudo-label N nearest samples in the
unlabeled target domain Xt for the purpose of forming proxy source domain Xps:

{Xps,Yps} = {X 1
ps, 1} ∪ · · · ∪ {XK

ps , K},
where X k

ps = {xps;xps ∈ minN
xt

(⟨gs(xt), wk⟩)}, (2)

and minN
xt

(·)Kk=1 denotes choosing N samples xt with minimum distance for each

class, N is a hyper-parameter, deciding how many samples we select in each class.
To prevent the negative consequences caused by class imbalance, we select the
same number of samples for each class. ⟨a, b⟩ measures the distance between a
and b in angle space, we use the cosine similarity by default. For these proxy

8
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source data, we directly calculate the cross entropy loss with labeling smoothing
in the following,

Lps (ft;Xps,Yps) = −E(xps,yps)∈Xps×Yps

K∑

k=1

lpsk log δk (ft (xps)) , (3)

where lpsk = (1 − α)qpsk + α/K is the smoothed label, qps denotes the one-hot
encoding of yps.

3.2. Pseudo-labeling by Frequency-weighted Aggregation (FA)
Pseudo-labeling is a heuristic approach to semi-supervised learning, which

progressively treats the predictions on unlabeled data as true labels, and often em-
ploys cross-entropy loss during training. However, in an unsupervised learning
setting, the class distribution is unknown, and the model is biased towards easy
classes. To mitigate the imbalance and sensitivity of pseudo labels, inspired by
several classical works [36, 71], we propose a new pseudo label refinery strategy
to get reliable soft pseudo labels in the presence of domain shift. In specific, we
adjust the class distribution of the prediction to alleviate the class imbalance, and
then we use the center of semantic neighbors as the pseudo label, rather than de-
pending on a single prediction. This compacts the cluster by pulling the unlabeled
target features closer to their semantic neighbors, resulting in a clear classification
boundary. Note that hard labels reinforce the confidence of the current model,
while losing some information. Hence we use the soft predictions rather than the
one-hot vectors as the pseudo labels, which are able to provide more distribution
information and decrease the negative effect of corrupted one-hot labels.
Neighborhood Aggregation. To leverage the local data structure, we employ the
neighborhood aggregation strategy [36], which is based on the idea of message
passing via neighbors, to adjust the predictions of the input target data. Concretely,
we construct a large memory bank to store both the features and the predictions
of target data. During pseudo-labeling, we retrieve m nearest neighbors from
the memory bank for each sample in the current mini-batch according to their
features gt(xi

t), and calculate the soft label q̂i of data point xi
t by aggregating these

predictions of feature-level neighbors:

q̂i =
1

m

∑

j ̸=i,j∈Ni

p̌j, (4)

9
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Figure 4: Illustration of the frequency-weighted strategy as label refinery. We first sharpen
the predictions to the second power and then normalize the predictions by the frequency
per class.

where Ni is the neighbor index set of the data xi
t, p̌j are the frequency-weighted

predictions of neighbors stored in the bank, then we explain how these predictions
are obtained.
Frequency-weighted prediction. As illustrated in Fig. 4, to avoid ambiguity,
we first sharpen the calculated output predictions pi. Besides, the network will
be empirically skewed towards these majority classes due to the class imbalance.
Then, we further multiply the predictions by a weight based on the frequency of
the class. In specific, given the soft-max output predictions pi = δ(ft(x

i
t)), the

frequency-weighted predictions can be obtained through

{p̌ij}Kj=1 =

{
p2ij/fj∑

j′(p
2
ij′/fj′)

}K

j=1

, (5)

where fj =
∑

i pij are soft cluster frequencies calculated by the current batch of
samples, K represents the number of the classes. Through the operation above,
we expect to achieve class-balance in the predictions. At each iteration, we update
the features and predictions associated with the data in the corresponding location
in the memory bank.

3.3. Domain Alignment by Mixup Training
Two mixup training procedures are incorporated into our method. In essence,

mixup trains a neural network on convex combinations of pairs of examples and
their labels to regularize the network to support linear behavior in-between train-
ing samples. Pioneers have proved the effectiveness of mixup training on UDA

10
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and SSL tasks [21, 22, 23, 68]. Such a simple regularization can improve the
generalization and robustness to some noisy labels, so it is suitable for pseudo
label-based unsupervised learning tasks. Inspired by these methods, with the
prototype-induced pseudo source domain {Xps,Yps} and target domain Xt, we
introduce two different regularizations via mixup training.
Inter-domain Mixup. To align the proxy source domain and the target domain,
we employ inter-domain mixup regularization. [22] mixes the labeled data with
both unlabeled data and labeled data itself. However, the “labeled” data in our
case is not completely trustworthy. As a result, we do not add any mixup training
between the proxy source samples, but only between the pseudo source domain
and the target domain only, constructing in virtual training samples below:

x̃r = ρxps + (1− ρ)xt, q̃r = ρqps + (1− ρ)q̂,

where qps denotes the one-hot encoding of yps, and q̂ is the soft label of xt calcu-
lated by Eq. (4), ρ is the mixup coefficient sampled from a random Beta distribu-
tion, which generates continuous random numbers between 0 and 1.

Then we adopt the KL divergence to calculate the soft label classification loss:

Linter
tgt = KL(q̃r∥δ(ft(x̃r))). (6)

Algorithm 1 Algorithm of the proposed ProxyMix.

Input: Target dataset Xt; well-trained source model f(x) = h(g(x)) , where
g : X → Rd is the feature extractor and h : Rd → RK is the classifier;

1: Build the proxy source domain {Xps,Yps} by Eq. (2);
2: Initialize the feature memory bank Bf and prediction memory bank Bl;
3: repeat
4: Randomly sample a batch of target data xt from Xt and proxy source data

xps from Xps;
5: Obtain the soft label q̂ of xt by Eq. (4);
6: Update g by Eq. (8);
7: Update the corresponding features and predictions of xt in feature bank Bf

and prediction bank Bl;
8: until Iterations are exhausted.

Output: New model f(x) = h(g(x)) .

Intra-domain Mixup. To mine the inner structure of the target domain, we also
adopt the mixup regularization between different target data. As is typical in

11
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Table 1: Classification accuracies (%) of state-of-the-art methods on Office-home [72]
(ResNet-50). SF denotes source-free. We use Bold to highlight the best and underline to
highlight the second best among source-free methods.

SF Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

× MCD [73] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
× CDAN [5] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
× SAFN [74] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
× SymNets [75] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
× MDD [76] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
× TADA [77] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
× BNM [11] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
× BDG [78] 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7
× SRDC [79] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
× RSDA-MSTN [80] 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
× ATDOC [36] 60.2 77.8 82.2 68.5 78.6 77.9 68.4 58.4 83.1 74.8 61.5 87.2 73.2

No Adapt. 46.1 67.0 74.3 52.0 62.7 64.3 53.8 42.1 73.7 67.0 47.7 78.2 60.7
✓ SSFT-SSD [59] 51.7 76.0 79.9 66.8 75.8 77.2 63.9 52.1 80.6 73.5 57.1 83.0 69.8
✓ VDM-DA [14] 59.3 75.3 78.3 67.6 76.0 75.9 68.8 57.7 79.6 74.0 61.1 83.6 71.4
✓ CPGA [15] 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
✓ SHOT [12] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
✓ PS [20] 57.8 77.3 81.2 68.4 76.9 78.1 67.8 57.3 82.1 75.2 59.1 83.4 72.1
✓ NRC [52] 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
✓ A2Net [17] 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
✓ SCLM [53] 58.2 80.3 81.5 69.3 79.0 80.7 69.0 56.8 82.7 74.7 60.6 85.0 73.1
✓ U-SFAN+ [50] 57.8 77.8 81.6 67.9 77.3 79.2 67.2 54.7 81.2 73.3 60.3 83.9 71.9
✓ AaD [55] 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
✓ C&C [54] 59.0 79.5 82.0 67.6 79.2 79.5 66.7 56.5 81.3 74.2 58.3 84.7 72.4
✓ CoWA-JMDS [58] 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
✓ VMP [57] 57.9 77.6 82.5 68.6 79.4 80.6 68.4 55.6 83.1 75.2 59.6 84.7 72.8
✓ DIPE [56] 56.5 79.2 80.7 70.1 79.8 78.8 67.9 55.1 83.5 74.1 59.3 84.8 72.5
✓ ProxyMix 59.3 81.0 81.6 65.8 79.7 78.1 67.0 57.5 82.7 73.1 61.7 85.6 72.8
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Table 2: Classification accuracies (%) on Office-31 [81] (ResNet-50). [∗: mean values
except D↔W.]

SF Method A→D A→W D→A D→W W→A W→D Avg. Avg.∗

No Adapt. 77.3 73.8 59.9 96.5 60.7 98.4 77.8 67.9

× MCD [73] 92.2 88.6 69.5 98.5 69.7 100.0 86.5 80.0
× CDAN [5] 92.9 94.1 71.0 98.6 69.3 100.0 87.7 81.8
× MDD [76] 90.4 90.4 75.0 98.7 73.7 99.9 88.0 82.4
× BNM [11] 90.3 91.5 70.9 98.5 71.6 100.0 87.1 81.1
× DMRL [39] 93.4 90.8 73.0 99.0 71.2 100.0 87.9 82.1
× BDG [78] 93.6 93.6 73.2 99.0 72.0 100.0 88.5 83.1
× MCC [35] 95.6 95.4 72.6 98.6 73.9 100.0 89.4 84.4
× SRDC [79] 95.8 95.7 76.7 99.2 77.1 100.0 90.8 86.3
× RWOT [82] 94.5 95.1 77.5 99.5 77.9 100.0 90.8 86.3
× RSDA-MSTN [80] 95.8 96.1 77.4 99.3 78.9 100.0 91.1 87.1
× ATDOC [36] 95.4 94.6 77.5 98.1 77.0 99.7 90.4 86.1

✓ SHOT [12] 94.0 90.1 74.7 98.4 74.3 99.9 88.6 83.3
✓ SSFT-SSD [59] 95.2 95.0 72.7 98.7 73.5 100.0 89.2 84.1
✓ NRC [52] 96.0 90.8 75.3 99.0 75.0 100.0 89.4 84.3
✓ HCL [18] 94.7 92.5 75.9 98.2 77.7 100.0 89.8 85.2
✓ CPGA [15] 94.4 94.1 76.0 98.4 76.6 99.8 89.9 85.3
✓ SCLM [53] 95.8 90.0 75.5 98.9 76.0 100.0 89.4 84.3
✓ AaD [55] 96.4 92.1 75.0 99.1 76.5 100.0 89.9 85.0
✓ C&C [54] 95.2 93.8 74.7 99.1 76.3 99.8 89.9 85.0
✓ SFDA-DE [51] 96.0 94.2 76.6 98.5 75.5 99.8 90.1 85.6
✓ DIPE [56] 96.6 93.1 75.5 98.4 77.2 99.6 90.1 85.6
✓ ProxyMix 95.4 96.7 75.1 98.5 75.4 99.8 90.1 85.6
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Table 3: Classification accuracies (%) on the large-scale synthesized-to-real dataset
VisDA [83] (ResNet-101).

SF Method plane bicycle bus car horse knife mcycl person plant sktbrd train truck Per-class

× ADR [84] 94.2 48.5 84.0 72.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
× CDAN [5] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
× CDAN+BSP [85] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
× SAFN [74] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
× SWD [86] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
× MDD [76] - - - - - - - - - - - - 74.6
× DMRL [39] - - - - - - - - - - - - 75.5
× MCC [35] 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
× STAR [87] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
× RWOT [82] 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0
× ATDOC [36] 93.0 77.4 83.4 62.3 91.5 88.4 91.8 77.1 90.9 86.4 85.8 48.2 81.4

No Adapt. 63.2 10.4 47.6 73.0 46.9 4.5 66.4 15.6 62.1 17.7 88.5 7.2 41.9
✓ SSFT-SSD [59] 95.4 86.5 79.3 51.5 92.9 94.5 82.1 79.7 90.0 87.1 87.8 57.9 82.1
✓ SHOT [12] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
✓ HCL [18] 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5
✓ PS [20] 95.3 86.2 82.3 61.6 93.3 95.7 86.7 80.4 91.6 90.9 86.0 59.5 84.1
✓ A2Net [17] 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
✓ VDM-DA [14] 96.9 89.1 79.1 66.5 95.7 96.8 85.4 83.3 96 86.6 89.5 56.3 85.1
✓ NRC [52] 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
✓ CPGA [15] 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0
✓ SCLM [53] 97.1 90.7 85.6 62.0 97.3 94.6 81.8 84.3 93.6 92.8 88.0 55.9 85.3
✓ AaD [55] 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
✓ SFDA-DE [51] 95.3 91.2 77.5 72.1 95.7 97.8 85.5 86.1 95.5 93.0 86.3 61.6 86.5
✓ CoWA-JMDS [58] 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
✓ DIPE [56] 95.2 87.6 78.8 55.9 93.9 95.0 84.1 81.7 92.1 88.9 85.4 58.0 83.1
✓ ProxyMix 95.4 81.7 87.2 79.9 95.6 96.8 92.1 85.1 93.4 90.3 89.1 42.2 85.7

many SSL methods, we use data augmentation on target data. In specific, for each
mini-batch of target data xt, we concatenate it with its augmented version x̂t to
construct a vector notated as xa = cat(xt, x̂t). Then we mixup xa and its shuffled
version xs

a to construct the virtual training samples below:

x̃a = ρxa + (1− ρ)xs
a, q̃a = ρq̂a + (1− ρ)q̂sa,

where xs
a is the shuffled version of xa, q̂a and q̂sa are the soft label of xa and xs

a

calculated by Eq. (4), respectively. Then we formulate the intra-domain mixup
regression loss as:

Lintra
tgt = ∥ft(x̃a)− q̃a∥22. (7)

Note here we use square L2 loss. Unlike the cross entropy loss used in Eq. (6), it
is bounded and more robust due to the insensitivity to corrupted labels.

3.4. Overall Objective
Combining the proxy source classification loss and two types of mixup loss,

our overall objective is formulated as:

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table 4: Classification accuracies (%) on the 3D point cloud dataset PointDA-10 [88]
(PointNet [89]). The results except ours are from NRC [52] and PointDAN [89].

SF Method M → S M→ S∗ S → M S → S∗ S∗ → M S∗ → S Avg.

× MMD [90] 57.5 27.9 40.7 26.7 47.3 54.8 42.5
× DANN [4] 58.7 29.4 42.3 30.5 48.1 56.7 44.2
× ADDA [9] 61.0 30.5 40.4 29.3 48.9 51.1 43.5
× MCD [73] 62.0 31.0 41.4 31.3 46.8 59.3 45.3
× PointDAN [89] 64.2 33.0 47.6 33.9 49.1 64.1 48.7

No Adapt. 21.5 21.7 18.5 29.5 18.8 25.8 22.6
✓ VDM-DA [14] 58.4 30.9 61.0 40.8 45.3 61.8 49.7
✓ NRC [52] 64.8 25.8 59.8 26.9 70.1 68.1 52.6
✓ ProxyMix 65.2 22.4 60.8 30.8 81.2 64.2 54.1

Ltotal = Lps + λLinter
tgt + ηLintra

tgt (8)

where λ and η are trade-off parameters to balance losses. Our method is end-to-
end during the training phase, using the proxy source classification loss to help
the model implicitly align the unseen source and target domains. Two types of
mixup loss further help us eliminate the negative effects of outlier noise labels
to improve the robustness. Empirically, we set the weights of these losses to 1.
In reality, these loss functions are not sensitive, and we will verify this in the
sensitivity analysis in the experimental section. The overall pipeline of ProxyMix
is illustrated in Algorithm 1.

4. Experiments

Datasets. We conduct the experiments on four popular benchmark datasets: (1)
Office-31 [81] is a standard domain adaptation dataset consisting of three distinct
domains, i.e., Amazon (A), DSLR (D) and Webcam (W), and 31 categories in the
shared label space. The specific numbers of images for each domain are 2,817
(A), 498 (D), and 795 (W), therefore the dataset suffers from severe data imbal-
ance. (2) Office-home [72] is a medium-sized domain adaptation dataset with
15,500 images collected from four domains Art (Ar), Clipart (Cl), Product (Pr),
and Real-World (Re). There are 65 categories per domain, which is much more
than Office-31. (3) VisDA [83] is a large-scale challenging dataset which con-
sists of a 12-class synthesize-to-real object recognition task. The source domain
involves 152k synthetic images which are produced by 3D rendering model under
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various conditions. The target domain contains 55k images collected from the
real-world scene. (4) PointDA-10 [89] is a common-used 3D cloud-point dataset
extracted from three popular 3D object/scene datasets, i.e, modelnet (M), shapenet
(S), and scannet (S∗) for cross-domain 3D object recognition. Each domain con-
tains its own training and testing sets. We train our models by source and target
domain’s training set, and show the test results on the target domain’s test set.
Baselines. We compare ProxyMix with the state-of-the-art source-free domain
adaptation methods: SHOT [12], CPGA [15], A2Net [17], HCL [18], NRC [52],
SSFT-SSD [59], PS [20], SCLM [53], AaD [55], SFDA-DE [51], CoWA-JMDS
[58], DIPE [56], C&C [54], U-SFAN+ [50], VMP [57]. Moreover, to illustrate the
effectiveness of ProxyMix, we further compare our method with the state-of-the-
art UDA methods: SymNets [75], TADA [77], BNM [11], BDG [78], SRDC [79],
RSDA-MSTN [80], ADR [84], CDAN [5], CDAN+BSP [85], SAFN [74], SWD
[86], MDD [76], DMRL [39], MCC [35], STAR [87], RWOT [82], ATDOC [36],
MMD [90], DANN [4], ADDA [9], MCD [73], PointDAN [89]. We use bold to
highlight the best results and underline to highlight the second best results among
source-free methods.
Implementation Details. We implement our method based on PyTorch. For
network architecture, we adopt ResNet [91], pretrained on the ImageNet as the
backbone, and replace the original fully connected layer with a bottleneck layer
followed by a task-specific linear layer. Specifically, we use ResNet-50 on Office-
home and Office-31, ResNet-101 on VisDA. In the source model training stage,
we exploit SGD optimizer with learning rate 1e−3 for the backbone and 1e−2 for
the bottleneck and classifier. In the target adaptation stage, we use SGD optimizer
with learning rate 1e−3 for the backbone and freeze the fully connected classi-
fication layer. The numbers of epochs are set to 30, 50, 5 in the training stage
and 50, 50, 1 in the adaptation stage for Office-31, Office-home and VisDA, re-
spectively. Specially, for PointDA-10, we follow the open source code of NRC
[52], use PointNet [88] as our backbone network, learning rate 1e−6 and Adam
optimizer with 100 epochs each stage. For the hyper-parameters, considering the
confidence of pseudo labels, we set λ = 1, η = 100, and we alter λ and η linearly
by multiplying a ratio that varies linearly from 0 to 1 based on the number of the
current iteration. Besides, we set m = 5, beta distribution parameter β = 0.75
in mixup and N = 5, 10, 10, 50 for Office-31, Office-home, PointDA-10 and
VisDA. The size of the proxy source domain N is determined empirically, while
other hyperparameters are set according to prior works [36, 22, 21]. All results
are the averages of three random runs with seed ∈ {0, 1, 2}.
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4.1. Comparison Results
2D image datasets. We first compare our method with the state-of-the-art meth-
ods on 2D image datasets Office-home, Office-31, and VisDA in Table 1, 2, and
3, respectively. Note that the results of other methods are from the original papers,
except ours. It can be observed that we have achieved competitive results across
all three datasets. On Office-home, our approach achieved the second highest av-
erage accuracy, with only a marginal difference of 0.3 percentage points compared
to the top-performing SCLM [53], while outperforming SCLM on the other two
datasets. This demonstrates the multi-class classification capability of ProxyMix
on medium-scale datasets. On Office-31, ProxyMix and DIPE [56] achieve the
highest average accuracy. For better discriminability, we also provide the average
accuracy without the two tasks D→W and W→D, where ProxyMix and DIPE still
perform the best. However, our approach outperforms DIPE on the Office-home
and VisDA. This validates the capability of ProxyMix in handling small-scale and
few-class datasets. On VisDA, we achieve the highest accuracy on three classes
and a competitive average accuracy compared to most state-of-the-art methods.
The reason why ProxyMix does not perform well on VisDA compared to the other
two datasets is due to the relatively small size of the proxy source domain com-
pared to the entire dataset. This causes the network to inevitably bias towards
the proxy source domain during training. In summary, our method ProxyMix
achieves competitive accuracy across three benchmarks when compared with oth-
ers, which demonstrates the effectiveness in dealing with the standard 2D image
domain adaptation benchmarks. We achieve similar results compared with the
state-of-the-art SFDA methods SCLM [53] (Neural Network-22) and DIPE [56]
(CVPR-22), and UDA method ATDOC [36] (CVPR-21). The presented results
clearly demonstrate the efficacy of the proposed method in dealing with domain-
imbalanced, multi-class, and large-scale challenges.
3D point cloud dataset. To explore the generalization performance of ProxyMix
on 3D data, we also report the results for the PointDA-10 dataset in Table 4.
Without any extra modules, our method achieves the highest average accuracy
on the benchmark, even compared with UDA methods and the 3D cloud point
domain adaptation method PointDAN [89].

4.2. Empirical Analysis
To explore the effectiveness of the proposed pseudo-labeling strategy, the ag-

gregation strategy, and the construction method of the proxy source domain, we
conduct a series of ablation analyses on the three common-used 2D image classifi-
cation datasets Office-31, Office-home and VisDA. Then we explore the influence
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Choices of soft label Office-31 Office-home VisDA

MixMatch [22] 88.4 72.4 83.0
ReMixMatch [23] 88.1 71.3 80.2
ATDOC [36] 88.5 72.2 84.7
Ours 90.1 72.8 85.7

Table 6: Analysis of aggregation strategy.

Variants Office-31 Office-home VisDA

w/o aggregation 88.4 71.3 82.4
w/ aggregation (Ours) 90.1 72.8 85.7

Table 7: Analysis of different selection methods of proxy source samples.

Method Office-31 Office-home VisDA

Random-selected 83.9 69.0 81.9
Entropy-guided 86.3 70.5 72.6
Ours 90.1 72.8 85.7

Table 8: Ablation study on the loss functions.

Lps Linter
tgt Lintra

tgt Office-31 Office-home VisDA

✓ 83.5 66.3 69.6
✓ 89.1 72.4 78.5

✓ 86.7 65.8 84.9

✓ ✓ 89.3 72.3 78.4
✓ ✓ 89.9 71.3 84.7
✓ ✓ ✓ 90.1 72.8 85.7
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(a) Influence of the weight λ. (b) Influence of the weight η.

(c) Influence of N. (d) The accuracy curve.

Figure 5: Sensitivity of hyper-parameters of task Ar→Cl on Office-home. (a) Influence of
the weight λ of Linter

tgt ; (b) Influence of the weight η of Lintra
tgt ; (c) Influence of the number

N per class in the proxy source domain. (d) The accuracy curve of the task Ar→Cl on
Office-home.

of three loss functions in our method, the training stability, the sensitivity of the
important hyper-parameters, and the time costs and computational complexity.
We also show the t-SNE visualization results of task Ar→Cl to clearly validate
the altering of features.
Effectiveness of the proposed frequency-weighted aggregation soft pseudo la-
bel. Our frequency-weighted aggregation strategy (FA) is a soft pseudo label
generation method. To verify the influence, we compare our method with three
label refinery strategies. 1) MixMatch [22] calculates the soft pseudo label by
sharpening and normalizing the predictions directly. 2) ReMixMatch [23] sharp-
ens the predictions first, then multiplies a distribution alignment ratio calculated
by the current batch of samples. 3) ATDOC [36] only uses the highest possibil-
ities that are multiplied by a balanced ratio, causing the sums to not be equal to
1, which is not conducive to the calculation of KL divergence. Therefore, we
normalize the predictions of ATDOC in our experiments. The results shown in
Table 5 demonstrate that the proposed frequency-weighted aggregation module
effectively improves the soft label’s reliability.
Effectiveness of the aggregation strategy. Our aggregation technique pulls un-
labeled target data to semantic neighbors, allowing us to investigate the target
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(a) Before adaptation. (b) After adaptation.

(c) Before adaptation. (d) After adaptation.

Figure 6: The t-SNE visualization of task Ar→Cl on Office-home. (a) and (b): the unseen
source features (blue points) and the target features (red points) before and after adapta-
tion, respectively. (c) and (d): the target features before and after adaptation, respectively.
For clarity, we select first 10 classes in the 65 classes on Office-home.
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domain’s structure information and mitigate the detrimental effects of noisy la-
bels. Table 6 shows the variant of ProxyMix without the aggregation approach
to demonstrate the usefulness of the aggregation strategy. The accuracy of stan-
dard ProxyMix is higher than that of variants without aggregation, demonstrating
that leveraging the semantic neighbors’ center as the pseudo label is effective and
reliable.
Analysis of the construction method of the proxy source domain. To study the
influence of the proposed construction method of the class-balanced proxy source
domain, we compare ProxyMix with a common-used method, i.e., randomly-
selected criterion, entropy-guided criterion, and the baseline method. 1) Randomly-
selected: to ensure fairness, we randomly select N samples for each class from the
target data to generate a class-balanced proxy source domain based on the classi-
fication results of the source model. Because we cannot discover N examples for
some difficult classes, we choose the remaining numbers of samples from other
classes at random as compensation. 2) Entropy-guided: as commonly used in
other works [16], we compare our method with the entropy-guided method. In
specific, we calculate the mean entropy e of the source model’s prediction on the
full target dataset, then obtain a split ratio ξ = N(H(fs(xt))<e;xt∈Xt)

N(xt∈Xt)
, where N(ϕ)

denotes the size of the subset formed by samples which satisfy the condition ϕ,
H(·) is the entropy function. Then we compute the class distribution {nk}Kk=1

according to the predictions given by the source model, and select nk · ξ sam-
ples with the lowest entropy for each class. The results are shown in Table 7.
Random-selected perform unsatisfactory due to the poor confidence of the source
model before adaption. Although the entropy criterion reflects the confidence of
the prediction, it exacerbates the class imbalance problem and leads the model
bias to the easier classes, which is not satisfactory in comparison to ours. The
proposed prototype-induced method achieves the highest accuracy. We take both
confidence and class balance into consideration, and as illustrated in Fig. 2, we
observed that the accuracy of the proxy source domain is higher than the entropy
criterion.
Ablation studies on the proposed loss functions. To investigate the proposed
loss functions, we show the results of variants with different combinations of loss
functions in Table 8. As shown, without the proxy source domain classification
loss Lps, the accuracy of Office-31 has the biggest drop. The accuracy of Office-
home is more likely to be influenced by the inter-domain mixup loss Linter

tgt . As
for the large-scale dataset VisDA, the intra-domain mixup loss Lintra

tgt contributes
a lot. The effectiveness of Linter

tgt and Lintra
tgt also illustrate the reliability of the

proposed frequency-weighted soft labels from another perspective.
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Table 9: Time cost (s) of one iteration on tasks Ar→Cl, Ar→Pr, Ar→Re on Office-home.

Method Ar→Cl Ar→Pr Ar→Re Avg.
NRC [52] 1.373 1.039 1.196 1.203
AaD [55] 1.548 1.315 2.001 1.621
ProxyMix 1.051 1.098 2.332 1.494

Training stability. We show the accuracy curve of task Ar→Cl on Office-home
in Fig. 5 (d), the accuracy during training grows up quickly and then converges as
we expected. Therefore, the training procedure of ProxyMix is stable and reliable.
Sensitivity of hyper-parameters. To better understand the effects of the hyper-
parameters λ, η and N , we explore their performance sensitivity in a single task
Ar→Cl on Office-home in Fig. 5. The accuracies around λ = 1 and η = 100
fluctuate very softly in (a) and (b). The results on the proxy source domain scale
are provided in (c), showing that the accuracies change slightly around N = 20.
Generally, in our method ProxyMix, the hyper-parameters are not sensitive.
Time cost. As can be seen in Algorithm 1, the computational complexity of

our algorithm is O(n), and we also provide the time cost (in seconds) of one
iteration on the three tasks Ar→Cl, Ar→Pr, and Ar→Re on Office-home in Table
9. Our method does not incur much additional time cost, which is acceptable for
an offline adaptation method.
t-SNE visualization. To evaluate the effectiveness of ProxyMix, We show the
t-SNE visualization5 of target features on task Ar→Cl in Fig. 6. To validate the
effectiveness of domain alignment, we show the features of the unseen source
domain (blue points) and the target domain (red points) in (a) and (b). The dis-
tribution of target features is closer to the source feature after adaptation as we
expected. We also show the target feature distribution of the first 10 classes of
Office-home in (c) and (d). Benefiting from our frequency-weighted aggregation
strategy, the feature clusters after adaptation are compact, and the classification
boundary is clear.

5. Conclusion

In this paper, we focus on the source-free domain adaptation problem and
propose a simple yet effective method named Proxy-based Mixup training with

5https://lvdmaaten.github.io/tsne/
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label refinery (ProxyMix). In specific, we treat weights of the fully-connected
layer as class prototypes to choose a series of confident samples to construct a
class-balanced proxy source domain. Then label information is expected to flow
from the pseudo source domain to the unlabeled target domain via mixup train-
ing. To enhance mixup training, we further introduce a new pseudo label refinery
strategy, which combines frequency-weighted sharpening and neighborhood ag-
gregation to obtain reliable soft predictions of unlabeled target data. Experiments
on four popular benchmarks prove the effectiveness of ProxyMix without access
to source data. Although our method outperforms several UDA methods that are
based on source data, we should recognize that removing all noisy labels in an
unsupervised manner is still tough. We believe that our work is an attempt in that
direction, with the intention of inspiring others in the UDA community.
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