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Abstract. Face forgery detection is becoming increasingly important
in computer vision as facial manipulation technologies cause serious con-
cerns. Recent works have resorted to the frequency domain to develop
face forgery detectors and achieved better generalization achievements.
However, there are still unignorable problems: a) the role of frequency
is not always sufficiently effective and generalized to different forgery
technologies; and b) the network trained on public datasets is unable to
effectively quantify its uncertainty. To address the generalization issue,
we design a Dynamic Dual-spectrum Interaction Network (DDIN) that
allows test-time training with uncertainty guidance. RGB and frequency
features are first interacted in multi-level by using a Frequency-guided
Attention Module (FAM). Then these multi-modal features are merged
with a Dynamic Fusion Module (DFM). Moreover, we further exploit
uncertain perturbations as guidance during the test-time training phase.
The network can dynamically fuse the features with quality discrepan-
cies, thus improving the generalization of forgery detection. Comprehen-
sive evaluations of several benchmark databases corroborate the superior
generalization performance of DDIN.

Keywords: Face Forgery Detection · Frequency Domain · Test-time
training · Generalization.

1 Introduction

Recent years have witnessed significant progress in the area of face forgery tech-
nology. The quality of fake media has been greatly improved with the develop-
ment of deep learning technology. At the same time, these forged media may be
abused for malicious purposes, causing severe trust issues and security concerns
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Fig. 1. In the first two rows, the real images are compared to images synthesized by
different forgery techniques. In the last two rows, we show the quality difference in
RGB and frequency domains. The red box indicates that the forgery traces are hard
to recognize, while the green box shows that it is easy to distinguish.

in our society. Therefore, it is critical to developing effective forgery detection
methods.

Most of the existing methods focus on within-database detection [2,20], where
forged images in the training set and testing set are manipulated by the same
forgery technique. As shown in Fig. 1 (a), the styles of the synthesized images
from various forgery techniques are quite different. Thus, an ongoing issue of
face forgery detection is generalization under out-of-distribution (OOD) data
[12]. As shown in Fig. 1 (b), the frequency distributions of real and fake images
differ significantly in some datasets, but it is difficult to distinguish between
the two in the RGB domain. Recent methods [17,29,23,26,39,5] introduced the
face forgery frequency network to mine forgery traces in the frequency domain.
Chen et al.[5] proposed a similarity model using frequency features to improve
the model’s performance in unseen domains, and Luo et al.[23] assumed that the
high-frequency noise of images can remove colour texture and mine forgery traces
and utilize image noises to boost the generalization ability. However, the role of
the frequency domain is not always sufficiently effective, and RGB features also
contain discriminative forgery information, as shown in Fig. 1 (c). The quality
discrepancies between frequency and RGB features are less addressed [29].

To alleviate the effects of feature quality discrepancies and model
uncertainty, we design a Dynamic Dual-spectrum Interaction Network (DDIN)
that allows test-time training with uncertainty guidance. First, in order to ex-
plore the forgery region, frequency features are more effective than discriminat-
ing only in the RGB domain. We propose a Dynamic Fusion Module (DFM) to
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use the quality distinction between RGB and frequency domain in an adaptive
evaluation. Secondly, to increase model generalization on unseen data, we fur-
ther fine-tune the trained network by estimating the uncertainty in the test-time
training phase.

Spectrum transformation on an RGB image is used to obtain its correspond-
ing frequency image based on Discrete Cosine Transform (DCT), and then these
RGB and frequency images are input into the transformer-based network. Sec-
ond, in the multi-level interaction stage, we use a Frequency-guided Attention
Module (FAM) to direct the RGB modality from a frequency perspective, allow-
ing us to attach more forgery traces. Thirdly, in the multi-modal fusion stage, we
use the Cross-modal Attention Module (CAM) to fuse the features of the dual-
stream network’s output in order to enrich the information of the forged area. We
further propose a Dynamic Fusion Module (DFM) for the dynamic enhancement
of this multi-modal information to boost the generalization ability.

Moreover, to learn a more generalizable face forgery detector, we propose
Uncertainty-guided Test-time Training (UTT). The key idea is to fine-tune the
dynamic fusion module by estimating and exploiting the uncertainty of unseen
test data. Specifically, we apply uncertainty-guided perturbations to different
branches. The uncertain perturbation causes the network to predict quality
weights in a probabilistic manner, and we fine-tune the network based on the
distribution bias caused by this uncertainty. The distribution of predictions for
forgery features on the training and test sets can be narrowed. Thus, it results
in more robust predictions, particularly when the test set contains OOD data.

In brief, the main contributions are as follows:

– We propose a Dynamic Dual-spectrum Interaction Network (DDIN) that
allows test-time training with uncertainty guidance to alleviate the effects of
feature quality discrepancies and model uncertainty.

– We propose a Frequency-guided Attention Module (FAM) and Dynamic Fu-
sion Module (DFM) in Dynamic Dual-spectrum Interaction Network (DDIN)
that can be used to make the model dynamically fuse the features with qual-
ity discrepancies.

– We propose an Uncertainty-guided Test-time Training (UTT) by adding
uncertain perturbation during the test-time training phase to improve the
network generalization of forgery detection.

– Extensive experiments and visualizations demonstrate the effectiveness of
our method against state-of-the-art competitors.

2 Related Work

2.1 Face Forgery Detection

In the past few years, face forgery detection has made significant strides, with a
number of forgery-spotting models being successively proposed to meet the ap-
plication’s practical requirements. In the earlier stage, methods[2,18,1,7,28,13]
are built with a significant emphasis on spotting semantic visual artefacts with
sophisticated model designs. Recently, several works have focused on solving
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the generalizing problem. For instance, methods[16,5] both notice the content-
independent low-level features that can uniquely identify their sources and the
identity swapping will destroy the origin consistency. Li et al.[16] suggest iden-
tifying those subtle features across the facial boundary and Chen et al.[5] turn
to discover the spatial-local contradictions. Methods[25,10,3] fuse the low-level
frequency pattern learning with CNN to improve the generalizability. Despite
the fact that these techniques frequently work, the low-level artefacts they rely
on are sensitive to post-processing techniques that differ across datasets, putting
their generalizability at risk. Despite the possibility that these features will lead
to some advancements, it is very likely that deepfake algorithms will be created
in the future in order to create more realistic fakes and pose a bigger threat to
social security. Different from existing works, we propose a novel dynamic dual-
spectrum interaction network that allows test-time training with uncertainty
guidance.

2.2 Test-time Training Strategy

The concept of test-time training was first presented in [33] for generalization to
out-of-distribution test data. In this method, the main classification task is com-
bined with a self-supervised rotation prediction task during training, and only
the self-supervised task is used to help improve the visual representation during
inference, which indirectly improves semantic classification. Li et al.[19] propose
a reconstruction task within the main pose estimation framework, which can be
trained by contrasting the reconstructed image with the ground truth gleaned
from other frames. Chen et al.[4] proposed one-shot test-time training specially
designed for the generalizable deepfake detection task. Nevertheless, despite some
positive findings, current TTT methods aim to choose empirical self-supervised
tasks, which carry a significant risk of degrading performance when the tasks
are not properly chosen[22]. Instead, our UTT method is easy to implement and
can avoid the tedious work of selecting an effective self-supervised task, which
can significantly boost the deepfake detector’s generalization performance and
outperform existing solutions in a variety of benchmark datasets.

3 Proposed Method
3.1 Spectrum Transformation

As shown in the left-top in Fig. 2, we apply spectrum transformation that decom-
poses the input RGB image into frequency components, assisting the network in
mining the distinction between real and forged regions.

Without loss of generality, let Xrgb ∈ RH×W×3 denote the RGB input, where
H and W are the height and width. First, we apply the Discrete Cosine Trans-
form (DCT) to transform Xrgb from RGB into the frequency domain. DCT places
low-frequency responses in the top-left corner and high-frequency responses in
the bottom-right corner. Qian et al. [29] show that the low-frequency band is the
first 1/16 of the spectrum, the middle-frequency band is between 1/16 and 1/8
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Fig. 2. The framework of our proposed DDIN and the pipeline of UTT.

of the spectrum, and the high-frequency band is the last 7/8 of the spectrum. To
amplify subtle artefacts at high frequency, we filter out low and middle-frequency
information by setting their frequency band to 0. To preserve shift-invariance and
local consistency of natural images, we then invert the high-frequency spectrum
back into RGB via IDCT to obtain the desired representation in the frequency
domain, which can be formulated as:

Xfreq = D−1(F(D(Xrgb))), (1)

where Xfreq ∈ RH×W×3 denotes the RGB image represented at frequency do-
main, D denotes the DCT, F denotes the filter to obtain high frequency in-
formation, and D−1 denotes the IDCT. In this way, the original RGB input is
decomposed and recombined frequency-aware data while maintaining the spa-
tial relationship. Finally, we input both RGB and frequency images into the
multi-level interaction phase to enhance the forged features.

3.2 Multi-level Interaction

RGB information is useful for locating anomalous textures in forged images,
whereas frequency information amplifies subtly manipulated artefacts. To ex-
plore more forgery traces, we use a Frequency-guided Attention Module (FAM)
based on CBAM[40]. While CBAM gains the attention weights from the RGB
images, we exploit the frequency features to obtain the attention maps, to direct
the RGB modality from a frequency perspective.

As shown in middle in DDIN at Fig. 2, let Xrgb ∈ RH×W×3 and xfreq ∈
RH×W×3 denotes the RGB input and the frequency input. After feature extrac-
tion, we use FAM to derive the frequency attention map. That is:

f̂ = Conv3×3(ffreq), (2)
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fatt = σ(Conv7×7(CAT (GAP (f̂), GMP (f̂))), (3)

where ffreq denotes the frequency feature after feature extraction in Eq. (2), σ
denotes the Sigmoid function, GAP and GMP represent global average pooling
and global max pooling in Eq. (3), respectively. And CAT concatenates the
features along with the depth. We finally choose a 7 × 7 convolution kernel to
extract the forged traces in the frequency domain because it can detect edge
information better and cover a larger area than three 3× 3 convolution kernels.
The attention map fatt contains subtle forgery traces in the frequency domain
that are difficult to mine in the RGB features. Therefore, we implement fatt on
the RGB feature frgb, directing frgb further mine forgery traces, that is:

frgb = frgb ⊕ (frgb ⊗ fatt), (4)

where ⊕ represents summation and ⊗ represents element-wise multiplication.
In addition, there are three level stages to feature extraction, low-level, mid-

level and high-level. The low-level features represent texture forgery information,
while the high-level features extract more overall forgery traces. Therefore, we
interact with RGB features and frequency features at multi-level obtaining a
more comprehensive representation of forged features. Specifically, the frequency
domain output f i

freq of the i -th stage is used as the i+1 -th stage input f̂ i
freq, and

the RGB input f̂ i+1
rgb is the RGB feature f i

rgb previously guided in the frequency
domain, which can be formulated as:

f̂ i+1
rgb = f i

rgb ⊕ (f i
rgb ⊗ f i

att), f̂ i+1
freq = f i

freq. (5)

Then we input the high-level output features frgb ∈ Rh×w×c and ffreq ∈ Rh×w×c

into multi-modal fusion to mine more discriminative information, where h, w and
c are the dimensions of thes output features.

3.3 Multi-modal Fusion

In recent years the attention mechanism has been broadly applied in natural
language processing [37] and computer vision [9]. Inspired by these works, the
resulting RGB features are combined with frequency features with a Cross-modal
Attention Module (CAM). And considering the role of the frequency domain is
not always sufficiently effective, which causes the quality discrepancies between
the RGB and frequency feature, we designed a Dynamic Fusion Module (DFM)
in the multi-modal fusion stage.

According to Sec. 3.2, the frequency modal should serve as a supporting
component. Given RGB features frgb and frequency features ffreq, we implement
CAM to perform a preliminary fusion of them into a unified representation by
using the query-key-value mechanism. Specifically, we use 1 × 1 convolutions
to embed frgb into Q and embed ffreq into K and V . Then we perform the
attention mechanism by flatting them to 2D embeddings Q̂, K̂ and V̂ ∈ R

h×w
16 ×c

along the channel dimension, which can be formulated as:

fcam = softmax(
Q̂K̂T√

h/4× w/4× c
)V̂ , (6)
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where fcam denotes the preliminary fusion feature which aggregates the RGB
and frequency information. Then, in order to effectively utilize the forged in-
formation in frgb, fcam and ffreq, we design a dynamic fusion module in the
multi-modal fusion stage. In more details, we input a set S = {frgb, fcam, ffreq}
into DFM. DFM generates corresponding weights for each branch based on the
quality information from all branches, which it then uses to weigh the combined
information to combine from various branches.

To obtain the corresponding weights for each branch, we further integrate
the three branch features by using two fully connected layers FC1 and FC2,
global average pooling GAP and active layer GELU function δ, which can be
formulated as:

f ′ = FC1(CAT (frgb, fcam, ffreq)), f̂ = FC2(δ1(GAP (δ2(f
′)))), (7)

where f ′ ∈ Rh×w×3c and f̂ ∈ R1×1×c. Then we set three fully connected layers
F 1
c ,F 2

c and F 3
c and softmax function to generate quality weights αi for each

branch, which can be formulated as:

αi =
exp(F i

c(f̂))∑3
j expF

j
c (f̂)

, i = 1, 2, 3, (8)

where αi ∈ R1×1×C represents the quality of each branch. Because different
branches are contributed differently to mining forged clues, we weigh the fu-
sion features based on the quality and use two linear mapping layers to restore
the channel dimension of the dynamic fusion features. The output fu can be
formulated as:

fu = f ′ + FC4(FC3(

3∑
i

αiSi)), i = 1, 2, 3. (9)

3.4 Uncertainty-guided Test-time Training

The first three sections Sec. 3.1, Sec. 3.2 and Sec. 3.3 describe the DDIN net-
work’s mining of forgery traces’ quality in the RGB and frequency domains and
the dynamic fusion of forgery features to discriminate based on quality differ-
ences. However, the trained network’s prediction weight is biased towards the
quality discrepancies of different modalities of the training set data during dy-
namic fusion, leading to a bias in the fusion weight of uncertain unseen data,
which affects the model’s generalization. To improve the network’s generalization
of forgery detection, we further use uncertain perturbation as guidance during
the test-time training phase.

To accomplish this, we introduce a perturbation g drawn from Gumbel(0, 1)
in the test-time training phase. The Gumbel(0, 1) distribution can be sampled
using inverse transform sampling by drawing u ∼ Uniform(0, 1) and computing
g = − log(− log(u))[11]. We implement g to the DFM to influence the network’s
perception of intra-modal quality. The uncertain g modifies the quality weight
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slightly, making it probabilistic rather than deterministic. And the uncertain
quality weight β is given by the Gumbel softmax function[14]:

βi =
exp((log(F i

c(f̂)) + gi)/τ)∑3
j exp((log(F

j
c (f̂)) + gj)/τ)

, i = 1, 2, 3, (10)

where τ is the softmax temperature. The β replaces the α in Eq. (9) and results
in an uncertain distribution of the fused feature fu. In contrast to fu during
training, the distribution of fu in UTT is uncertain and related to the test set.
Based on this uncertainty, we design a self-supervised task in the UTT stage.
Specifically, we sample an image x from test-set D and input it twice to the pre-
trained detector f(·, θ), where the θ is the model parameter. Then we can gain
two uncertain fused features f1

u and f2
u . The distributions of these two features

match the actual distribution of the model output, but they are influenced by
the test set, and the perturbations make them uncertain. The KL loss is used to
evaluate the distribution shift caused by uncertainty and to update the model
parameters by narrowing the feature distribution gap, which encourages the
model to perform well on the test set.

3.5 Loss Function

In the training phase, we flatten the fu and pass it through the fully connected
layer and sigmoid function to obtain the final predicted probability ŷ. And the
classification loss is defined as:

Lcls = y log ŷ + (1− y) log(1− ŷ), (11)

where y is set to 1 if the image has been manipulated, otherwise it is set to 0.
In the test-time training phase, We add uncertain perturbations to the DFM

and obtain two uncertain features denoted as f1
u and f2

u . To narrow the two
feature distributions, we use KL divergence loss as follows:

Lkl = Dkl(f
1
u∥f2

u) = f1
u log(f1

u)− f1
u log(f2

u). (12)

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our proposed method and existing approaches on Face-
Forensics++ (FF++)[30], CelebDF[21] and DFDC[8]. FF++ is a face forgery
detection dataset consisting of 1000 original videos with real faces, in which 720
videos are used for training, 140 videos are reserved for validation and 140 videos
for testing. CelebDF includes 590 real videos and 5,639 high-quality fake videos
which are crafted by the improved DeepFake algorithm[36]. DFDC is a largescale
dataset which contains 128,154 facial videos of 960 IDs.
Evaluation Metrics. To evaluate our method, we apply the Accuracy score
(Acc) and Area Under the Receiver Operating Characteristic Curve (AUC) as
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Table 1. Quantitative results on Celeb-DF dataset and FaceForensics++ dataset with
different quality settings. The best results are shown in blod, and the second results
are shown in blue.

Method FF++(C23) FF++(C40) Celeb-DF
Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%)

MesoNet[1] 83.10 - 70.47 - - -
Multi-task [25] 85.65 85.43 81.30 75.59 - -
Xception [6] 95.73 96.30 86.86 89.30 97.90 99.73
Face X-ray[17] - 87.40 - 61.60 - -
Two-branch[24] 96.43 98.70 86.34 86.59 - -
RFM[38] 95.69 98.79 87.06 89.83 97.96 99.94
F3-Net [29] 97.52 98.10 90.43 93.30 95.95 98.93
Add-Net [42] 96.78 97.74 87.50 91.01 96.93 99.55
FDFL [16] 96.69 99.30 89.00 92.40 - -
MultiAtt [41] 97.60 99.29 88.69 90.40 97.92 99.94
PEL [10] 97.63 99.32 90.52 94.28 - -

DDIN 97.59 99.31 90.41 94.47 98.02 99.83
DDIN (+UTT) 97.69 99.39 90.84 94.80 98.20 99.93

our evaluation metrics. To ensure a fair comparison, the results of all comparison
methods are taken from their paper.
Implementation Details. We modify MOA-Transformer[27] pre-trained on
ImageNet as the backbone network. We use the DLIB[31] for face extraction
and alignment. The input shape of images is resized to 224 × 224 with the data
augmentation of randomly erase. The τ in Eq. (10) is set to 1, and the batch
size of the training and test-time training phase are all set to 32. We use the
Adam optimizer for optimizing the network with β1 = 0.9 and β2 = 0.999. The
learning rates for the training and test-time training phase are set to 1e-5 and
1e-4, respectively. We only update the parameters in the DFM and freeze the
parameters of other layers during the test-time training phase.

4.2 Experimental Results

Intra-testing. In this section, we first compare our method with state-of-the-
art face forgery detection methods on widely used datasets FF++ and Celeb-
DF datasets. As shown in Table 1, for the FF++ dataset, our proposed method
consistently outperforms all compared opponents by a considerable margin. For
example, compared with the state-of-the-art method PEL[10], the AUC of our
method exceeds it by 0.10% and 0.52% at all the two quality settings(c23 and
c40), and this performance gain is also obtained under Acc. To explain, DDIN
considers the quality of the auxiliary discriminant information contained in each
branch in the multi-modal fusion stage and improves the network’s discriminative
ability on the test set in the UTT stage. The above results demonstrate the
effectiveness of the proposed DDIN framework and UTT strategy. The above
results demonstrate the effectiveness of our proposed method.



10 S. Huang et al.
Table 2. Cross-testing in terms of AUC (%) by training on FF++. The best results
are shown in blod.

M
et
ho

d

X
ce

pt
io

n[
6]

R
FM

[3
8]

A
dd

-N
et

[4
2]

F3
-N

et
[2

9]
M

ul
tiA

tt
[4

1]
PE

L[
10

]
D
D
IN

D
D
IN

(+
U
T
T

)

Test CelebDF 61.80 65.63 65.29 61.51 67.02 69.18 68.35 69.32
DFDC 63.61 66.01 64.78 64.60 68.01 63.31 68.80 70.10

Table 3. Cross-manipulation evaluation on the subsets of FF++(C40) in terms of
AUC(%). Grey background indicates intra-dataset results and Cross Avg. means the
average of cross-method results. The best results are shown in blod.

Method Train DF F2F FS NT Cross Avg.

FDFL[16]

DF

98.91 58.90 66.87 63.61 63.13
MultiAtt[41] 99.51 66.41 67.33 66.01 66.58
DDIN 99.71 61.99 78.08 67.02 69.03
DDIN (+UTT) 99.78 66.62 78.81 67.83 71.08

FDFL[16]

F2F

67.55 93.06 55.35 66.66 63.19
MultiAtt[41] 73.04 97.96 65.10 71.88 70.01
DDIN 73.85 98.01 64.25 72.49 70.19
DDIN (+UTT) 77.10 98.09 64.42 74.71 72.07

FDFL[16]

FS

75.90 54.64 98.37 49.72 60.09
MultiAtt[41] 82.33 61.65 98.82 54.79 66.26
DDIN 88.20 62.13 98.80 56.63 68.98
DDIN (+UTT) 89.18 62.56 98.83 58.44 70.06

FDFL[16]

NT

79.09 74.21 53.99 88.54 69.10
MultiAtt[41] 74.56 80.61 60.90 93.34 72.02
DDIN 78.15 81.34 62.67 93.34 74.05
DDIN (+UTT) 79.57 85.73 63.22 94.17 76.04

Cross-testing. To evaluate the generalization ability of our method on unknown
forgeries, we conduct cross-dataset experiments by training and testing on dif-
ferent datasets. Specifically, we train the models on FF++ and then test them
on Celeb-DF and DFDC, respectively. As shown in Table 2, we observe that our
method outperforms the other methods well on the unseen dataset. For example,
when testing on the DFDC dataset, the AUC score of most previous methods
drops to around 70%. The performance mainly benefits from the proposed DDIN
framework and UTT fine-turning which focus on quality differences between dif-
ferent modalities, while the uncertainty perturbation guides the model to learn
more distribution discrepancies between the train-set and test-set. Instead of
overfitting with specific forged patterns as in existing methods, our method fine-
tunes the trained model by using the unlabeled test set data to achieve better
generalizability.
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We further conduct fine-grained cross-testing by training on a specific manip-
ulation technique and testing on the others listed in FF++(C40). As shown in
Table 3, we compare our method with approaches that focus on specific forgery
patterns like FDFL[16] and MultiAtt[41]. Our method generally outperforms
others on unseen forgery types. In comparison, our pre-trained detector can
adapt to the test samples via UTT, thus being more effective than the two
methods for the generalizable deepfake detection task.

4.3 Ablation Study

Components. As shown in Table 4, we develop several variants and conduct a
series of experiments on the FF++(C40) dataset to explore the influence of differ-
ent components in our proposed method. The frequency-guided attention module
used in the multi-level interaction stage can enhance the performance, and it can
be improved by adding the proposed frequency-guided attention module or dy-
namic fusion module, reaching better performance when they are applied to the
overall DDIN framework. The results verify that the frequency input is distinct
and complementary to the RGB information and the quality discrepancies are
negligible.

Table 4. Ablation study of the proposed method on FF++.

Ablation
Study

Modules FF++(C40)

FAM DFM UTT AUC(%) Acc(%)

(a) - - - 92.15 88.51
(b) ✓ - - 93.43 89.73
(c) - ✓ - 93.82 90.21
(d) ✓ ✓ - 94.47 90.41
(e) - ✓ ✓ 94.02 90.23
(f) ✓ ✓ ✓ 94.80 90.84

Furthermore, uncertainty-guided test-time training is also extremely effective
to boost performance. And the best performance is achieved when combining all
the proposed components with Acc and AUC of 90.84% and 94.80%, respectively.
In addition, before the dynamic fusion module, we investigate the preliminary
feature fusion method. Table 5 shows the results of three different scenarios. By
comparing a and b, we can observe that the initial feature fusion is required.
The result of c shows that the CAM module we use can effectively supplement
the RGB and frequency domain feature information.

4.4 Visualization

To gain a better understanding of our method’s decision-making mechanism,
we provide the Grad-CAM[32] visualization on FF++ as shown in Fig. 3. It
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Table 5. Ablation study of fusion method before dynamic fusion.

Ablation
Study

Fusion Method FF++(C40)

Concat CrossAtt AUC(%) Acc(%)

(a) - - 93.47 89.79
(b) ✓ - 94.26 90.33
(c) - ✓ 94.80 90.84

can be observed that the baseline method MOA-Transformer[27] tends to over-
look forged traces in fake faces, particularly those that are concealed within the
RGB domain. In contrast, even though it only uses binary labels for training,
our method generates distinguishable heatmaps for real and fake faces, with
the prominent regions varying in forgery techniques. For example, when detect-
ing images forged with Deepfakes[36] and NeuralTextures[34] technologies, our
method focuses on the edge contours of artefacts, which are difficult to detect
in the RGB domain. And our method is more sensitive to the abnormal tex-
ture information forged by FaceSwap[15] in the eyes region and the inconsistent
information forged by Face2Face[35] in the mouth region.

Fig. 3. The Grad-CAM [32] of visualization.

5 Conclusion
In this paper, we have proposed a Dynamic Dual-spectrum Interaction Network
(DDIN) that allows test-time training to alleviate the effects of feature qual-
ity discrepancies and model uncertainty. The frequency-guided attention mod-
ule used in multi-level interaction and the dynamic fusion module applied in
multi-modal fusion can make the network dynamically fuse the features with
quality discrepancies. Meanwhile, the uncertainty-guided test time training is
introduced to fine-tune the trained detector by adding uncertain perturbation,
which improves the network generalization. Extensive experiments and visual-
izations demonstrate the effectiveness of our method against its state-of-the-art
competitors. In the future, we will explore the use of uncertainty to design self-
supervised tasks in other related fields such as forensic attribution.



Uncertainty-guided Test-time Training for Face Forgery Detection 13

6 Acknowledgment

This research is partly supported by National Natural Science Foundation of
China (Grant No. 62006228), Youth Innovation Promotion Association CAS
(Grant No. 2022132) and the University Synergy Innovation Program of Anhui
Province (No. GXXT-2022-036). The authors would like to thank Tong Zheng
(AHU) and Jin Liu (ShanghaiTech) for their valuable discussions.

References

1. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: Mesonet: a compact facial video
forgery detection network. In: WIFS (2018)

2. Amerini, I., Galteri, L., Caldelli, R., Del Bimbo, A.: Deepfake video detection
through optical flow based cnn. In: CVPRW (2019)

3. Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., Yang, X.: End-to-end reconstruction-
classification learning for face forgery detection. In: CVPR (2022)

4. Chen, L., Zhang, Y., Song, Y., Wang, J., Liu, L.: Ost: Improving generalization of
deepfake detection via one-shot test-time training. In: NeurIPS (2022)

5. Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face
forgery detection. In: AAAI (2021)

6. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
CVPR (2017)

7. Das, S., Seferbekov, S., Datta, A., Islam, M., Amin, M., et al.: Towards solving
the deepfake problem: An analysis on improving deepfake detection using dynamic
face augmentation. In: ICCV (2021)

8. Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., Ferrer, C.C.:
The deepfake detection challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397
(2020)

9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

10. Gu, Q., Chen, S., Yao, T., Chen, Y., Ding, S., Yi, R.: Exploiting fine-grained face
forgery clues via progressive enhancement learning. In: AAAI (2022)

11. Gumbel, E.J.: Statistical theory of extreme values and some practical applications:
a series of lectures, vol. 33. US Government Printing Office (1954)

12. Guo, H., Wang, H., Ji, Q.: Uncertainty-guided probabilistic transformer for com-
plex action recognition. In: CVPR (2022)

13. He, R., Zhang, M., Wang, L., Ji, Y., Yin, Q.: Cross-modal subspace learning via
pairwise constraints. IEEE TIP 24(12), 5543–5556 (2015)

14. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

15. Kowalski, M.: Faceswap. https://github.com/marekkowalski/faceswap
16. Li, J., Xie, H., Li, J., Wang, Z., Zhang, Y.: Frequency-aware discriminative feature

learning supervised by single-center loss for face forgery detection. In: CVPR (2021)
17. Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., Guo, B.: Face x-ray for

more general face forgery detection. In: CVPR (2020)
18. Li, X., Hou, Y., Wang, P., Gao, Z., Xu, M., Li, W.: Trear: Transformer-based rgb-d

egocentric action recognition. TCDS 14(1) (2021)

https://github.com/marekkowalski/faceswap


14 S. Huang et al.

19. Li, Y., Hao, M., Di, Z., Gundavarapu, N.B., Wang, X.: Test-time personalization
with a transformer for human pose estimation. In: NeurIPS (2021)

20. Li, Y., Chang, M.C., Lyu, S.: In ictu oculi: Exposing ai created fake videos by
detecting eye blinking. In: WIFS (2018)

21. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-df: A large-scale challenging dataset
for deepfake forensics. In: CVPR (2020)

22. Liu, Y., Kothari, P., van Delft, B., Bellot-Gurlet, B., Mordan, T., Alahi, A.: Ttt++:
When does self-supervised test-time training fail or thrive? In: NeurIPS (2021)

23. Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with
high-frequency features. In: CVPR (2021)

24. Masi, I., Killekar, A., Mascarenhas, R.M., Gurudatt, S.P., AbdAlmageed, W.: Two-
branch recurrent network for isolating deepfakes in videos. In: ECCV (2020)

25. Nguyen, H.H., Fang, F., Yamagishi, J., Echizen, I.: Multi-task learning for detecting
and segmenting manipulated facial images and videos. In: BTAS (2019)

26. Nirkin, Y., Wolf, L., Keller, Y., Hassner, T.: Deepfake detection based on discrep-
ancies between faces and their context. IEEE TPAMI (2021)

27. Patel, K., Bur, A.M., Li, F., Wang, G.: Aggregating global features into local vision
transformer. arXiv preprint arXiv:2201.12903 (2022)

28. Plizzari, C., Cannici, M., Matteucci, M.: Spatial temporal transformer network for
skeleton-based action recognition. In: ICPR (2021)

29. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: Face forgery
detection by mining frequency-aware clues. In: ECCV (2020)

30. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics++: Learning to detect manipulated facial images. In: ICCV (2019)

31. Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces
in-the-wild challenge: Database and results. IVC 47 (2016)

32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
ICCV (2017)

33. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with
self-supervision for generalization under distribution shifts. In: ICML (2020)

34. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: Image synthesis
using neural textures. ACM TOG 38(4) (2019)

35. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face:
Real-time face capture and reenactment of rgb videos. In: CVPR (2016)

36. Tora: Deepfakes. https://github.com/deepfakes/faceswap/tree/v2.0.0
37. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,

Ł., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)
38. Wang, C., Deng, W.: Representative forgery mining for fake face detection. In:

CVPR (2021)
39. Wang, J., Wu, Z., Ouyang, W., Han, X., Chen, J., Jiang, Y.G., Li, S.N.: M2tr:

Multi-modal multi-scale transformers for deepfake detection. In: ICMR (2022)
40. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention

module. In: ECCV (2018)
41. Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional

deepfake detection. In: CVPR (2021)
42. Zi, B., Chang, M., Chen, J., Ma, X., Jiang, Y.G.: Wilddeepfake: A challenging

real-world dataset for deepfake detection. In: ACM MM (2020)

https://github.com/deepfakes/faceswap/tree/v2.0.0

	Uncertainty-guided Test-time Training for Face Forgery Detection

