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Abstract The primary goal of visible-infrared person

re-identification (VI-ReID) is to match pedestrian pho-

tos obtained during the day and night. The majority

of existing methods simply generate auxiliary modality

to reduce the modality discrepancy for cross-modality

matching. They capture modality-invariant represen-

tations but ignore the extraction of modality-specific

representations that can aid in distinguishing among var-

ious identities of the same modality. To alleviate these

issues, this work provides a novel Specific and Shared

Representations Learning (SSRL) model for VI-REID to

learn modality-specific and modality-shared representa-

tions. We design a shared branch in SSRL to bridge the

image-level gap and learn modality-shared representa-

tions, while a specific branch to retain the discriminative

information of visible images to learn modality-specific
representations. In addition, we propose intra-class ag-

gregation and inter-class separation learning strategies

to optimize the distribution of feature embeddings at

a fine-grained level. Extensive experimental results on

two challenging benchmark datasets SYSU-MM01 and

the RegDB demonstrate the superior performance of

SSRL over state-of-the-art methods.
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1 Introduction

Single-modality person re-identification (Re-ID) is a
pedestrian matching problem between query and gallery

photos from separate cameras, which has received much

attention in computer vision [1–6]. Visible cameras play

a limited role in night monitoring and security work,

therefore visible infrared person re-identification (VI-
ReID) [7] is proposed to match the image of people

captured by visible and infrared cameras. This task aims

to solve not only intra-modality discrepancies caused by

different camera perspectives and human poses in single-

modality visible person Re-ID but also inter-modality

discrepancies by various spectral cameras.

Reducing the modality discrepancy and learning

modality-invariant representations is a significant chal-

lenge. Cross-modality matching using grayscale images

is a popular method to eliminate the color discrep-

ancy [7,8]. However, modality-specific representations

are discarded along with color information, and specific

representations are a crucial decision-making accordance

for retrieval, which can help to widen the inter-class

discrepancy. Using Generative Adversarial Networks

(GANs) to generate concrete visualizations [9, 10] to

eliminate image-level gaps allows the task to be reduced

as much as possible to a single-modal task, but with

the inevitable generation of noise. Another method is to

build complex networks [11, 12] for learning modality-

invariant representations, but due to the huge modality

discrepancy, heterogeneous modality features cannot be

well projected into a unified space. In summary, extract-
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Fig. 1 (a) The conversion of visible light images to grayscale images. After that, the large gap between visible and infrared
images shrinks to the small gap between infrared and grayscale images. (b) Different IDs are similar under visible images but
different under infrared photos. The discriminative information of visible light images can help the network distinguish between
different IDs. (c) Different IDs are different under visible photos but similar under infrared images. The shared representations
of infrared images can help find the same identity.

ing and decoupling specific and shared representations

is a challenge for current methods. Although [13] have

made a preliminary attempt, it cannot completely de-
couple specific and shared representations.

This paper proposes a specific and shared representa-

tions learning (SSRL) model for VI-ReID to mitigate the

discrepancy between heterogeneous pedestrian images

while better capturing modality-invariant and modality-

specific representations. Specifically, in order to learn

modality-specific representations, we employ the tradi-

tional RGB-NIR branch as our specific branch. The color

information in RGB images is an important decision-

making accordance for retrieval which may lead to large

inter-class differences and slight intra-class differences.

Therefore, it is necessary to decompose modality-specific

representations. Specific branch takes visible and in-

frared images as inputs and feature extractors with dif-

ferent parameters to ensure that the extracted features

are modality-specifc representations. We design a shared

branch, as seen in Fig. 1 (a). We can obtain grayscale

images directly from visible images using channel con-

version, which converts three-channel visible images

into single-channel grayscale images and replicates them

to the three channels. The converted grayscale images

alleviated the modality discrepancy with the infrared im-

ages, and then fed them into the feature extractor. The

shared branch feature extractor is parameter-shared and

used to learn modality-invariant representations. Our

dual-branch structure has two main benefits. First, the

specific branch improves extraction to modalitiy-specific

representations by preserving color information from vis-

ible images. As illustrated in Fig. 1 (b), when infrared

images from different IDs are similar and visible images

from different IDs are different, it is required to rely
on specific representations in the visible light images to

separate them. Second, grayscale operations for shared

branch alleviates the modality discrepancy, allowing

the parameter-shared feature extractor to capture the

modality-shared representations more effectively. As il-

lustrated in Fig. 1 (c), when visible images from different

IDs are similar and infrared images from different IDs

are different, it is vital to rely on shared representations

to bring the features of different modalities of the same

ID closer. In addition, we design effective intra-class

aggregation and inter-class separation learning strate-

gies to optimize the distribution of feature embeddings

on a fine-grained level. It constrains the distance of dif-

ferent class centers from both the same modality and

cross-modality and plays a role in expanding the intra-

class distance and minimizing the inter-class distance. In

the early stages of training, substantial disparities exist

between modality-specific features, rendering them un-

suitable for cross-modality tasks. However, we mitigated

this issue by using intra-class agregation learning (IAL)

loss, which constrains the differences between modality-

specific and modality-shared features. As training pro-

gresses, these differences gradually diminish, while both

types of features continue to contribute effectively to

the network’s accurate identification of individual iden-

tities. During the training process, we employed CE loss

and inter-class separation learning (ISL) loss to enhance

the representation capability of the final features by ex-
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tracting modality-specific feature and combining it with

modality-shared feature through concatenation. This

approach shows advantages in increasing the distinctive-

ness between features from different IDs and, to some

extent, improves the ability of the feature extraction

network to extract ID-related information.

Our main contributions are summarized below:

– A novel specific and shared representations learning

model termed SSRL is proposed for the VI-ReID

task, which contains a specific branch and a shared

branch to learn modality-specific and modality-shared

representations.

– The intra-class aggregation and inter-class separation

learning strategies are further developed to optimize

the distribution of feature embeddings on a fine-

grained level.

– Extensive experimental results on the SYSU-MM01

and the RegDB datasets show that our proposed

method achieves a new state-of-the-art performance.

2 Related Work

2.1 Single-Modality Person Re-Identification

Single-modality person Re-ID aims at matching the per-

son images captured by different cameras in the daytime,

while all the images are from the same visible modal-

ity. Existing works have shown desirable performance

on the widely-used datasets with deep learning tech-

nique [14–16]. [17] propose an attribute-person recogni-

tion (APR) network, a multi-task network which learns

a re-ID embedding and at the same time predicts pedes-
trian attributes. [18] propose a network named Part-

based Convolutional Baseline (PCB) which conducts

uniform partition on the conv-layer for learning part-

level features and an adaptive pooling method named

Refined Part Pooling (RPP) to improve the uniform

partition. [19] formulate a harmonious attention CNN

model for joint learning of pixel and regional attention

to optimize reID performance with misaligned images.

Due to the tremendous discrepancy between visible and

infrared images, single-modality solutions are not suit-

able for cross-modality person re-identification, which

creates a demand for the development of VI-ReID so-

lutions. [20] propose a general framework, namely JoT-

GAN, to jointly train GAN and the re-id model.

2.2 Visible-Infrared Person Re-Identification

The main challenge in VI-ReID is appearance discrep-

ancy, including large intra-class and slight inter-class

variations. The existing VI-ReID methods are divided

into three categories: representation learning, metric

learning, and image generation. The approach of repre-

sentation learning based on feature extraction mainly

explores how to construct a reasonable network archi-

tecture, which can extract the robust and discriminat-

ing features shared by the two modality images. [7]

firstly define the VI-REID problem and contribute a

new multiple modality Re-ID dataset SYSU-MM01 for

research, and they propose deep zero-padding for train-

ing one-stream network towards automatically evolving
domain-specific nodes in the network for cross-modality

matching. [21] offer a novel Modality Confusion Learning

Network (MCLNet) to confuse two modalities, ensuring

that the optimization is explicitly concentrated on the

modality-irrelevant perspective. [22] propose a novel hi-

erarchical cross-modality matching model which could

simultaneously handle both cross-modality discrepancy

and cross-view variations, as well as intra-modality

intra-person variations. For exploring the potential of

both the modality-shared information and the modality-

specific characteristics to boost the re-identification per-

formance, [13] propose a novel cross-modality shared-

specific feature transfer algorithm to tackle the above

limitation. To learn discriminative feature representa-

tions, a dual-path network with a novel bi-directional

dual-constrained top-ranking loss is developed in [23].

Metric learning is to learn the similarity of two pic-

tures through the network, and the key is to design a

reasonable measurement method or loss function. [24]

design a novel loss function, called Hetero-Center loss, to

constrain the distance between two centers of heteroge-

nous modality. [25] propose the hetero-center triplet
loss to constrain the distance of different class centers

from the same modality and cross-modality. [26] use

Sphere Softmax to learn a hypersphere manifold embed-

ding and constrain the intra-modality variations and

cross-modality variations on this hypersphere. [27] pro-
pose the dual-modality triplet loss to constrain both

the cross-modality and intra-modality and address the

cross-modality discrepancy and intra-modality varia-

tions. [28] propose a novel loss function called HP loss,

which can simultaneously handle the cross-modality and

intra-modality variations. Image generation means using

GANs or other methods to reduce discrepancies by trans-

forming one modality into another. [10] propose generat-

ing cross-modality paired images and performing global

set-level and fine-grained instance-level alignments. [29]

propose a Hierarchical Cross-Modality Disentanglement

method that extracts pose- and illumination-invariant

features for cross-modality matching. [9] translate an

infrared image into its visible counterpart and a visible

image into its infrared version, which can unify the rep-
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resentations for images with different modalities. [30]

proposes a novel and end-to-end Alignment Genera-

tive Adversarial Network (AlignGAN) for the RGB-IR

RE-ID task. [31] introduce an auxiliary X modality as

an assistant and reformulate infrared-visible dual-mode

cross-modality learning as an X-Infrared-Visible three-

mode cross-modal learning problem.

3 Method

This section will detail the SSRL model proposed for

visible-infrared person Re-ID. The proposed SSRL model

is illustrated in Fig. 2. We first propose a dual-branch

structure containing a shared branch to alleviate modal-

ity discrepancy to learn modality-invariant represen-

tations and a specific branch to learn more accurate

modality-specific representations. Then, we use the intra-

class aggregation and inter-class separation learning

strategies to further optimize the distribution of fea-

tures and aggregate instances with the same identity.

3.1 Baseline

We adopt ResNet-50 [32] as the backbone, in which

each branch contains a pre-trained model. At the same

time, we use max pooling to obtain fine-grained features.

Inspired by the work of PCBs [18,33] in extracting dis-

criminant features, the work divides the feature map

horizontally into sections and feeds each part into a

classifier to learn local clues and sets the part to 6. Fol-

lowing the state-of-the-art methods, we utilize identity

loss [34] LID and hetero-center triplet loss [25] LHCT

to constrain the network, the baseline learning loss is

denoted as Lbase.

Lbase = LID + LHCT . (1)

3.2 Dual-Branched Structure

3.2.1 Specific Branch

The color information in the visible light image is crucial

discriminative information, which can help the network

expand the difference among classes as much as possible.

The specific branch takes the original RGB and NIR

images as input and employs two parameter-independent

feature extractors to ensure that the network learns

specific characteristics more effectively. Through CNN,

global max pooling (GMP), and batch normalization

(BN) operations, feature vectors are input to the fully

connected layer for identity classification. Since the input

to the specific branch includes RGB images, the network

pays more attention to learning discriminative color

information. For this branch, identity loss is formulated

as follows:

Lspecific
ID = − 1

N

N∑
n=1

log
eW

T
yn

fV
n∑U

u=1 e
WT

ufV
n

, (2)

where N denotes the sample number in a batch, yn and

fV
n are the identity and the feature vector of the n-th

pedestrian image, U is the number of identities, and W u

denotes the uth column of the weights. Under the super-

vision of identity loss, the specific branch can extract

information about a specific identity for classification.

3.2.2 Shared Branch

The visible image has three channels, which contain the

visible light color information of red, green and blue,

while the infrared image has only one channel, which

contains the intensity information of near-infrared light.

From the perspective of imaging principles, the wave-

length ranges of the two are also different. Different

sharpness and lighting conditions can produce very dif-

ferent effects on the two types of images. The large

modality discrepancy makes it very challenging to ex-
tract modality-shared features directly using feature

extractors. Thus we introduced an additional shared

branch. The shared branch first performs a grayscale

transformation operation on the visible light image to

reduce modality discrepancy. This is done for a given

visible image xi
v with three channels R, G, B, we take

the R(x), G(x) and B(x) values for each pixel of the vis-

ible image xi
v. The corresponding grayscale pixel point

G(x) can therefore be calculated as:

G(x) = α1R(x) + α2G(x) + α3B(x), (3)

where α1, α1 and α1 are each set to 0.299, 0.587 and
0.114. The grayscale image is then restored to a three-

channel image and sent to the shared branch along with

the infrared image. The shared branch’s two feature

extractor parameters are shared. The shared branch

removes color information from the network, allowing it

to focus on learning modality-invariant representations

such as texture and structural information. The identity

loss of the shared branch Lshared
ID is the same as that of

the specific branch.

3.2.3 Fusion Features

We employ concatenation to fuse the obtained specific

and shared features from dual-branch cooperative learn-

ing on visible and infrared images from specific and
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Fig. 2 Framework of the proposed Specific and Shared Representations Learning (SSRL) model. The cross-modality images
are fed into a dual-branch structure, with one branch dedicated to learning specific representations and the other dedicated to
learning shared representations and fusing the specific representations and shared representations. For the fusion feature, the
identity (ID) loss is leveraged to enhance the discriminative power of the embedding features and the hetero-center triplet
(HCT) loss is leveraged to constrain the distance of different class centers from both the same modality and cross-modality. For
the specific feature and shared feature, intra-class aggregation learning (IAL) loss and inter-class separation learning (ISL) loss
are further developed to optimize the distribution of feature embeddings on a fine-grained level.

shared branches. The discriminative information of spe-
cific features in the fusion feature can assist the model

in to separating different identities. The invariant in-

formation of the shared features in the fusion feature

can assist the model in identifying the same identity in

different modalities. As a result, for synchronous classifi-

cation learning, we implement an identity classification

layer for the fusion features. The fusion feature Lfusion
ID

has the same identity loss computation as the specific

branch. Add the above identity loss to obtain the final

identity loss function:

Lfinal
ID = Lspecific

ID + Lshared
ID + Lfusion

ID , (4)

and the hetero-center triplet loss LHCT is also used for

metric learning of the fusion feature.

3.3 Intra-Class Aggregation Learning

Due to the camera viewpoint, clothing, posture, and

other factors, the distance between sample pairs among

classes is frequently longer than the distance between

Fig. 3 Illustration of intra-class aggregation learning strategy.
The distribution of the four features is shown by four different
colors of diamonds. The circle represents the center of the
feature distribution of a modality. The orange line represents
intra-class aggregation.

sample pairs intra-classes. We apply intra-class aggre-

gation learning strategy to limit the distance in each

class to increase cross-modality intra-class similarity.
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By intra-class aggregation learning strategies, we ag-

gregate different modalities of the same identity. It is

challenging to restrict the distance in each class’s dis-

tribution of visible-specific features, infrared-specific

features, visible-shared features, and infrared-shared

features, therefore, take the centers of these feature dis-

tributions and penalize the center distance. As shown

in Fig. 3, we suppose that there are P × K images of P

identities in a mini-batch, where each identity contains

K images. The feature distribution center of identity in

visible-specific features is calculated as follows:

cpvspe =
1

K

K∑
k=1

(vspe)pk, p ∈ [1, P ], (5)

(vspe)pk denotes the feature vector of the k-th image out-

put. Infrared-specific features, visible-shared features,

and infrared-shared feature distribution centers are cal-

culated as cpispe, c
p
vsha, c

p
isha in the same way. We intro-

duce an intra-class aggregation constraint loss to handle

the distance among different modalities of the same

identity, which can be interpreted as:

LIAL =

P∑
p=1

[∥∥cpvspe − cpispe
∥∥2
2
+
∥∥cpvspe − cpvsha

∥∥2
2

+
∥∥cpvspe − cpisha

∥∥2
2
+
∥∥cpispe − cpvsha

∥∥2
2

+
∥∥∥cpispecifc − cpisha

∥∥∥2
2
+ ∥cpvsha − cpisha∥

2

2

]
,

(6)

as shown in Fig. 3, the visible-specific features, infrared-

specific features, visible-shared features, and infrared-

shared features represented by the four colors are focused

closer by intra-class aggregation learning strategy. Our

goal is to reduce the distance between different modality

centers of the same identity, thereby suppressing cross-

modality variations.

Fig. 4 Illustration of inter-class separation learning strategy.
Different dotted circles represent the distribution of features
for different identities. The blue line represents inter-class
aggregation.

3.4 Inter-Class Separation Learning

Intra-class aggregation learning strategy can only en-

sure that samples of cross-modality of the same identity

are aggregated together, but the model also needs to

ensure the dissimilarity among different identities. The

extracted modality-specific representations can help dif-

ferent IDs to achieve inter-class separation. By inter-

class separation learning strategies, we separate different

identities. We first calculate the center of all samples

for each identity and then constrain the distance of the

distribution of different identity features by cosine dis-

tance. The inter-class separation loss is calculated as

follows:

LISL =

P∑
p=1

P∑
j ̸=p

max
[
0, 1− cos(cp, cj)−m

]
, (7)

where cp, cj denote the center of the(cpvspe, c
p
ispe, c

p
vsha,

cpisha), (c
j
vspe, c

j
ispe, c

j
vsha, c

j
isha), cos(·, ·) represents the

cosine distance in centers of different identities, m is a

margin term. As shown in Fig. 4, with the inter-class

separation learning strategy, the feature distributions

of different identities are separated.

3.5 Objective Function

As mentioned above, the core goal of SSRL is to jointly

learn the two branches, obtain modality-specific repre-

sentations and modality-invariant representations, and

make full use of them. Combined with the losses men-

tioned above, we finally define the total loss of the overall

network as follows:

Ltotal = Lfinal
ID + λ1LHCT + λ2LIAL + λ3LISL, (8)

where λ1, λ2 and λ3 are the weights of LHCT , LIAL and

LISL.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our proposed method on two

publicly available VI-ReID datasets(SYSU-MM01 [7]

and RegDB [51]).

SYSU-MM01 dataset contains 287,628 visible images

and 15,729 infrared images, captured by 4 RGB cameras

and 2 thermal imaging cameras, with a total of 491 valid

IDs, of which 296 identities are used for training, 99

for verification, and 96 for testing. During the testing
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Table 1 Comparison with the state-of-the-arts on SYSU-MM01 datasets and RegDB datasets. R=1, R=10 denotes the Rank-1,
Rank-10 accuracy. Rank-k accuracy (%) and mAP (%) are reported. Herein, the best and second best results are indicated by
red and green fonts. († This paper reports a higher accuracy by using the transferred graph features. We use backbone features
for inference for a fair comparison).

Method
SYSU-MM01 RegDB

All Search Indoor Search VIS to IR IR to VIS
R=1 R=10 mAP R=1 R=10 mAP R=1 R=10 mAP R=1 R=10 mAP

Zero-Pad [7] 14.80 54.12 15.95 20.58 68.38 26.92 17.75 34.21 18.90 16.63 34.68 17.82
cmGAN [35] 26.97 67.51 27.80 31.63 77.23 42.19 - - - - - -
HSME [26] 20.68 32.74 23.12 - - - 50.85 73.36 47.00 50.15 72.40 46.16
Hi-CMD [29] 34.94 77.58 35.94 - - - 70.93 86.39 66.04 - - -
DDAG [11] 54.75 90.39 53.02 61.02 94.06 67.98 69.34 86.19 63.46 68.06 85.15 61.80
AGW [1] 47.50 84.39 47.65 54.17 91.14 62.97 70.05 86.21 66.37 70.49 87.12 65.90
NFS [36] 56.91 91.34 55.45 62.79 96.53 69.79 80.54 91.96 72.10 77.95 90.45 69.79
MSO [37] 58.70 92.06 56.42 63.09 96.61 70.31 73.60 88.60 66.90 74.60 88.70 67.50
MCLNet [21] 65.40 93.33 61.98 72.56 96.98 76.58 80.31 92.70 73.07 75.93 90.93 69.49
SMCL [38] 67.39 92.87 61.78 68.84 96.55 75.56 83.93 - 79.83 83.05 - 78.57
ADP [39] 69.88 95.71 66.89 76.26 97.88 80.37 85.03 95.49 79.14 84.75 95.33 77.82
MPANet [40] 70.58 96.21 68.24 76.64 98.21 80.95 82.80 - 80.70 83.70 - 80.90
PIC [41] 57.50 - 55.10 60.40 - 67.70 83.60 - 79.60 79.50 - 77.40
MID [42] 60.27 92.90 59.40 64.86 96.12 70.12 87.45 95.73 84.85 84.29 93.44 81.41
SPOT [43] 65.34 92.73 62.25 69.42 96.22 74.63 80.35 93.48 72.46 79.37 92.79 72.26
FMCNet [44] 66.34 - 62.51 68.15 - 74.09 89.12 - 84.43 88.38 - 83.86
DART [45] 68.72 96.39 66.29 72.52 97.84 78.17 83.60 - 75.67 81.97 - 73.78
MMN [46] 70.60 96.20 66.90 76.20 97.20 79.60 91.60 97.70 84.10 87.50 96.00 80.50
DCLNet [47] 70.97 - 65.18 73.51 - 76.80 81.20 - 74.30 78.00 - 70.60
CIFT† [48] 71.77 - 67.64 78.65 - 82.11 92.17 - 86.96 90.12 - 84.41
MAUM [49] 71.68 - 68.79 76.97 - 81.94 87.87 - 85.09 86.95 - 84.34
DEEN [50] 74.70 97.60 71.80 80.30 99.00 83.30 91.10 97.80 85.10 89.50 96.80 83.40
SSRL(ours) 72.68 96.42 68.28 77.58 98.58 79.50 93.64 98.70 82.55 93.52 98.66 82.43

phase, infrared images were used to search for visible
images. Samples from the visible camera are used in the

gallery set, and samples from the infrared camera are

used in the probe set. This dataset contains two modes:

all-search mode and indoor-search mode. For all-search

mode, visible cameras 1, 2, 4, and 5 are used for the

gallery set, and infrared cameras 3 and 6 are used for the

probe set. For indoor search mode, use visible cameras

1 and 2 for the gallery set and infrared cameras 3 and 6

for the probe. A detailed description of the experimental

settings can be found in [7].

RegDB dataset contains 412 person identities, each

with 10 visible light and 10 infrared images, a total of

4120 visible images and 4120 infrared images. The 10

images of each individual vary in body pose, capture dis-

tance, and lighting conditions. However, in the 10 images

of the same person, the camera’s weather conditions,

viewing angles, and shooting angles are all the same,

and the pose of the same identity varies little, so the

task of the RegDB dataset is less complicated. Following

the evaluation protocol proposed by [22], we randomly

sampled 206 identities for training, and the remaining

206 identities were used for testing. The training/test

segmentation process is repeated 10 times.

LLCM dataset utilizes a 9-camera network deployed

in low-light environments and contains 46,767 bound-

ing boxes containing 1,064 identities. The training set

contains 30921 bounding boxes of 713 identities (16946
bounding boxes from the VIS modality, 13975 bounding

boxes from the IR modality), and the test set contains

13909 bounding boxes of 351 identities (8680 bounding

boxes from the VIS modality, 7166 bounding boxes from

the IR modality.)

Evaluation metrics. For performance evaluation, we

employed the widely known Cumulative Matching Char-

acteristic (CMC) [52] curve and mean Average Precision

(mAP).

4.2 Implementation details

The proposed method is implemented by the PyTorch

framework and an NVIDIA Tesla V100 GPU. Building

on existing person Re-ID work, a pre-trained ResNet-50

model is used as the backbone for a fair comparison.

Specifically, the stride of the last convolutional block is

changed from 2 to 1 to obtain fine-grained feature maps.

In the training phase, batch-size is set to 32, containing

16 visible light and 16 infrared images from 8 identities.

For each identity, 2 visible and 2 infrared images are

selected randomly. For infrared images, three copied

channels are fed into the network. The input images

are resized to 288 × 144 and padded with 10, then

randomly left-right flipped and cropped to 288 × 144
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Table 2 Comparison with the state-of-the-arts on LLCM
dataset. R1, R10 denotes the Rank-1, Rank-10 accuracy. Rank-
k accuracy (%) and mAP (%) are reported. Herein, the best
and second best results are indicated by red and green fonts.
(The symbol of “*” represents the methods that we reproduced
with the random erasing technique).

Method
LLCM

IR to VIS VIS to IR
R1 R10 mAP R1 R10 mAP

DDAG [11] 40.3 71.4 48.4 48.0 79.2 52.3
DDAG* [11] 41.0 73.4 49.6 48.5 81.0 53.0
AGW [1] 43.6 74.6 51.8 51.5 81.5 55.3
LbA [53] 43.8 78.2 53.1 50.8 84.3 55.6
LbA* [53] 44.6 78.2 53.8 50.8 84.6 55.9
AGW* [1] 46.4 77.8 54.8 56.0 84.9 59.1
CAJ [39] 48.8 79.5 56.6 56.5 85.3 59.8
DART [45] 52.2 80.7 59.8 60.4 87.1 63.2
MMN [46] 52.5 81.6 58.9 59.9 88.5 62.7
DEEN [50] 54.9 84.9 62.9 62.5 90.3 65.8
SRRL(ours) 52.3 81.2 58.8 60.1 87.8 62.6

and randomly erased [54] for data augmentation. We

use the stochastic gradient descent (SGD) optimizer for

optimization with the momentum parameter set to 0.9.

We set the initial learning rate of the two datasets to

0.1 and guide the network using a warmup learning rate

strategy [55]. For the λ1, λ2 and λ3 in Eq. (8), we set

them to 1.0, 1.0 and 2.0, respectively.

4.3 Comparison with State-of-the-art Methods

Results on SYSU-MM01: Tab. 1 illustrates the com-

parison results on the SYSU-MM01. It can be seen that

the proposed method has reached the state-of-the-art

result in two settings. Our model achieves 72.68% rank-

1 and 68.28% mAP in all search setting and achieves

77.58% rank-1 and 79.50% mAP in indoor setting. Most

of the indicators reach the second accuracy.

Results on RegDB: Tab. 1 illustrates the compari-

son results on the RegDB. Our SSRL achieves superior

performance on both visible-to-infrared and infrared-to-

visible settings. Specifically, we achieve Rank-1 accuracy

of 93.64% and mAP of 82.55% in infrared to visible

mode, and Rank-1 accuracy of 93.52% and mAP of

82.43% in visible to infrared mode. Hence, our SSRL

model is robust against different datasets and query

settings.

Results on LLCM: Tab. 2 illustrates the comparison

results on the LLCM. The images in the LLCM dataset

are captured in complex low-light environments, which

contain severe illumination variations. Our SSRL does

not have measures for low-light environments, but also

achieves decent performance.

Table 3 The Ablation study of different components on
SYSU-MM01 (all search). Base: baseline, DB: dual-branch
structure, IAL: intra-class aggregationg learning strategy, ISL:
intra-class separation learning strategy. Rank-1 accuracy(%),
Rank-10 accuracy(%) and mAP(%) are reported.

Base DB IAL ISL
SYSU-MM01

R=1 R=10 mAP
✓ - - - 58.69 91.64 53.97
✓ ✓ - - 68.81 94.64 64.86
✓ ✓ ✓ - 71.42 95.85 67.22
✓ ✓ - ✓ 69.60 96.37 65.68
✓ ✓ ✓ ✓ 72.68 96.42 68.28

Table 4 Analysis of the effectiveness of Dual-Branch Struc-
ture on SYSU-MM01 datasets under the all search mode.
Specific Branch: Use only specific branch, Shared Branch: Use
only shared branch, Dual-Branch: Use both specific branch
and shared branch. Rank-1 accuracy(%), Rank-10 accuracy(%)
and mAP(%) are reported.

Networks
SYSU-MM01

R=1 R=10 mAP
Specific Branch 58.69 91.64 53.97
Shared Branch 46.23 87.98 41.09
Dual-Branch 68.81 94.64 64.86

Table 5 Comparison of different augmented modalities on
SYSU-MM01 dataset under the all-search setting. Rank-1
accuracy(%), Rank-10 accuracy(%) and mAP(%) are reported.

Method
SYSU-MM01

R=1 R=10 mAP
Base 58.69 91.64 53.97

Base + X modality 61.61 94.24 58.39
Base + Gray modality 62.98 93.45 59.90

Ours 68.81 94.64 64.86

Table 6 Comparison of our model with the baseline method
in FLOPs and Params.

Model FLOPs Params
Base 10.36 54.53 M
Ours 20.72 84.33 M

4.4 Ablation Study

Effectiveness of each component. We evaluate the

performance of each component on SYSU-MM01 datasets

to verify the effectiveness of each component of SSRL.

The ablation experiment is conducted on SYSU-MM01

datasets in the all-search single-shot mode. The results

are demonstrated in Tab. 3. Compared with the baseline

model, the dual-branch structure improves the Rank-1

accuracy and mAP by 10.12% and 10.89%. The reason

for the improvement is mainly because the dual-branch

structure fully extracts specific features and shared fea-

tures. After intra-class aggregation and inter-class sep-

aration learning strategy, the performance is greatly

improved by 3.87% and up to 72.68% Rank-1.
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Fig. 5 The Rank-10 retrieval results were obtained by the baseline and the proposed SSRL model on the SYSU-MM01 datasets.
For each retrieval case, the query images of the first column are the NIR images, and the gallery images are the VIS images.
The retrieved VIS images with green bounding boxes have the same identities with the query images, and those with red
bounding boxes have different identities with the query images.

Fig. 6 Visualization of Feature Response Maps within base-
line and the proposed SSRL model. For each example, the
1st images respectively show the RGB and NIR images, the
2nd images are the baseline corresponding feature response
maps, while the 3rd and the 4th images are specific branch
and shared branch corresponding feature response maps.

Effectiveness of dual-branch structure. We eval-

uate the performance of the dual-branch structure to

verify that the dual-branch structure is better than

the single-branch structure. The ablation experiment

is conducted on SYSU-MM01 dataset in the all-search

single-shot mode. For a fair comparison, we keep other

structures the same and only use Lid and LHc−Tri in

the training phase. The results are demonstrated in Tab.

4. It can be seen that accuracy is inferior when only us-

ing a shared branch or specific branch, but outstanding

Fig. 7 Visualization of learned features, where each color rep-
resents an identity in the testing set. The circles and triangles
indicate the features extracted from the visible and infrared
modalities. A total of 10 persons are selected from the test set.
The samples with the same color are from the same person.
(a) Features extracted by our SSRL model excluding the IAL
loss and ISL loss. (b) Features extracted by our SSRL model.

performance gains can be achieved when the specific

and shared features of the dual-branch structure are

fully utilized.

Comparison of Different Augmented Modalities.

To verify the superiority of the dual-branch structure

augmented, we compare it with other existing modality

augmentation strategies, including X modality [31], and

Grayscale modality [56]. The ablation experiment is

conducted on SYSU-MM01 datasets in the all-search

single-shot mode. The results are demonstrated in Tab.

5. Our dual-branch modality augmentation method out-

performs other augmentation methods.

4.5 Visualization

Retrieval result. We compare the SSRL approach

with the baseline on the SYSU-MM01 dataset using the

single-shot setting and the all-search mode in order to
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Fig. 8 The effect of parameter λ2 on SYSU-MM01 datasets
under the all-search mode. Rank-1 and mAP (%) are reported.

Fig. 9 The effect of parameter λ3 on SYSU-MM01 datasets
under the all-search mode. Rank-1 and mAP (%) are reported.

Fig. 10 The effect of partition strips p on SYSU-MM01
datasets under the all-search setting. Rank-1 and mAP (%)
are reported.

further highlight the advantages of our suggested SSRL

model. The results of the acquired Rank-10 ranking

are displayed in Fig. 5. In general, the ranking list can

be greatly improved by the proposed SSRL method,

with more accurately recovered images placed in the top

spots.

Attention to patterns. One of the key goals to the VI-

REID task is to improve the discriminability of features.

We visualize the pixel-level pattern mapping learnt by

SSRL to illustrate further that it can learn modality-

specific and modality-invariant features. We apply Grad-

Cam [57] to visualize these areas by highlighting them

on the image. Since our approach uses the PCB method,

we separate the feature map into 6 sections, as shown in

Fig. 6. In the RGB/IR modality, comparing each part

of the segmentation, the baseline model focuses only on

some unconsidered areas. By contrast, our SSRL model

focuses on specific and shared information separately

through a dual-branch structure.

Feature distribution. To further analyze the effec-

tiveness of IAL loss and ISL loss, we use t-SNE [58] to

transform high-dimensional features vectors into two-

dimensional vectors. As shown in Fig. 7, compared to

the visualization results of (a), the features extracted

from SSRL including IAL loss and ISL loss are better

clustered together. The distance between the centers and

boundaries among different identities are more obvious,

verifying that our work is more discriminating.

4.6 Parameters Analysis

The proposed SSRL involves two key parameters, includ-
ing intra-class aggregation loss weight λ2 and inter-class

separation loss weight λ3. As seen in Fig. 8 and Fig. 9,

the two parameters are investigated by setting them to

various values. Setting λ2 to 1.0 and λ3 to 2.0 achieve

the best performance for LIAL and LISL respectively.

Then, since our method adopts the PCB method, we
analyze the performance of our SSRL model with a

different number of parts p. P represents the number
of blocks being sliced. Performance is optimum when

p is 6, as illustrated in Fig. 10. The proposed SSRL

network includes specific-branch and shared-branche, so

we compared it with the baseline in FLOPs and Params.

As shown in Tab. 6, the amount of calculations and

parameters has increased compared with the baseline,

but it can be seen from Tab. 3 that there is a huge

improvement in accuracy.

5 Conclusion

In this paper, we propose a novel specific and shared

representations learning (SSRL) model. It consists of a

shared branch to learn modality-invariant representa-

tions based on bridging the gap at the image level, and

a specific branch to learn modality-specific representa-

tions under the premise of retaining the discriminative

information of visible light images. Through intra-class

aggregation and inter-class separation learning, which
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reduces the intra-class distance and increases the inter-

class distance, the distribution of feature embeddings

at the fine-grained level is optimized. Comprehensive

experiments on two VI-REID datasets demonstrate that

the proposed method performs superior to the state-of-

the-art methods.

Table 7 List of abbreviations.

Abbreviations Definition
VI-ReID visible-infrared person re-identification
SSRL specific and shared representations learning
Re-ID re-identification
ID identity loss
HCT hetero-center triplet
IAL intra-class aggregation learning
ISL inter-class separation learning
mAP mean Average Precision
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