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Abstract— Audio-visual matching is an essential task that
measures the correlation between audio clips and visual images.
However, current methods rely solely on the joint embedding
of global features from audio clips and face image pairs
to learn semantic correlations. This approach overlooks the
importance of high-confidence correlations and discrepancies
of local subtle features, which are crucial for cross-modal
matching. To address this issue, we propose a novel Attribute-
guided Cross-modal Interaction and Enhancement Network
(ACIENet), which employs multiple attributes to explore the
associations of different key local subtle features. The ACIENet
contains two novel modules: the Attribute-guided Interaction
(AGI) module and the Attribute-guided Enhancement (AGE)
module. The AGI module employs global feature alignment
similarity to guide cross-modal local feature interactions, which
enhances cross-modal association features for the same iden-
tity and expands cross-modal distinctive features for different
identities. Additionally, the interactive features and original
features are fused to ensure intra-class discriminability and
inter-class correspondence. The AGE module captures subtle
attribute-related features by using an attribute-driven network,
thereby enhancing discrimination at the attribute level. Specif-
ically, it strengthens the combined attribute-related features of
gender and nationality. To prevent interference between multiple
attribute features, we design a multi-attribute learning network
as a parallel framework. Experiments conducted on a public
benchmark dataset demonstrate the efficacy of the ACIENet
method in different scenarios. Code and models are available
at https://github.com/w1018979952/ACIENet.
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I. INTRODUCTION

PSYCHOLOGICAL studies have shown that people can
match faces with their corresponding identities with a

high degree of accuracy by hearing the voice of an unfamiliar
person, and vice versa [1], [2], [3], [4]. The human brain is
capable of identifying the same identity by learning only the
face or audio information in the multimodal brain regions,
which generate correlations between the two modalities [5].
This has led to the emergence of a new research topic, known
as audio-visual matching, which seeks to associate a face
image with the voice information of the corresponding speaker.
This technique is useful for various traditional machine learn-
ing tasks, including audio-visual speech separation [6], [7],
face recognition [8], [9], speaker recognition [10], [11], [12],
and audio-visual localization [13], [14].

The major challenge in visual-audio matching is to precisely
measure the similarity between the feature embeddings of the
two modalities. Nagrani et al. [15] first launches the audio-
visual cross-modality matching task by designing a binary
classification network. Due to the heterogeneity of cross-modal
features, Wang et al. [16] and Nawaz et al. [17] use a shared
common space to map two modal features to mitigate the
effect of modal differences. Furthermore, the distance loss is
designed to effectively constrain the distribution of features
to learn the joint global feature embedding. However, the
cross-modal data has the problem of modality heterogene-
ity, which leads to an inconsistent distribution of modality
features. Therefore, there emerge two types of methods, the
common space feature mapping [17], [18] and the modality
adversarial elimination [19], [20], [21]. By contrast, the latter
approach can better eliminate modal heterogeneity by gener-
ating adversarial networks (GAN) [22]. In spite of the great
advances in audio-visual matching, there are two problems that
have not been effectively addressed.

First, existing methods often utilize only global features
and ignore the inter-correlation between local features [16],
[17], [23]. However, the semantic information extracted by
the respective modality only reflects the distribution of iden-
tity features under the same modality. In addition, modal
heterogeneity is ubiquitous between cross-modal features.
Therefore, it is necessary to bridge the correspondence
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Fig. 1. Comparison of baseline and ACIENet methods for audio-visual
matching using cumulative activation maps (CAM). The current method for
audio-visual matching involves concatenating global features for classification.
However, our study has identified three main problems with this approach.
Firstly, local cross-modal features do not appear to be significant. Secondly,
background features are overemphasized. Thirdly, regions of interest are
visually different. To address these issues, we propose the ACIENet method,
which enhances local cross-modal features, suppresses background features,
and expands the range of perception.

between cross-modal features with the same identity informa-
tion to reduce modal heterogeneity. Ning et al. [24] explores a
disentangled latent variable method that separates cross-modal
features into shared and private features. Shared features
with the same identity undergo feature alignment, while joint
private features perform intra-modal identity discrimination.
An adaptive framework is proposed by Wen et al. [25]
that considers not only cross-modal global feature align-
ment but also the diversity of learning difficulties between
different objectives. However, the alignment methods with
similarity measures often come from the complex aggre-
gation of local similarities between audio-visuals, which is
ignored by the cross-modal global feature alignment approach.
Speaker voice and face differences usually occur in detail,
resulting in suboptimal feature alignment in most existing
schemes [26].

Herein, we propose an Attribute-guided Interaction (AGI)
module to tackle the problem of potential invalid inter-modal
interactions between audio clips and face image features.
This module consists of an Inter-modal Interaction (IMI)
structure, an Interactive Feature Combination (IFC), and an
Identity Alignment Loss (LI A). To enhance the accuracy of
audio-visual matching, we use a Compact Bilinear Pooling
(CBP) [27] and an attribute classification network to obtain
cross-modal identity similarity. This similarity guides the
feature interactions between modalities and explores meaning-
ful correlations between cross-modal features. Furthermore,
we design the IFC scheme to leverage the discriminative
ability of features by allowing cross-modal interaction features
and the original dynamical feature fusion, ensuring intra-class
discriminability and inter-class correspondence. To ensure
consistency in cross-modal same-identity, we compute the
Identity Alignment Loss (LI A). As different identities may
have varying levels of difficulty in matching, we use the
Simulated Annealing technique (SAT) [28] to weight the
identity alignment loss (LI A), thus reducing the impact of
hard-to-match samples on the network’s robustness. The
audio-visual matching model, as depicted in Fig. 1, utilizes
an attribute-guided interaction and enhancement approach to
direct the network’s attention towards more discriminative
feature regions, surpassing the baseline model’s performance.

Fig. 2. Illustration of the attribute regions for audio and face images.
The attribute annotations of two identity-identical face images are associated
with the corresponding audio clip attribute annotations. In particular, the
male image in (a) shows attribute regions of beard, rough skin, short hair,
thick eyebrows, and thick lips, which correspond to the audio attributes of
high loudness and low tone located in the upper left corner. Similarly, the
female image in (b) displays attribute regions of long hair, delicate skin, thin
eyebrows, thin lips, and earrings, which correspond to the audio attributes of
high tone and low loudness located in the upper right corner.

Second, the association between attribute information in
audio clips and face images remains underexplored. The
human brain is susceptible to correlations between multi-
modal information, which are evident when recognizing
gender and nationality by hearing an audio clip or seeing
a face [1], [2], [5]. Fig. 2 (a) shows how short hair and
beard features in a face image, or low tone and high loudness
features in audio, can indicate the male gender. Similarly,
in Fig. 2 (b), the high tone and low loudness features in
audio, or long hair and thin eyebrows features in a face image,
indicate female gender. To address this issue, Wen et al. [18]
proposed a disjoint mapping network (DIMNet) for audio-
visual matching, comprising a cross-modal embedding module
and a multi-attribute collaborative supervised network training.
However, a supervised network scenario with a multi-attribute
serial approach presents difficulties in finding a locally opti-
mal solution due to the mutual constraints between multiple
attribute losses [29].

Herein, we propose the Attribute-Guided Enhancement
(AGE) module to take full advantage of attribute discrimina-
tion. The AGE module is an attribute-driven network designed
to capture subtle attribute-related features, thereby improving
attribute matching between audio-visual samples. Specifically,
the AGE module consists of two parts. The first part is coding,
which obtains relevant features of the predicted attributes. The
second part is decoding, which generates attention weights
for the attribute-related features. By weighting the extracted
unimodal features based on attribute weight, we can high-
light attribute-related local features. Unlike DIMNet [18], our
proposed AGE module and AGI module operate in parallel,
effectively mitigating interaction between multiple attribute
losses.

It has been demonstrated by previous approaches [19], [20],
[21] that modal heterogeneity can be eliminated using gener-
ative adversarial networks. We design the proposed ACIENet

Authorized licensed use limited to: Anhui University. Downloaded on February 26,2025 at 07:16:48 UTC from IEEE Xplore.  Restrictions apply. 



4988 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

method to maintain this adversarial architecture. The main
contributions of this work are summarized as follows:

• We propose an attribute-guided interaction (AGI) module
to explore potential cross-modal local feature associa-
tions using cross-modal identity-aligned similarity-guided
interaction correlation matrices. It can simultaneously
reduce the discrepancy of the same identity and enhance
the variability of different identities among cross-modal
features.

• We propose an attribute-guided enhancement (AGE)
module to capture subtle attribute-related features with
attribute-driven networks. It can enhance the combined
attribute-related features of gender and nationality rais-
ing hierarchical attribute discrimination. In addition,
we design the parallel network with the identity attribute
module to avoid mutual interference between multiple
attribute features.

• Experiments show that the ACIENet method can effec-
tively use multiple attributes for learning relation-
ships between audio and visual. We perform audio-
visual matching experiments on the Voxceleb [30] and
VGGFace [31] datasets, which can achieve superior per-
formance compared to state-of-the-art algorithms.

II. RELATED WORK

A. Audio-Visual Matching

Audio-visual matching is an important research topic
in multimodal learning that is currently attracting a large
number of researchers’ interests. This topic, which origi-
nated from psychological research, was first proposed by
Nagrani et al. [15] with the design of dual-stream deep
neural network classification to achieve classification proba-
bilities comparable to or even beyond the human baseline.
Albanie et al. [32] proposed a joint course learning and con-
trast loss optimization embedding network to further mine the
relationships between audio-visual data, which was extended
to a broader range of application tasks. Wen et al. [18]
employed more labels, such as identity, nationality, and gender,
to co-supervise network training to learn shared representa-
tions instead of direct association of audio clips and face
images. Wang et al. [16] used bidirectional ranking con-
straints, identity constraints, and centrality constraints to learn
the association of face-voice discriminative features in small
batches of data, which is a simple end-to-end joint embedding
network.

The audio-visual matching task poses significant chal-
lenges due to modal heterogeneity and sample complexity
across multi-modality. Despite achieving good performance,
the problem remains to be addressed. To tackle these issues,
Wen et al. [25] proposed a two-level modal alignment
approach to learn hard but valuable identities, while filter-
ing out identities that are difficult to learn. Additionally,
Ning et al. [24] proposed a disentangled representation learn-
ing technique to decompose face and speech features into
identity and modality-related features respectively, thereby
reducing the feature differences of the same identity infor-
mation by filtering out the modality features. Moreover, apart

from feature alignment across modalities, exploring comple-
mentary cues between audio and visual modalities is also
necessary. For this purpose, Saeed et al. [23] proposed a plug-
and-play mechanism that decomposes and fuses features in
a two-stream pipeline, thereby improving the discriminative
joint feature embedding space for the face-voice association.

The presented method was inadequate in addressing the
problem of heterogeneity across modalities, which can result
in significant discrepancies in the extracted features for the
same identity across modal samples. To overcome this limita-
tion, Zheng et al. [20] proposed an adversarial measurement
learning model for audio-visual matching that uses gen-
erative adversarial networks to learn modality-independent
feature representations. Additionally, a similarity measure was
employed to constrain the feature distribution and accelerate
convergence. Similarly, Cheng et al. [19] proposed a similar
approach, which used triple loss and modal center loss to
eliminate modal heterogeneity and enhance the network’s
robustness. To further improve the correlation between audio
and face features, Wang et al. [21] proposed a dual-enhanced
siamese adversarial network to enhance the extracted audio
and face features, respectively. Then a joint embedding rep-
resentation was implemented using the siamese adversarial
structure and structural metric learning. Lastly, Choi et al. [33]
designed a CGAN-based generation framework to generate
faces directly from speech. This method was used as an end-to-
end network to achieve a seamless association between audio
and face.

B. Cross-Modal Interaction and Enhancement

The cross-modal matching task has been extensively investi-
gated and holds a pivotal role in facilitating an understanding
of the relationships between cross-modal features. However,
due to the presence of modal heterogeneity, Tu et al. [34]
utilized the prior knowledge to guide an adversarial network
capable of generating exceptionally realistic facial videos.
To establish robust cross-modal correlations, Sun et al. [35]
introduced a multi-subtitle attention mechanism designed to
synthesize multi-word features, thereby generating highly
semantically relevant facial images. Furthermore, the parsing-
based method [36], [37] assisted the attention network in
realizing fine-grained semantic correlations. Consequently,
substantial research efforts have been directed toward enhanc-
ing cross-modal interaction and enhancement, building upon
prior work [26], [38], [39], [40]. Attentional mechanisms have
proven to be effective across a spectrum of tasks, including
audio-visual event localization [41], [42], audio-visual expres-
sion recognition [43], [44], and image-text retrieval [45], [46].

The audio-visual matching task differs from other tasks
in two main ways. First, instead of image and audio
sequences, it employs paired face images and audio clips
to learn shared feature representations. Cheng et al. [47]
proposed a self-supervised framework that used joint attention
mechanisms to focus on audio-visual synchronized sequence
information with potential correlation, but it does not apply
to audio-visual matching. Second, unlike image-text cross-
modal alignment, an explicit cross-modal features alignment
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Fig. 3. Overview of the overall architecture of ACIENet. It incorporates two novel components: the attribute-guided interaction (AGI) module and the
attribute-guided enhancement (AGE) module. The AGI module comprises three components: the inter-modal interaction (IMI) structure, the interactive feature
combination (IFC), and the identity alignment loss (LI A). The AGI module focuses on inter-modal local feature interactions between classes. AGE, on the other
hand, leverages gender and nationality attributes to improve the subtle attribute-related features for hierarchical matching. The enhanced features, in conjunction
with the interactive features, mitigate pattern heterogeneity by generating adversarial networks.

cannot be established between audio and visuals. This means
that the attention approach used in previous studies may
not be suitable for this task. Mercea et al. [48] proposed a
cross-attention module to learn shared information between
audio and visual representations, but without considering
the impact of inter-modality associations and fine-grained
attribute information for discrimination. To address this limi-
tation, we design attribute-guided cross-modal interaction and
enhancement networks to explore potential attribute feature
correlations between the audio-visual modalities.

III. METHOD

The objective of this study is to investigate the inter-
action and enhancement of cross-modal attribute features
to accurately perceive local features for reliable audio-
visual matching. To achieve this goal, we employ the
ResNet18 [49] and SE-ResNet-34 [49] as feature extrac-
tion architecture. An overview of our proposed method, the
Attribute-guided Cross-modal Interaction and Enhancement
Network (ACIENet), is presented in Fig. 3. The ACIENet com-
prises two modules, namely the attribute-guided interaction
module and the attribute-guided enhancement module.

A. Audio-Visual Representations

To better comprehend audio-visual matching, we provide
a detailed formulation of the V-F matching task in this
paper. Its primary aim is to identify anchored audio clips and
corresponding visual face images in a gallery with numerous
candidates, as well as vice versa for the F-V matching task.

To achieve this, we utilize an anchor audio clip ai0 and k
visual face images {vi1 , vi2 , . . . , vik } as a match in the gallery,
where i denotes the i-th data tuple. Multiple audio clips and
face images are paired and their features are extracted using
ResNet18 [49] and SE-ResNet-34 [49], respectively. Research
by Gu et al. [50] has revealed that cross-modal data may be
better aligned by loading pre-training parameters exclusively
for image modalities. For this reason, we load ResNet18 [49]
with pre-trained parameters obtained by pre-training on Ima-
geNet [51] data, while SE-ResNet-34 [49] does not import
pre-trained model parameters. In this task, the extracted
activation mappings for audio and face images are f a

∈

RC1×H1×W1 and f v
∈ RC2×H2×W2 , respectively. Here, C1(C2)

represents the number of channels in the semantic features,
and H1(H2) and W1(W2) represent the height and width of
the semantic features. We pool the audio clip and face image
features into a unified matrix dimension f ∈ RC×H×W to
simplify subsequent computations. For a given data tuple,
which consists of the audio clip f a

i0
and the visual face images

f v
i = { f v

i1
, · · · , f v

ik
}.

B. Attribute-Guided Interaction Module

In this paper, we present a novel method called the
Attribute-guided Interaction (AGI) module, which distin-
guishes itself from prior attribute-based cross-modal methods,
such as those proposed by β-VAE [24], Wen et al. [25],
DIMNet [18], and AML [20]. Instead of relying on feature
combinations of global features to enhance cross-modal inter-
actions, the AGI module takes a different approach. It focuses
on two main objectives: (1) learning local feature interactions
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to enhance the association between the same-identity attributes
across modal features, and (2) alleviating the weak correlation
between cross-modal data of different identities to improve
the model’s generalizability. To achieve these objectives, the
AGI module comprises three components: the inter-modal
interaction structure, the interaction feature combination, and
the identity alignment loss. We will discuss each of these
components in detail below.

1) Inter-Modal Interaction Structure: The purpose of
inter-modal interactions is to explore semantic relationships
among inter-modal features that help establish inter-modal data
relationships. The self-attention mechanism’s input comprises
a query vector (Q), a key (K ), and a value (V ) that are
weighted by V to obtain crucial feature information related
to the task. To learn inter-modal associations, we perform
a cross-modal feature interaction using semantic features
extracted from face images and audio clips to establish con-
nections between the same categories. We initially consider
features f a

i0
as query vectors (Q) and f v

ik
as keys (K ) for

channel dimension reduction to lower the computational load
of feature interactions. Second, the distribution of sample
features differs across modalities; Hence, we normalize cross-
modal features to ensure that they have the same range of
values, which hastens the model’s convergence.

⌢

f v
ik

= Norm(conv1( f v
ik
)), (1)

⌢

f a
i0

= Norm(conv2( f a
i0
)), (2)

where
⌢

f a
i0

and
⌢

f v
ik

are the processed audio clip features and the
kth face image features, respectively. To reduce computational
effort, feature channel compression is performed on face image
and audio clip features using 1 × 1 convolution operation
denoted by conv1 and conv2, respectively. After normalization
using Norm, the dot product between the query (Q) and
the key (K ) is computed to form the cross-modal interaction
matrix. Applying a softmax operation on this matrix computes
the attention values that help in emphasizing inter-class corre-
lation of the same identity features and inter-class discrepancy
of different identity features. The interaction between the kth
face feature and audio features can be represented as:

f V A
ik

= so f tmax(
⌢

f v
ik

⌢

f a
i0
) f v

ik
, (3)

f AV
i0

= so f tmax(
⌢

f a
i0

⌢

f v
ik
) f a

i0
, (4)

where f AV
i0

and f V A
ik

are the audio clip features and the kth
face image features after the cross-modal interaction. However,
the pairwise relationship between audio clips and face images
is not known, and exploring semantic relationships through
direct feature interactions is impossible. To explicitly investi-
gate the relationships between cross-modal features, identity
labels are required to guide the feature interactions. Unfortu-
nately, in testing situations, identity labeling is not available.
To overcome this challenge, we estimate the cross-modal
similarity using compact bilinear pooling (CBP) [27], which
can be considered as an identity pseudo-label that guides the
interaction. The computation of the cross-modal similarity is

as follows:

Si0 j = FC(C B P(
⌢

f a
i0
,

⌢

f v
i j
)), (5)

where FC stands for fully connected layer. Si0 j denotes the
identity similarity between the audio clip f a

i0
and the j th face

image f v
i j

, which is [0, 1] for the same identity and [-1, 0]
for different identities. Based on this similarity, we propose
an identity similarity-guided cross-modal interaction method
as follows:

f V
ik

= conv3(cat[Si0k , f V A
ik

]), (6)

f A
i0

= conv4(cat[Si0k , f AV
i0

]), (7)

where cat denotes the concatenated operation. Then conv3 and
conv4 are decompressed by performing 1×1 convolution oper-
ations on the interactive face image and audio clip features.

2) Interaction Feature Combination: The cross-modal
matching task aims to distinguish both intra-modality samples
and eliminate inter-modality heterogeneity. While the initial
features extracted from the data can differentiate intra-modal
diversity, inter-modal interaction features help to correlate
cross-modal samples. However, the two types of features
differ from each other. Therefore, a method is needed to
effectively fuse these two features. In this paper, we pro-
pose the Interaction Feature Combination (IFC) that can fuse
cross-modal interaction features with the original features to
explore valuable distinguishing category features.

To reduce the instance differences between inter-modal
interaction features, we adopt instance normalization (IN) [52].
Then, we use SENet [53] to estimate mask values. We apply
these masks to the corresponding audio and visual features
before fusing them to obtain the final multimodal features.

ˆf A
i0

= m0 f a
i0

+ (1 − m0) ⊙ I N ( f A
i0
), (8)

ˆf V
ik

= mk f v
ik

+ (1 − mk) ⊙ I N ( f V
ik
), (9)

where ⊙ refers to the element-wise product. m0 and mk denote
the sets of identity-related channels in the audio clip and the
kth face image, respectively.

m0 = SE Net (avg( f A
i0
) + max( f A

i0
)), (10)

mk = SE Net (avg( f V
ik
) + max( f V

ik
)), (11)

where avg(·) and max(·) refer to global average pooling and
global maximum average pooling, respectively. The purpose
of these two pooling approaches is to ensure that the learned
features are well-represented from multiple perspectives.

3) Identity Alignment Loss: The existing models have not
adequately addressed the issue of identity similarity, which
is critical for facilitating the interaction of features among
modalities. To address this issue, we propose incorporating an
identity alignment loss, which measures the disparity between
the estimated identity similarity and the actual identity label.
This measure can effectively guide Compact Bilinear Pooling
Networks (CBPNet) [27] to more accurately estimate identity
similarity.

Identity similarity can be derived using Eq. (5), which is
determined by the values assigned to positive and negative
identity labels. The identity alignment loss is computed by
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taking the difference between the activated identity similarity
and the identity label as follows:

I i j = (sigmoid(τ Si0 j ) − li j Pi j )
2, (12)

where li j ∈ [1, k] is the matched identity label and Pi j denotes
the j th identity mask value. τ is the temperature control
parameter and is set to 5. In addition, we introduce a modi-
fication to the CBP [27] to improve the accuracy of learning
identity correlation in hard samples. The simulated anneal-
ing weights [28] are added to mitigate the negative impact
of hard samples. The modified loss function is presented
below:

LI A =
1

2k
(1 + cos(

epoch
N

π))

k∑
j=1

Ii j , (13)

where epoch is the number of iterations and N represents the
total number of iterations.

C. Attribute-Guided Enhancement Module

The purpose of the attribute-guided enhancement module
is to identify subtle features associated with attributes and
enhance their relevance to improving audio-visual attribute
hierarchy matching ability. Prior works have employed multi-
ple attribute labels as supervised labels to train networks for
feature representation learning [18]. However, using multiple
attribute losses can result in challenges in achieving superior
network performance due to their interactions with each other.

To address this limitation, we propose a novel attribute-
guided enhancement module that focuses on learning subtle
features related to gender and nationality. Our approach
enhances the discrimination of these features by decompress-
ing attribute features and directing attention to them. Inspired
by the squeeze and excitation network [53], we design a simple
coding-decoding network with two fully connected (FC) layers
and a ReLU activation layer. The first step is to reduce the
feature representation through the FC layers and apply the
ReLU activation as follows:

˜f a
i0

= δ(Fc(T( f a
i0
))), (14)

˜f v
ik

= δ(Fc(T( f v
ik
))), (15)

where T is the feature transformation operation. The feature
classification network uses ˜f a

i0
and ˜f v

ik
, which are the vec-

torized feature, to classify attributes. The resulting attribute
classification loss can be represented as follows:

LAtt = −
1

k M

M∑
i=1

(kYi0 log Catt ( ˜f a
i0
) +

k∑
j=0

Yi j log Catt ( ˜f v
i j
)),

(16)

where Yi0 and Yi j are the audio attribute labels and the face
image labels of the i th tuple, respectively. Catt denotes the
attribute classification. The gender distribution is relatively
balanced, while the nationality distribution has a severe long-
tail distribution. To address this issue, we divide the nationality
attributes into American, British, and other nationalities,
thereby avoiding the long-tail problem. The attribute labels Yi0

and Yi j consist of gender and nationality values in the range of
[0, 5]. Here, M represents the number of training data tuples.

Subsequently, we decode ˜f a
i0

and ˜f v
ik

into attention values,
which are then multiplied with the original attribute features
as follows:

f a
i0

= so f tmax(FC( ˜f a
i0
)) f a

i0
, (17)

f v
ik

= so f tmax(FC( ˜f v
ik
)) f v

ik
, (18)

where, f a
i0

and f v
ik

are the enhanced common attribute fea-
tures. We then add them to the corresponding inter-modal
interaction identity attribute features ˆf A

i0
and ˆf V

ik
, respectively.

Finally, we eliminate the modal heterogeneity between the
audio and visual features through the use of a generative
adversarial network (GAN) [20].

D. Objective Function

In order to eliminate modal heterogeneity, we employ a
method whereby we feed audio feature f a

i0
and face images

features { f v
i1
, · · · , f v

ik
} into the GAN, resulting in the gen-

eration of modality-independent features {hi0 , · · · , hik } ∈ H.
The discriminator D is trained through a minimax two-player
game, where it discriminates the hi j features, classifying them
as belonging to either the visual or audio modality.

Ldisc = −
1
M

M∑
i=1

k∑
j=0

Ni j log D(hi j ), (19)

where Ni j represents the modality label of the j-th sample
in the i-th data tuple, and D(hi j ) denotes the modality
probability of the output of D. The number of training data
tuples is denoted by M .

Then, we utilize a fully connected neural network due to
its nonlinear fitting capability in finding matching candidates.
To achieve this, the feature residuals of the anchor sample
features and each face image feature are computed and con-
catenated as the input to the matching classifier. The loss is
computed using the common cross-entropy method [54].

LCls = −
1
M

M∑
i=1

(li log Cm([hi0 − hi1 , · · · , hi0 − hik ]), (20)

where Cm denotes the matching classification.
Inspired by Peng et al. [55] and Zheng et al. [20], we intro-

duce a contrast loss to enhance network convergence. This loss
serves to bring intra-class samples closer while simultaneously
pushing inter-class samples farther apart. We display the
following:

LContrast =
1

2M

M∑
i=1

max(Di , 0), (21)

Di = log( max
j∈[1,k]

wli e
θ−di0,i j + max

q∈[1,k]

wli e
θ−di1,iq +di0,i1),

(22)

where wli represents the matching label mask. If it is a match,
wli equals 0, otherwise, it equals 1. The Euclidean distance,
di0,i1 , is utilized to compute the distance between the paired
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anchors, hi0 and positive samples, hi p (p ∈ [1, k]). Similarly,
di1,iq is used to calculate the Euclidean distance between
same-modal anchors, hi p , and negative samples, hiq , whereas
di1,i j measures the distance between cross-modal anchors, hi0 ,
and negative samples, hi j . To better distinguish the candidate
matching samples that are close to each other, the negative
instances are activated by the maximum value. Moreover,
a hyperparameter, θ , has been set to 1.2.

The total loss is calculated as follows:

Ltotal = Ldisc + αLI A + βLContrast + γLCls + λLAtt ,

(23)

where α, β, γ , and λ are hyperparameters setting by hyper-
parametric analysis experiments.

IV. EXPERIMENTS

A. Implementation Details

1) Network Architecture: We conducted all our experiments
using an NVIDIA GeForce RTX 3090 graphics card. To ensure
a fair comparison with advanced audio-visual cross-modal
methods, we maintained the previous feature extraction struc-
ture, which was based on [25], for our feature extraction. For
the image encoder, we used ResNet18 [49], pre-trained on
ImageNet [51], as the feature extractor. Regarding the audio
network, we used a three-layer multilayer perceptron as a
starting point and then applied SE-ResNet-34 [49] without a
pre-trained model as a feature extractor. The read-face images
had dimensions of 224 × 224 × 3, and the audio clips had
a sequence length of 160000. Both audio and image features
had dimensions of 512 × 3 × 3 after each feature extractor.
The input and output of the attribute-guided interaction and
enhancement modules were consistent in their feature dimen-
sions. To keep the output feature dimensions of both attribute
guidance modules constant, we performed feature summation,
which then vectorized the features into 4608-dimensional
features. The identity features of the audio-visual pairs were
fed into the adversarial network, which converted the fea-
tures into 256 dimensions and then to 128 dimensions for
modality-independent audio-visual features. A binary classifi-
cation network was used as the discriminator to classify the
probability of the corresponding modality. Finally, we used a
fully connected network to obtain the matching results.

2) Training Parameters: During training, we set the batch
size to 50 and used Adaptive Moment Estimation (Adam) [56]
with a momentum of 0.9 and weight decay of 0.0005 to
fine-tune the network. The initial learning rates for each
module were as follows: feature extractor (5 × 10−2),
attribute-guided interaction module (5×10−3), attribute-guided
enhancement module (5 × 10−3), generator (5 × 10−3), dis-
criminator (5×10−3), and matching classifier (5×10−2). The
delay was set to 0.1 at the 20th and 35th epochs. Depending
on the matching case settings, the k∗128-dimensional features
were divided into k output classes to represent the matching
probabilities. For the validation trial, we treated it as a special
matching task, which had only one candidate objective (k = 1)
to determine whether a match or not. In the matching task,
there were k (k >= 2) candidate matching samples in

TABLE I
THE DATA SPLITTING TO TRAINING, VALIDATION,

AND TESTING AFTER SAMPLING

addition to the anchor sample, which was combined into a
k ∗ 128-dimensional feature to represent the probability of
matching between them. The classification network outputted
k dimensions to calculate the probability of matching. We mea-
sured the cross-modal matching performance using accuracy
(ACC) [25].

3) Dataset: We evaluated the performance of ACIENet,
as proposed in this study, on the publicly available datasets
Voxceleb [30] and VGGFace [31]. These datasets contain
a total of 137,060 face images and 149,354 audio clips,
respectively, and have 1,225 paired audio and visual data.
To ensure a fair comparison, we followed the prevalent
evaluation protocol [18], [25] presented in Table I for data
sampling, analysis, and validation of our main experiments.
Additionally, we employed another evaluation protocol [20],
[32] to complement the experimental validity.

B. Comparison Results

In this study, we evaluate the effectiveness of ACIENet by
comparing it with seven state-of-the-art algorithms, namely
SVHF-Net [15], DIMNet [18], Wang’s [16], Wen’s [25],
AML [20], DCLR [57], and DSANet [21]. To demonstrate the
efficacy of ACIENet, we perform audio-visual verification and
matching tasks in both V-F (visual to audio) and F-V (audio to
visual) scenarios. These tasks are illustrated in Table II. Our
Baseline methodology involves advanced feature extraction,
inspired by Wen et al. [25], which aims to obtain feature rep-
resentations. Additionally, we employ generative adversarial
networks (GANs) to mitigate modal heterogeneity, following
the approach proposed by Wang et al. [21]. We also employ
distance metrics to constrain the intra- and inter-modal feature
distribution, as suggested by Zheng et al. [20]. It is worth
noting that this approach achieves competitive performance
when compared to existing state-of-the-art methods.

We have added the comparison with transformer-based
methods in Table II. As we can see from them, transformer-
based [58], [59], [60] models perform significantly worse
than CNNs. The main reason may be that the transformer
is susceptible to overfitting [61], [62], which may not be
suitable for robust audio-visual matching in noisy medium-
scale cross-modal data, especially in F-V scenarios. However,
the proposed ACIENet method displays the potential to further
enhance verification and matching task performance, build-
ing upon the foundation of the CNN baseline. Specifically,
in V-F and F-V binary matching scenarios, the ACC accuracy
of ACIENet is 3.89% and 4.41% higher than the existing
state-of-the-art method, respectively. We also investigate the
performance of ACIENet in a more complex and challenging
multi-way matching task, where k = 10, which involves
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TABLE II
THE QUALITATIVE RESULTS OF MATCHING TASKS. VERIFICATION INDICATES WHETHER k = 1 IS MATCHED OR NOT. BINARY DENOTES THE 1:2

MATCHING WHILE MULTI-WAY DENOTES THE 1 : k(K = 10) MATCHING. V-F REPRESENTATIVE FOR AUDIO AS AN ANCHOR TO MATCH GALLERY
FACES. F-V REPRESENTS THE FACE AS AN ANCHOR TO MATCH THE AUDIO OF THE GALLERY. THE EXPERIMENTAL RESULTS IN THE

TABLE ARE OBTAINED BY THE DATA SETTINGS PROPOSED BY WEN ET AL. [25]

Fig. 4. Class activation maps (CAM) generated by the proposed ACIENet compared with the baseline. Visualization of features extracted from face images
with different identity, gender, and nationality attributes is displayed.

multiple candidate objectives. As expected, the performance
of ACIENet degrades in this task, but its accuracy in V-F and
F-V scenarios is still 0.80% and 0.64% higher than the current
state-of-the-art method, respectively.

The performance of the audio-visual matching in the binary
and multi-way cases is usually better with the V-F scenario.
According to Wei et al. [66], audio signals are more sus-
ceptible to environmental noise than facial images, which
display higher intra-class similarity. This results in lower
performance in F-V scenarios. There are some state-of-the-
art (SOTA) algorithms based on the data splitting scheme in
Person Identification Networks (PINs) [32] for experiments,
as reported by Nagrani et al. [32]. ACIENet is one of
these algorithms, which also uses this data splitting scheme.
As illustrated in Table III, ACIENet consistently outperforms
the state-of-the-art methods in verification and matching tasks
in all but the EFT’s [65] verification results, thus validating
the effectiveness of our proposed method. In the verification
experiments, ACIENet, employing a single expert across two
distinct unimodal modalities, attains a level of performance
second only to EFT’s [65] with multi-expert fusion. Due
to the inconsistency of the data splitting, we only compare
the results of state-of-the-art methods with the same data
settings as the PINs [32] method in Table III for fairness. Note
that we only compare V-F results since the state-of-the-art
methods only provide V-F data-splitting for verification. Addi-
tionally, we provide a visualization of the features extracted by
ACIENet in Fig. 4. The results indicate that ACIENet has the
ability to focus on a wider range of valid features for a person

with different identity, gender, and nationality attributes. For
face images of different scenes of the same person, ACIENet
focuses on a higher overlap part between the salient feature
regions, indicating its capability of associating same-modality
attribute information. Unless specifically stated, all subsequent
experiments follow Wen’s [25] data-splitting scheme.

We conducted 1 : k multi-way cross-modal matching
experiments to further validate the superiority of ACIENet.
As the number of matching candidate objectives increases, the
intra-class similarity also increases, leading to a gradual rise
in cross-modal matching difficulty. Fig. 5 illustrates that the
ACIENet method achieves competitive performance, but its
matching performance gradually decreases with increasing k
in both V-F and F-V scenarios. Notably, ACIENet outperforms
other methods in the V-F scenario due to the significant
intra-class discrepancy between face images and audio signals.
When k is small, the ACIENet method achieves relatively high
performance because there is a higher probability of attribute
differences between matched candidate targets. However, with
an increasing number of matched candidate objectives, the
method may weaken its attribute discrimination ability due
to the presence of hard samples with the same attributes.

C. Ablation Study

1) Evaluation of Different Component Effectiveness: We
conducted ablation experiments on the verification and binary
matching tasks to assess the effectiveness of each com-
ponent of ACIENet. The outcomes of these experiments
are presented in Table IV. Specifically, the attribute-guided
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TABLE III
COMPARISON RESULTS OF AUDIO-VISUAL MATCHING WITH THE STATE-OF-THE-ART METHOD IN THE BINARY (k = 2) AND MULTI-BINARY (k = 10)

CASES. VERIFICATION INDICATES WHETHER k = 1 IS MATCHED OR NOT. WHERE “-” MEANS “NOT AVAILABLE”. THE EXPERIMENTAL
RESULTS IN THE TABLE ARE OBTAINED FOLLOWING THE DATA SETTINGS PROPOSED BY PINS [32]

Fig. 5. The quantitative results of 1 : k matching task in V-F and F-V
scenarios.

interaction (AGI) module is introduced to explore potential
local feature associations using cross-modal identity-aligned
similarity-guided interaction matrices. In comparison to exist-
ing aligned cross-modal matching methods, the AGI module
aligns cross-modalities of the same identity and distinguishes
the differences in cross-modal features of different identities
simultaneously. Additionally, the attribute-guided enhance-
ment (AGE) module is developed to complement the AGI
module by guiding the network to learn attribute-related
features, which enhances attribute discriminability between
different identities. Table IV depicts the experimental per-
formance of the AGI and AGE modules individually and
jointly in the V-F and F-V scenarios. These tables’ results
demonstrate that each module is effective and performs best

TABLE IV
THE ACIENET METHOD IS CONDUCTED IN V-F AND F-V SCENARIOS FOR

VERIFICATION (WHEN k = 1), BINARY (WHEN k = 2), AND 10-WAY
(WHEN k = 10) AUDIO-VISUAL MATCHING TASKS ON ABLATION

STUDIES.’✓’ MEANS THE CORRESPONDING
COMPONENT IS INCLUDED

when combined with the other modules. Moreover, to further
corroborate the efficacy of these components, we conduct
experiments across various configurations, including 5-way
and 10-way tasks. These experiments unveil a swift deteri-
oration in matching performance as the number of matching
candidates escalated. Nonetheless, the two modules consis-
tently exhibit their effectiveness.

2) Evaluation on Attribute-guided Interaction Module:
The attribute-guided interaction (AGI) module comprises three
components, namely the inter-model interaction (IMI) struc-
ture, the interaction feature combination (IFC), and the identity
alignment loss (LI A). To evaluate the necessity of these com-
ponents, we performed ablation tests on the baseline model.
The results, presented in Table V (b), indicate that the AGI
module has a significant impact on the model’s performance
on both matching and verification tasks. The root cause of
the performance degradation is that the AGI module learns
cross-modal interaction features for all candidate matching
targets without regard to whether they can match each other,
leading to the learning of useless interaction semantic rela-
tions. To address this issue, we used identity similarity to
guide feature interactions between modalities explicitly, which
enabled effective feature interactions. Additionally, the IFC
facilitates the fusion of cross-modal interaction features with
original features, thereby fully exploiting feature distinguisha-
bility. The results in Table V (c) demonstrate that the IFC
can substantially improve the model’s cross-modal matching
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TABLE V
ABLATION EXPERIMENTS ON THE PROPOSED ATTRIBUTE-GUIDED

INTERACTION (AGI) MODULE PERFORM AUDIO-VISUAL MATCHING
TASKS IN THE VALIDATION AND BINARY (WHEN k = 2) CASES

Fig. 6. Comparison of the three interaction feature combination operations.

performance. Moreover, we used the identity alignment loss
(LI A) to constrain identity similarity, and simulated annealing
weights to improve model generalization for hard-to-match
samples. As shown in Table V (c) compared with (d), these
measures further improved the model’s performance. Overall,
each of the proposed components contributes positively to the
AGI module, and the best performance can be achieved by
using all three components.

3) Evaluation on Interaction Feature Combination: We
analyzed to evaluate the impact of Interaction Feature Combin-
ing (IFC) operation on the network performance. To achieve
this, we performed three different IFC operations on the
ACIENet method. The three operations, marked as Residual
IFC (a), Bidirectional mask IFC (b), and Adaptive IFC (c), are
designed to combine original and interaction features using
feature combinations. Fig. 6 shows the schematic of these
operations. We observed that all three IFC operations have
varying degrees of importance in the audio-visual cross-modal
matching task. While Adaptive IFC (c) did not consistently
achieve optimal performance in some experiments, it generally
demonstrated competitive performance across different tasks
and scenarios. The results are presented in Table VI. Therefore,
we used the adaptive interaction feature combination as the
feature fusion manner on the ACIENet method.

TABLE VI
THE EXPERIMENTS ARE CONDUCTED TO COMPARE THE THREE

INTERACTION FEATURE COMBINATION OPERATIONS IN BINARY
(WHEN k = 2) AND 5-WAY (WHEN k = 5) FOR THE AUDIO-VISUAL

MATCHING TASK IN THE V-F AND F-V SCENARIOS

TABLE VII
COMPARING DIFFERENT WAYS OF UTILIZING ATTRIBUTE FEATURES

4) Evaluation on Attribute-guided Enhancement Module:
To evaluate the efficacy of the proposed Attribute-guided
Enhancement (AGE) model, we compared it with a joint
supervised approach that comprises three attributes suggested
by Wen et al. [18]. The results of the comparison are presented
in Table VII. Unlike the joint supervised approach, the AGE
model is decoupled from the attribute features and operates
in a parallel manner. This allows for superior performance
by avoiding the mutual influence between multiple attribute
losses. Notably, the ACIENet method, unlike Wen et al. [18]
method, does not require the excessive adjustment of loss
weights to achieve optimal results.

5) Evaluation on the Impact of Different Attributes on
the AGE Module: In order to assess the impact of dif-
ferent attribute-guided enhancement models on network
performance, we utilized various attribute combinations on
ACIENet. Our objective was to evaluate the performance
of the enhanced features. Specifically, we incorporated two
attributes: gender and nationality, and examined three attribute
combinations: gender only, nationality only, and joint gender
and nationality supervision. These attribute combinations cor-
responded to the three sets of experimental cases illustrated
in Table VIII (b), (c), and (d), respectively. As depicted
in Table VIII, the attribute-guided feature enhancements
improved the discriminative ability of the features compared
to the baseline network. The optimal performance is observed
when the two attributes are co-supervised. This result high-
lights the potential benefits of the attribute-guided feature
enhancement module in audio-visual cross-modal matching
tasks.

D. Evaluation on Different Interaction Stages

To evaluate the impact of the attribute-guided interaction
module at different feature extraction stages, we have con-
ducted experiments on early, middle, and late features. First,
the attribute-guided interaction (AGI) model exhibits supe-
rior performance on late features compared to the baseline
(Table IX (a)) as well as the early and middle feature interac-
tions (Table IX (b) and (c)). Furthermore, the best performance
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TABLE VIII
COMPARISON OF THE PERFORMANCE OF DIFFERENT ATTRIBUTE-GUIDED

FEATURE ENHANCEMENTS IN A BINARY AUDIO-VISUAL
MATCHING TASK

TABLE IX
ANALYSIS OF AUDIO-VISUAL MATCHING EXPERIMENTS IN THE

VALIDATION AND BINARY (WHEN k = 2) CASES FOR
ATTRIBUTE-GUIDED INTERACTION (AGI) MODULES INSERTED

INTO THE FEATURE EXTRACTION NETWORK’S EARLY,
MIDDLE, AND LATER STAGES, RESPECTIVELY

Fig. 7. The effects of hyperparameters of α, β, γ , and λ on binary matching
task.

can be achieved when integrating both AGE and AGI modules
on late features, as shown in Table IX (h) compared to
Tables IX (e), (f), and (g), which evidences the effectiveness
of reducing interference between multiple attributes at the late
stage. The overall result is that the late-stage features present
a more comprehensive understanding of attribute semantics
to the extent of learning meaningful cross-modal feature
interactions.

E. Hyper-Parameters Analysis

Fig. 7 presents the weights of hyperparameters for multiple
losses in Eq. (23), which are determined by the control
variables α, β, γ , and λ. These variables represent the weights
of identity alignment loss, modality metric loss, matching
classification loss, and attribute classification loss, respectively,
in the cross-modal matching task. In the V-F and F-V scenar-
ios, the first three hyperparameters result in slightly fluctuating
performance for the cross-modal matching task, but they all
outperform the existing state-of-the-art methods. However, for

the same task, as the value of the parameter λ increases
gradually, the performance of ACIENet initially increases
before slowly declining. This gradual increase in λ results in
a slowly decreasing accuracy of cross-modal matching, which
indicates that the optimization with parallel attribute-guided
interaction (AGI) and attribute-guided enhancement (AGE)
modules is working effectively. Based on the experimental
analysis for V-F and F-V scenarios, setting α = 3, β = 1,
γ = 2, and λ = 1, and α = 1, β = 1, γ = 1, and
λ = 1 respectively, ACIENet achieves excellent performance.

V. CONCLUSION

In this paper, we present ACIENet, an attribute-guided
interaction and enhancement network that includes two mod-
ules: the attribute-guided interaction (AGI) module, which
explores the semantic relationships between cross-modal fea-
tures, and the attribute-guided enhancement (AGE) module,
which enhances local attribute-related feature representations.
The AGI module is further divided into three parts: inter-modal
interaction (IMI) structure, interaction feature combination
(IFC), and identity alignment loss (LI A). The combination of
these three parts produces an efficient local feature interaction
between modalities under global identity feature alignment.
To enhance attribute-related subtle features, we propose an
AGE module that focuses on local features corresponding to
gender and nationality attributes. This module obtains attention
weights by means of decoding structures and thus enhances
these attributes. In our experiments, we demonstrate that
ACIENet outperforms several other state-of-the-art methods
for cross-modal matching and validation on both Voxceleb and
VGGFace datasets.
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