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Attribute-guided Cross-modal Interaction and
Enhancement for Audio-Visual Matching

Jiaxiang Wang, Aihua Zheng*, Yan Yan, Ran He, Jin Tang

Abstract—Audio-visual matching is an essential task that
measures the correlation between audio clips and visual images.
However, current methods rely solely on the joint embedding
of global features from audio clips and face image pairs to
learn semantic correlations. This approach overlooks the impor-
tance of high-confidence correlations and discrepancies of local
subtle features, which are crucial for cross-modal matching. To
address this issue, we propose a novel Attribute-guided Cross-
modal Interaction and Enhancement Network (ACIENet), which
employs multiple attributes to explore the associations of different
key local subtle features. The ACIENet contains two novel
modules: the Attribute-guided Interaction (AGI) module and the
Attribute-guided Enhancement (AGE) module. The AGI module
employs global feature alignment similarity to guide cross-modal
local feature interactions, which enhances cross-modal association
features for the same identity and expands cross-modal distinctive
features for different identities. Additionally, the interactive
features and original features are fused to ensure intra-class dis-
criminability and inter-class correspondence. The AGE module
captures subtle attribute-related features by using an attribute-
driven network, thereby enhancing discrimination at the attribute
level. Specifically, it strengthens the combined attribute-related
features of gender and nationality. To prevent interference
between multiple attribute features, we design a multi-attribute
learning network as a parallel framework. Experiments con-
ducted on a public benchmark dataset demonstrate the efficacy
of the ACIENet method in different scenarios. Code and models
are available at https://github.com/w1018979952/ACIENet.

Index Terms—Audio-visual cross-modal matching, attribute-
guided cross-modal interaction, attribute-guided cross-modal en-
hancement.

I. INTRODUCTION

Psychological studies have shown that people can match
faces with their corresponding identities with a high degree
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Fig. 1. Comparison of Baseline and ACIENet Methods for Audio-Visual
Matching Using Cumulative Activation Maps (CAM). The current method for
audio-visual matching involves concatenating global features for classification.
However, our study has identified three main problems with this approach.
Firstly, local cross-modal features do not appear to be significant. Secondly,
background features are overemphasized. Thirdly, regions of interest are
visually different. To address these issues, we propose the ACIENet method,
which enhances local cross-modal features, suppresses background features,
and expands the range of perception.

of accuracy by hearing the voice of an unfamiliar person,
and vice versa [1]–[4]. The human brain is capable of iden-
tifying the same identity by learning only the face or audio
information in the multimodal brain regions, which generate
correlations between the two modalities [5]. This has led
to the emergence of a new research topic, known as audio-
visual matching, which seeks to associate a face image with
the voice information of the corresponding speaker. This
technique is useful for various traditional machine learning
tasks, including audio-visual speech separation [6], [7], face
recognition [8], [9], speaker recognition [10]–[12], and audio-
visual localization [13], [14].

The major challenge in visual-audio matching is to precisely
measure the similarity between the feature embeddings of the
two modalities. Nagrani et al. [15] first launches the audio-
visual cross-modality matching task by designing a binary
classification network. Due to the heterogeneity of cross-modal
features, Wang et al. [16] and Nawaz et al. [17] use a shared
common space to map two modal features to mitigate the
effect of modal differences. Furthermore, the distance loss is
designed to effectively constrain the distribution of features to
learn the joint global feature embedding. However, the cross-
modal data has the problem of modality heterogeneity, which
leads to an inconsistent distribution of modality features.
Therefore, there emerge two types of methods, the common
space feature mapping [17], [18] and the modality adversarial
elimination [19]–[21]. By contrast, the latter approach can
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better eliminate modal heterogeneity by generating adversarial
networks (GAN) [22]. In spite of the great advances in audio-
visual matching, there are two problems that have not been
effectively addressed.

First, existing methods often utilize only global features
and ignore the inter-correlation between local features [16],
[17], [23]. However, the semantic information extracted by the
respective modality only reflects the distribution of identity
features under the same modality. In addition, modal hetero-
geneity is ubiquitous between cross-modal features. Therefore,
it is necessary to bridge the correspondence between cross-
modal features with the same identity information to reduce
modal heterogeneity. Ning et al. [24] explores a disentangled
latent variable method that separates cross-modal features into
shared and private features. Shared features with the same
identity undergo feature alignment, while joint private fea-
tures perform intra-modal identity discrimination. An adaptive
framework is proposed by Wen et al. [25] that considers
not only cross-modal global feature alignment but also the
diversity of learning difficulties between different objectives.
However, the alignment methods with similarity measures
often come from the complex aggregation of local similarities
between audio-visuals, which is ignored by the cross-modal
global feature alignment approach. Speaker voice and face
differences usually occur in detail, resulting in suboptimal
feature alignment in most existing schemes [26].

Herein, we propose an Attribute-guided Interaction (AGI)
module to tackle the problem of potential invalid inter-modal
interactions between audio clips and face image features.
This module consists of an Inter-modal Interaction (IMI)
structure, an Interactive Feature Combination (IFC), and an
Identity Alignment Loss (LIA). To enhance the accuracy of
audio-visual matching, we use a Compact Bilinear Pooling
(CBP) [27] and an attribute classification network to obtain
cross-modal identity similarity. This similarity guides the fea-
ture interactions between modalities and explores meaningful
correlations between cross-modal features. Furthermore, we
design the IFC scheme to leverage the discriminative ability of
features by allowing cross-modal interaction features and the
original dynamical feature fusion, ensuring intra-class discrim-
inability and inter-class correspondence. To ensure consistency
in cross-modal same-identity, we compute the Identity Align-
ment Loss (LIA). As different identities may have varying
levels of difficulty in matching, we use the Simulated Anneal-
ing technique (SAT) [28] to weight the identity alignment loss
(LIA), thus reducing the impact of hard-to-match samples on
the network’s robustness. The audio-visual matching model,
as depicted in Fig. 1, utilizes an attribute-guided interaction
and enhancement approach to direct the network’s attention
towards more discriminative feature regions, surpassing the
baseline model’s performance.

Second, the association between attribute information in
audio clips and face images remains underexplored. The hu-
man brain is susceptible to correlations between multi-modal
information, which are evident when recognizing gender and
nationality by hearing an audio clip or seeing a face [1], [2],
[5]. Fig. 2 (a) shows how short hair and beard features in a
face image, or low tone and high loudness features in audio,
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Fig. 2. Illustration of the attribute regions for audio and face images. The
attribute annotations of two identity-identical face images are associated
with the corresponding audio clip attribute annotations. In particular, the
male image in (a) shows attribute regions of beard, rough skin, short hair,
thick eyebrows, and thick lips, which correspond to the audio attributes of
high loudness and low tone located in the upper left corner. Similarly, the
female image in (b) displays attribute regions of long hair, delicate skin, thin
eyebrows, thin lips, and earrings, which correspond to the audio attributes of
high tone and low loudness located in the upper right corner.

can indicate the male gender. Similarly, in Fig. 2 (b), the high
tone and low loudness features in audio, or long hair and thin
eyebrows features in a face image, indicate female gender. To
address this issue, Wen et al. [18] proposed a disjoint mapping
network (DIMNet) for audio-visual matching, comprising a
cross-modal embedding module and a multi-attribute collabo-
rative supervised network training. However, a supervised net-
work scenario with a multi-attribute serial approach presents
difficulties in finding a locally optimal solution due to the
mutual constraints between multiple attribute losses [29].

Herein, we propose the Attribute-Guided Enhancement
(AGE) module to take full advantage of attribute discrimina-
tion. The AGE module is an attribute-driven network designed
to capture subtle attribute-related features, thereby improving
attribute matching between audio-visual samples. Specifically,
the AGE module consists of two parts. The first part is coding,
which obtains relevant features of the predicted attributes. The
second part is decoding, which generates attention weights
for the attribute-related features. By weighting the extracted
unimodal features based on attribute weight, we can high-
light attribute-related local features. Unlike DIMNet [18], our
proposed AGE module and AGI module operate in parallel,
effectively mitigating interaction between multiple attribute
losses.

It has been demonstrated by previous approaches [19]–
[21] that modal heterogeneity can be eliminated using gener-
ative adversarial networks. We design the proposed ACIENet
method to maintain this adversarial architecture. The main
contributions of this work are summarized as follows:

• We propose an attribute-guided interaction (AGI) module
to explore potential cross-modal local feature associa-
tions using cross-modal identity-aligned similarity-guided
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interaction correlation matrices. It can simultaneously
reduce the discrepancy of the same identity and enhance
the variability of different identities among cross-modal
features.

• We propose an attribute-guided enhancement (AGE)
module to capture subtle attribute-related features with
attribute-driven networks. It can enhance the combined
attribute-related features of gender and nationality rais-
ing hierarchical attribute discrimination. In addition, we
design the parallel network with the identity attribute
module to avoid mutual interference between multiple
attribute features.

• Experiments show that the ACIENet method can effec-
tively use multiple attributes for learning relationships be-
tween audio and visual. We perform audio-visual match-
ing experiments on the Voxceleb [30] and VGGFace [31]
datasets, which can achieve superior performance com-
pared to state-of-the-art algorithms.

II. RELATED WORK

A. Audio-visual Matching

Audio-visual matching is an important research topic in
multimodal learning that is currently attracting a large number
of researchers’ interests. This topic, which originated from
psychological research, was first proposed by Nagrani et
al. [15] with the design of dual-stream deep neural network
classification to achieve classification probabilities comparable
to or even beyond the human baseline. Albanie et al. [32]
proposed a joint course learning and contrast loss optimization
embedding network to further mine the relationships between
audio-visual data, which was extended to a broader range of
application tasks. Wen et al. [18] employed more labels, such
as identity, nationality, and gender, to co-supervise network
training to learn shared representations instead of direct as-
sociation of audio clips and face images. Wang et al. [16]
used bidirectional ranking constraints, identity constraints, and
centrality constraints to learn the association of face-voice
discriminative features in small batches of data, which is a
simple end-to-end joint embedding network.

The audio-visual matching task poses significant challenges
due to modal heterogeneity and sample complexity across
multi-modality. Despite achieving good performance, the prob-
lem remains to be addressed. To tackle these issues, Wen et
al. [25] proposed a two-level modal alignment approach to
learn hard but valuable identities, while filtering out identities
that are difficult to learn. Additionally, Ning et al. [24]
proposed a disentangled representation learning technique
to decompose face and speech features into identity and
modality-related features respectively, thereby reducing the
feature differences of the same identity information by fil-
tering out the modality features. Moreover, apart from feature
alignment across modalities, exploring complementary cues
between audio and visual modalities is also necessary. For
this purpose, Saeed et al. [23] proposed a plug-and-play
mechanism that decomposes and fuses features in a two-stream
pipeline, thereby improving the discriminative joint feature
embedding space for the face-voice association.

The presented method was inadequate in addressing the
problem of heterogeneity across modalities, which can result in
significant discrepancies in the extracted features for the same
identity across modal samples. To overcome this limitation,
Zheng et al. [20] proposed an adversarial measurement learn-
ing model for audio-visual matching that uses generative ad-
versarial networks to learn modality-independent feature repre-
sentations. Additionally, a similarity measure was employed to
constrain the feature distribution and accelerate convergence.
Similarly, Cheng et al. [19] proposed a similar approach,
which used triple loss and modal center loss to eliminate
modal heterogeneity and enhance the network’s robustness.
To further improve the correlation between audio and face
features, Wang et al. [21] proposed a dual-enhanced siamese
adversarial network to enhance the extracted audio and face
features, respectively. Then a joint embedding representation
was implemented using the siamese adversarial structure and
structural metric learning. Lastly, Choi et al. [33] designed a
CGAN-based generation framework to generate faces directly
from speech. This method was used as an end-to-end network
to achieve a seamless association between audio and face.

B. Cross-Modal Interaction and Enhancement

The cross-modal matching task has been extensively investi-
gated and holds a pivotal role in facilitating an understanding
of the relationships between cross-modal features. However,
due to the presence of modal heterogeneity, Tu et al. [34]
utilized the prior knowledge to guide an adversarial network
capable of generating exceptionally realistic facial videos.
To establish robust cross-modal correlations, Sun et al. [35]
introduced a multi-subtitle attention mechanism designed to
synthesize multi-word features, thereby generating highly se-
mantically relevant facial images. Furthermore, the parsing-
based method [36], [37] assisted the attention network in re-
alizing fine-grained semantic correlations. Consequently, sub-
stantial research efforts have been directed toward enhancing
cross-modal interaction and enhancement, building upon prior
work [26], [38]–[40]. Attentional mechanisms have proven
to be effective across a spectrum of tasks, including audio-
visual event localization [41], [42], audio-visual expression
recognition [43], [44], and image-text retrieval [45], [46].

The audio-visual matching task differs from other tasks in
two main ways. First, instead of image and audio sequences,
it employs paired face images and audio clips to learn shared
feature representations. Cheng et al. [47] proposed a self-
supervised framework that used joint attention mechanisms
to focus on audio-visual synchronized sequence information
with potential correlation, but it does not apply to audio-visual
matching. Second, unlike image-text cross-modal alignment,
an explicit cross-modal features alignment cannot be estab-
lished between audio and visuals. This means that the attention
approach used in previous studies may not be suitable for this
task. Mercea et al. [48] proposed a cross-attention module to
learn shared information between audio and visual represen-
tations, but without considering the impact of inter-modality
associations and fine-grained attribute information for discrim-
ination. To address this limitation, we design attribute-guided
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Fig. 3. Overview of the overall architecture of ACIENet. It incorporates two novel components: the attribute-guided interaction (AGI) module and the
attribute-guided enhancement (AGE) module. The AGI module comprises three components: the inter-modal interaction (IMI) structure, the interactive feature
combination (IFC), and the identity alignment loss (LIA). The AGI module focuses on inter-modal local feature interactions between classes. AGE, on the
other hand, leverages gender and nationality attributes to improve the subtle attribute-related features for hierarchical matching. The enhanced features, in
conjunction with the interactive features, mitigate pattern heterogeneity by generating adversarial networks.

cross-modal interaction and enhancement networks to explore
potential attribute feature correlations between the audio-visual
modalities.

III. METHOD

The objective of this study is to investigate the interac-
tion and enhancement of cross-modal attribute features to
accurately perceive local features for reliable audio-visual
matching. To achieve this goal, we employ the ResNet18 [49]
and SE-ResNet-34 [49] as feature extraction architecture. An
overview of our proposed method, the Attribute-guided Cross-
modal Interaction and Enhancement Network (ACIENet), is
presented in Fig. 3. The ACIENet comprises two mod-
ules, namely the attribute-guided interaction module and the
attribute-guided enhancement module.

A. Audio-Visual Representations

To better comprehend audio-visual matching, we provide
a detailed formulation of the V-F matching task in this
paper. Its primary aim is to identify anchored audio clips and
corresponding visual face images in a gallery with numerous
candidates, as well as vice versa for the F-V matching task.

To achieve this, we utilize an anchor audio clip ai0 and k
visual face images {vi1 , vi2 , ..., vik} as a match in the gallery,
where i denotes the i-th data tuple. Multiple audio clips
and face images are paired and their features are extracted

using ResNet18 [49] and SE-ResNet-34 [49], respectively.
Research by Gu et al. [50] has revealed that cross-modal
data may be better aligned by loading pre-training parameters
exclusively for image modalities. For this reason, we load
ResNet18 [49] with pre-trained parameters obtained by pre-
training on ImageNet [51] data, while SE-ResNet-34 [49]
does not import pre-trained model parameters. In this task, the
extracted activation mappings for audio and face images are
fa ∈ RC1×H1×W1 and fv ∈ RC2×H2×W2 , respectively. Here,
C1(C2) represents the number of channels in the semantic
features, and H1(H2) and W1(W2) represent the height and
width of the semantic features. We pool the audio clip and face
image features into a unified matrix dimension f ∈ RC×H×W

to simplify subsequent computations. For a given data tuple,
which consists of the audio clip fa

i0 and the visual face images
fv
i = {fv

i1 , · · · ,f
v
ik
}.

B. Attribute-guided Interaction Module

In this paper, we present a novel method called the
Attribute-guided Interaction (AGI) module, which distin-
guishes itself from prior attribute-based cross-modal methods,
such as those proposed by β-VAE [24], Wen et al. [25],
DIMNet [18], and AML [20]. Instead of relying on feature
combinations of global features to enhance cross-modal inter-
actions, the AGI module takes a different approach. It focuses
on two main objectives: (1) learning local feature interactions
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to enhance the association between the same-identity attributes
across modal features, and (2) alleviating the weak correlation
between cross-modal data of different identities to improve
the model’s generalizability. To achieve these objectives, the
AGI module comprises three components: the inter-modal
interaction structure, the interaction feature combination, and
the identity alignment loss. We will discuss each of these
components in detail below.

1) Inter-modal Interaction Structure: The purpose of inter-
modal interactions is to explore semantic relationships among
inter-modal features that help establish inter-modal data re-
lationships. The self-attention mechanism’s input comprises
a query vector (Q), a key (K), and a value (V ) that are
weighted by V to obtain crucial feature information related to
the task. To learn inter-modal associations, we perform a cross-
modal feature interaction using semantic features extracted
from face images and audio clips to establish connections
between the same categories. We initially consider features
fa
i0 as query vectors (Q) and fv

ik
as keys (K) for channel

dimension reduction to lower the computational load of feature
interactions. Second, the distribution of sample features differs
across modalities; Hence, we normalize cross-modal features
to ensure that they have the same range of values, which
hastens the model’s convergence.

⌢

fv
ik

= Norm(conv1(f
v
ik
)), (1)

⌢

fa
i0 = Norm(conv2(f

a
i0)), (2)

where
⌢

fa
i0 and

⌢

fv
ik

are the processed audio clip features and
the kth face image features, respectively. To reduce computa-
tional effort, feature channel compression is performed on face
image and audio clip features using 1×1 convolution operation
denoted by conv1 and conv2, respectively. After normalization
using Norm, the dot product between the query (Q) and
the key (K) is computed to form the cross-modal interaction
matrix. Applying a softmax operation on this matrix computes
the attention values that help in emphasizing inter-class corre-
lation of the same identity features and inter-class discrepancy
of different identity features. The interaction between the kth
face feature and audio features can be represented as:

fV A
ik

= softmax(
⌢

fv
ik

⌢

fa
i0)f

v
ik
, (3)

fAV
i0 = softmax(

⌢

fa
i0

⌢

fv
ik
)fa

i0 , (4)

where fAV
i0 and fV A

ik
are the audio clip features and the

kth face image features after the cross-modal interaction.
However, the pairwise relationship between audio clips and
face images is not known, and exploring semantic relationships
through direct feature interactions is impossible. To explicitly
investigate the relationships between cross-modal features,
identity labels are required to guide the feature interactions.
Unfortunately, in testing situations, identity labeling is not
available. To overcome this challenge, we estimate the cross-
modal similarity using compact bilinear pooling (CBP) [27],
which can be considered as an identity pseudo-label that

guides the interaction. The computation of the cross-modal
similarity is as follows:

Si0j = FC(CBP (
⌢

fa
i0 ,

⌢

fv
ij )), (5)

where FC stands for fully connected layer. Si0j denotes the
identity similarity between the audio clip fa

i0 and the jth face
image fv

ij , which is [0, 1] for the same identity and [-1, 0]
for different identities. Based on this similarity, we propose
an identity similarity-guided cross-modal interaction method
as follows:

fV
ik

= conv3(cat[Si0k ,f
V A
ik

]), (6)

fA
i0 = conv4(cat[Si0k ,f

AV
i0 ]), (7)

where cat denotes the concatenated operation. Then conv3
and conv4 are decompressed by performing 1 × 1 convolu-
tion operations on the interactive face image and audio clip
features.

2) Interaction Feature Combination: The cross-modal
matching task aims to distinguish both intra-modality samples
and eliminate inter-modality heterogeneity. While the initial
features extracted from the data can differentiate intra-modal
diversity, inter-modal interaction features help to correlate
cross-modal samples. However, the two types of features
differ from each other. Therefore, a method is needed to
effectively fuse these two features. In this paper, we propose
the Interaction Feature Combination (IFC) that can fuse cross-
modal interaction features with the original features to explore
valuable distinguishing category features.

To reduce the instance differences between inter-modal
interaction features, we adopt instance normalization (IN) [52].
Then, we use SENet [53] to estimate mask values. We apply
these masks to the corresponding audio and visual features
before fusing them to obtain the final multimodal features.

f̂A
i0 = m0f

a
i0 + (1−m0)⊙ IN(fA

i0), (8)

f̂V
ik

= mkf
v
ik
+ (1−mk)⊙ IN(fV

ik
), (9)

where ⊙ refers to the element-wise product. m0 and mk

denote the sets of identity-related channels in the audio clip
and the kth face image, respectively.

m0 = SENet(avg(fA
i0) +max(fA

i0)), (10)

mk = SENet(avg(fV
ik
) +max(fV

ik
)), (11)

where avg(·) and max(·) refer to global average pooling and
global maximum average pooling, respectively. The purpose
of these two pooling approaches is to ensure that the learned
features are well-represented from multiple perspectives.

3) Identity Alignment Loss: The existing models have not
adequately addressed the issue of identity similarity, which
is critical for facilitating the interaction of features among
modalities. To address this issue, we propose incorporating an
identity alignment loss, which measures the disparity between
the estimated identity similarity and the actual identity label.
This measure can effectively guide Compact Bilinear Pooling
Networks (CBPNet) [27] to more accurately estimate identity
similarity.
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Identity similarity can be derived using Eq. (5), which is
determined by the values assigned to positive and negative
identity labels. The identity alignment loss is computed by
taking the difference between the activated identity similarity
and the identity label as follows:

Iij = (sigmoid(τ Si0j )− lijPij )
2, (12)

where lij ∈ [1, k] is the matched identity label and Pij denotes
the jth identity mask value. τ is the temperature control
parameter and is set to 5. In addition, we introduce a modi-
fication to the CBP [27] to improve the accuracy of learning
identity correlation in hard samples. The simulated annealing
weights [28] are added to mitigate the negative impact of hard
samples. The modified loss function is presented below:

LIA =
1

2k
(1 + cos(

epoch

N
π))

k∑
j=1

Iij , (13)

where epoch is the number of iterations and N represents the
total number of iterations.

C. Attribute-guided Enhancement Module

The purpose of the attribute-guided enhancement module
is to identify subtle features associated with attributes and
enhance their relevance to improving audio-visual attribute
hierarchy matching ability. Prior works have employed multi-
ple attribute labels as supervised labels to train networks for
feature representation learning [18]. However, using multiple
attribute losses can result in challenges in achieving superior
network performance due to their interactions with each other.

To address this limitation, we propose a novel attribute-
guided enhancement module that focuses on learning subtle
features related to gender and nationality. Our approach en-
hances the discrimination of these features by decompressing
attribute features and directing attention to them. Inspired by
the squeeze and excitation network [53], we design a simple
coding-decoding network with two fully connected (FC) layers
and a ReLU activation layer. The first step is to reduce the
feature representation through the FC layers and apply the
ReLU activation as follows:

f̃a
i0 = δ(Fc(T(fa

i0))), (14)

f̃v
ik

= δ(Fc(T(fv
ik
))), (15)

where T is the feature transformation operation. The feature
classification network uses f̃a

i0 and f̃v
ik

, which are the vec-
torized feature, to classify attributes. The resulting attribute
classification loss can be represented as follows:

LAtt = − 1

kM

M∑
i=1

(kYi0 logCatt(f̃
a
i0)+

k∑
j=0

Yij logCatt(f̃
v
ij )),

(16)
where Yi0 and Yij are the audio attribute labels and the face
image labels of the ith tuple, respectively. Catt denotes the
attribute classification. The gender distribution is relatively
balanced, while the nationality distribution has a severe long-
tail distribution. To address this issue, we divide the nation-
ality attributes into American, British, and other nationalities,

thereby avoiding the long-tail problem. The attribute labels Yi0

and Yij consist of gender and nationality values in the range of
[0, 5]. Here, M represents the number of training data tuples.

Subsequently, we decode f̃a
i0 and f̃v

ik
into attention values,

which are then multiplied with the original attribute features
as follows:

fa
i0 = softmax(FC(f̃a

i0))f
a
i0 , (17)

fv
ik

= softmax(FC(f̃v
ik
))fv

ik
, (18)

where, fa
i0 and fv

ik
are the enhanced common attribute fea-

tures. We then add them to the corresponding inter-modal
interaction identity attribute features f̂A

i0 and f̂V
ik

, respectively.
Finally, we eliminate the modal heterogeneity between the
audio and visual features through the use of a generative
adversarial network (GAN) [20].

D. Objective Function

In order to eliminate modal heterogeneity, we employ a
method whereby we feed audio feature fa

i0 and face images
features {fv

i1 , · · · ,f
v
ik
} into the GAN, resulting in the gener-

ation of modality-independent features {hi0 , · · · ,hik} ∈ H.
The discriminator D is trained through a minimax two-player
game, where it discriminates the hij features, classifying them
as belonging to either the visual or audio modality.

Ldisc = − 1

M

M∑
i=1

k∑
j=0

Nij logD(hij ), (19)

where Nij represents the modality label of the j-th sample
in the i-th data tuple, and D(hij ) denotes the modality
probability of the output of D. The number of training data
tuples is denoted by M .

Then, we utilize a fully connected neural network due to its
nonlinear fitting capability in finding matching candidates. To
achieve this, the feature residuals of the anchor sample features
and each face image feature are computed and concatenated
as the input to the matching classifier. The loss is computed
using the common cross-entropy method [54].

LCls = − 1

M

M∑
i=1

(li logCm([hi0−hi1 , · · · ,hi0−hik ]), (20)

where Cm denotes the matching classification.
Inspired by Peng et al. [55] and Zheng et al. [20], we

introduce a contrast loss to enhance network convergence.
This loss serves to bring intra-class samples closer while
simultaneously pushing inter-class samples farther apart. We
display the following:

LContrast =
1

2M

M∑
i=1

max(Di, 0), (21)

Di = log( max
j∈[1,k]

wlie
θ−di0,ij + max

q∈[1,k]
wlie

θ−di1,iq + di0,i1),

(22)
where wli represents the matching label mask. If it is a match,
wli equals 0, otherwise, it equals 1. The Euclidean distance,
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di0,i1 , is utilized to compute the distance between the paired
anchors, hi0 and positive samples, hip (p ∈ [1, k]). Similarly,
di1,iq is used to calculate the Euclidean distance between
same-modal anchors, hip , and negative samples, hiq , whereas
di1,ij measures the distance between cross-modal anchors, hi0 ,
and negative samples, hij . To better distinguish the candidate
matching samples that are close to each other, the negative
instances are activated by the maximum value. Moreover, a
hyperparameter, θ, has been set to 1.2.

The total loss is calculated as follows:

Ltotal = Ldisc+αLIA+βLContrast+γLCls+λLAtt, (23)

where α, β, γ, and λ are hyperparameters setting by hyper-
parametric analysis experiments.

IV. EXPERIMENTS

A. Implementation Details

Network architecture. We conducted all our experiments
using an NVIDIA GeForce RTX 3090 graphics card. To
ensure a fair comparison with advanced audio-visual cross-
modal methods, we maintained the previous feature extraction
structure, which was based on [25], for our feature extraction.
For the image encoder, we used ResNet18 [49], pre-trained on
ImageNet [51], as the feature extractor. Regarding the audio
network, we used a three-layer multilayer perceptron as a
starting point and then applied SE-ResNet-34 [49] without
a pre-trained model as a feature extractor. The read-face
images had dimensions of 224 × 224 × 3, and the audio
clips had a sequence length of 160000. Both audio and
image features had dimensions of 512 × 3 × 3 after each
feature extractor. The input and output of the attribute-guided
interaction and enhancement modules were consistent in their
feature dimensions. To keep the output feature dimensions
of both attribute guidance modules constant, we performed
feature summation, which then vectorized the features into
4608-dimensional features. The identity features of the audio-
visual pairs were fed into the adversarial network, which
converted the features into 256 dimensions and then to 128
dimensions for modality-independent audio-visual features. A
binary classification network was used as the discriminator to
classify the probability of the corresponding modality. Finally,
we used a fully connected network to obtain the matching
results.
Training parameters. During training, we set the batch size
to 50 and used Adaptive Moment Estimation (Adam) [56] with
a momentum of 0.9 and weight decay of 0.0005 to fine-tune
the network. The initial learning rates for each module were as
follows: feature extractor (5× 10−2), attribute-guided interac-
tion module (5×10−3), attribute-guided enhancement module
(5 × 10−3), generator (5 × 10−3), discriminator (5 × 10−3),
and matching classifier (5 × 10−2). The delay was set to 0.1
at the 20th and 35th epochs. Depending on the matching case
settings, the k ∗ 128-dimensional features were divided into
k output classes to represent the matching probabilities. For
the validation trial, we treated it as a special matching task,
which had only one candidate objective (k = 1) to determine
whether a match or not. In the matching task, there were

k (k >= 2) candidate matching samples in addition to the
anchor sample, which was combined into a k∗128-dimensional
feature to represent the probability of matching between them.
The classification network outputted k dimensions to calculate
the probability of matching. We measured the cross-modal
matching performance using accuracy (ACC) [25].
Dataset. We evaluated the performance of ACIENet, as
proposed in this study, on the publicly available datasets
Voxceleb [30] and VGGFace [31]. These datasets contain
a total of 137,060 face images and 149,354 audio clips,
respectively, and have 1,225 paired audio and visual data. To
ensure a fair comparison, we followed the prevalent evaluation
protocol [18], [25] presented in Table I for data sampling,
analysis, and validation of our main experiments. Addition-
ally, we employed another evaluation protocol [20], [32] to
complement the experimental validity.

TABLE I
THE DATA SPLITTING TO TRAINING, VALIDATION, AND TESTING AFTER

SAMPLING.

Item Train Validation Test Total
Identities 924 112 189 1225

Face Images 104724 12260 20076 137060
Audio Clips 113322 14182 21850 149354

B. Comparison Results

In this study, we evaluate the effectiveness of ACIENet by
comparing it with seven state-of-the-art algorithms, namely
SVHF-Net [15], DIMNet [18], Wang’s [16], Wen’s [25],
AML [20], DCLR [57], and DSANet [21]. To demonstrate the
efficacy of ACIENet, we perform audio-visual verification and
matching tasks in both V-F (visual to audio) and F-V (audio to
visual) scenarios. These tasks are illustrated in Table II. Our
Baseline methodology involves advanced feature extraction,
inspired by Wen et al. [25], which aims to obtain feature rep-
resentations. Additionally, we employ generative adversarial
networks (GANs) to mitigate modal heterogeneity, following
the approach proposed by Wang et al. [21]. We also employ
distance metrics to constrain the intra- and inter-modal feature
distribution, as suggested by Zheng et al. [20]. It is worth
noting that this approach achieves competitive performance
when compared to existing state-of-the-art methods.

We have added the comparison with transformer-based
methods in Table II. As we can see from them, transformer-
based [58]–[60] models perform significantly worse than
CNNs. The main reason may be that the transformer is
susceptible to overfitting [61], [62], which may not be suit-
able for robust audio-visual matching in noisy medium-scale
cross-modal data, especially in F-V scenarios. However, the
proposed ACIENet method displays the potential to further
enhance verification and matching task performance, building
upon the foundation of the CNN baseline. Specifically, in
V-F and F-V binary matching scenarios, the ACC accuracy
of ACIENet is 3.89% and 4.41% higher than the existing
state-of-the-art method, respectively. We also investigate the
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TABLE II
THE QUALITATIVE RESULTS OF MATCHING TASKS. VERIFICATION INDICATES WHETHER k = 1 IS MATCHED OR NOT. BINARY DENOTES THE 1:2

MATCHING WHILE MULTI-WAY DENOTES THE 1 : k (k = 10) MATCHING. V-F REPRESENTATIVE FOR AUDIO AS AN ANCHOR TO MATCH GALLERY FACES.
F-V REPRESENTS THE FACE AS AN ANCHOR TO MATCH THE AUDIO OF THE GALLERY. THE EXPERIMENTAL RESULTS IN THE TABLE ARE OBTAINED BY

THE DATA SETTINGS PROPOSED BY WEN et al. [25].

Methods Backbone Venue Binary (ACC) Multi-way (ACC) Verification (AUC)
V-F F-V V-F F-V V-F F-V

SVHF [15] CVPR2018 81.0 79.5 34.5 × - -
DIMNet [18] ICLR2019 81.3 81.9 38.4 36.2 81.0 81.2
Wang’s [16] ACM2020 83.4 84.2 39.7 36.4 82.6 82.9
Wen’s [25] CNN CVPR2021 87.2 86.5 48.2 44.8 87.2 87.0
AML [20] TMM2021 90.2 86.3 46.2 43.7 86.4 86.2
DCLR [57] ICDM2022 86.79 87.45 - - 86.76 86.89

DSANet [21] TMM2022 92.5 88.4 49.1 46.8 87.4 91.5
Transformer [58] NIPS2017 88.9 76.3 36.6 23.5 82.3 75.3

Mobilevit [59] Transformer ICLR2022 94.1 88.2 48.2 33.6 87.7 89.5
Fastvit [60] ICCV2023 94.2 77.1 37.3 20.1 82.7 80.5

Baseline CNN Ours 94.8 89.8 48.5 45.6 88.2 91.2
ACIENet CNN Ours 96.0 92.3 49.5 47.1 90.1 91.9
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Fig. 4. Class activation maps (CAM) generated by the proposed ACIENet compared with the baseline. Visualization of features extracted from face images
with different identity, gender, and nationality attributes is displayed.

performance of ACIENet in a more complex and challenging
multi-way matching task, where k = 10, which involves
multiple candidate objectives. As expected, the performance
of ACIENet degrades in this task, but its accuracy in V-F and
F-V scenarios is still 0.80% and 0.64% higher than the current
state-of-the-art method, respectively.

The performance of the audio-visual matching in the binary
and multi-way cases is usually better with the V-F scenario.
According to Wei et al. [66], audio signals are more sus-
ceptible to environmental noise than facial images, which
display higher intra-class similarity. This results in lower
performance in F-V scenarios. There are some state-of-the-
art (SOTA) algorithms based on the data splitting scheme in
Person Identification Networks (PINs) [32] for experiments,
as reported by Nagrani et al. [32]. ACIENet is one of these
algorithms, which also uses this data splitting scheme. As
illustrated in Table III, ACIENet consistently outperforms the
state-of-the-art methods in verification and matching tasks
in all but the EFT’s [65] verification results, thus validating
the effectiveness of our proposed method. In the verification
experiments, ACIENet, employing a single expert across two
distinct unimodal modalities, attains a level of performance
second only to EFT’s [65] with multi-expert fusion. Due to the
inconsistency of the data splitting, we only compare the results
of state-of-the-art methods with the same data settings as the

PINs [32] method in Table III for fairness. Note that we only
compare V-F results since the state-of-the-art methods only
provide V-F data-splitting for verification. Additionally, we
provide a visualization of the features extracted by ACIENet
in Fig. 4. The results indicate that ACIENet has the ability
to focus on a wider range of valid features for a person
with different identity, gender, and nationality attributes. For
face images of different scenes of the same person, ACIENet
focuses on a higher overlap part between the salient feature
regions, indicating its capability of associating same-modality
attribute information. Unless specifically stated, all subsequent
experiments follow Wen ’s [25] data-splitting scheme.

We conducted 1 : k multi-way cross-modal matching
experiments to further validate the superiority of ACIENet.
As the number of matching candidate objectives increases, the
intra-class similarity also increases, leading to a gradual rise
in cross-modal matching difficulty. Fig. 5 illustrates that the
ACIENet method achieves competitive performance, but its
matching performance gradually decreases with increasing k
in both V-F and F-V scenarios. Notably, ACIENet outperforms
other methods in the V-F scenario due to the significant intra-
class discrepancy between face images and audio signals.
When k is small, the ACIENet method achieves relatively high
performance because there is a higher probability of attribute
differences between matched candidate targets. However, with
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TABLE III
COMPARISON RESULTS OF AUDIO-VISUAL MATCHING WITH THE STATE-OF-THE-ART METHOD IN THE BINARY (k = 2) AND MULTI-BINARY (k = 10)

CASES. VERIFICATION INDICATES WHETHER k = 1 IS MATCHED OR NOT. WHERE ” -” MEANS ”NOT AVAILABLE”. THE EXPERIMENTAL RESULTS IN THE
TABLE ARE OBTAINED FOLLOWING THE DATA SETTINGS PROPOSED BY PINS [32].

Methods Venue Binary (ACC) Multi-way (ACC) Verification (AUC)
V-F F-V V-F F-V V-F F-V

DIMNet [18] ICLR2019 84.12 84.03 39.75 - 83.2 -
PINs [32] ECCV2018 84.00 - 31.00 - 78.5 -

SSNet [17] DIC2019 78.00 78.50 30.00 30.05 78.8 -
β-VAE [24] TMM2021 84.15 84.22 41.30 40.02 84.64 -
AML [20] TMM2021 92.72 93.3 43.45 39.35 80.6 -

CMPC [63] IJCAI2022 82.2 81.7 - - 84.6 -
FOP [23] ICASSP2022 89.3 83.5 - - 83.5 -

DSANet [21] TMM2022 95.25 94.28 46.83 43.36 78.0 -
SBNet [64] ICASSP2023 82.4 82.4 - - 82.5 -
EFT [65] ICME2023 89.6 89.6 - - 90.1 -
ACIENet Ours 96.4 95.6 46.9 44.1 84.8 -

an increasing number of matched candidate objectives, the
method may weaken its attribute discrimination ability due
to the presence of hard samples with the same attributes.

3 5 7 9
The number of gallery

35

45

55

65

75

85

95

A
cc

ur
ac

y(
%

)

(a) V-F

Ours
DSANet
AML
wen's
Wang's
DIMNet

3 5 7 9
The number of gallery

35

45

55

65

75

85

95

A
cc

ur
ac

y(
%

)

(b) F-V

Ours
DSANet
AML
wen's
Wang's
DIMNet

Fig. 5. The quantitative results of 1 : k matching task in V-F and F-V
scenarios.

C. Ablation Study

Evaluation of Different Component Effectiveness. We con-
ducted ablation experiments on the verification and binary
matching tasks to assess the effectiveness of each component
of ACIENet. The outcomes of these experiments are presented

in Table IV. Specifically, the attribute-guided interaction (AGI)
module is introduced to explore potential local feature asso-
ciations using cross-modal identity-aligned similarity-guided
interaction matrices. In comparison to existing aligned cross-
modal matching methods, the AGI module aligns cross-
modalities of the same identity and distinguishes the differ-
ences in cross-modal features of different identities simultane-
ously. Additionally, the attribute-guided enhancement (AGE)
module is developed to complement the AGI module by
guiding the network to learn attribute-related features, which
enhances attribute discriminability between different identities.
Table IV depicts the experimental performance of the AGI
and AGE modules individually and jointly in the V-F and F-V
scenarios. These tables’ results demonstrate that each module
is effective and performs best when combined with the other
modules. Moreover, to further corroborate the efficacy of these
components, we conduct experiments across various configu-
rations, including 5-way and 10-way tasks. These experiments
unveil a swift deterioration in matching performance as the
number of matching candidates escalated. Nonetheless, the
two modules consistently exhibit their effectiveness.

TABLE IV
THE ACIENET METHOD IS CONDUCTED IN V-F AND F-V SCENARIOS FOR

VERIFICATION (WHEN k = 1), BINARY (WHEN k = 2), AND 10-WAY
(WHEN k = 10) AUDIO-VISUAL MATCHING TASKS ON ABLATION STUDIES.

’✓’ MEANS THE CORRESPONDING COMPONENT IS INCLUDED.

Component Binary Verification 5-way 10-way
AGI AGE V-F F-V V-F F-V V-F F-V V-F F-V

94.8 89.8 88.2 91.2 73.4 59.8 48.5 45.6
✓ 95.4 91.6 88.9 91.6 74.2 60.5 49.0 46.1

✓ 95.8 91.9 89.9 91.7 74.5 61.2 49.2 46.8
✓ ✓ 96.0 92.3 90.1 91.9 74.8 61.6 49.5 47.1

Evaluation on Attribute-guided Interaction Module. The
attribute-guided interaction (AGI) module comprises three
components, namely the inter-model interaction (IMI) struc-
ture, the interaction feature combination (IFC), and the identity
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alignment loss (LIA). To evaluate the necessity of these com-
ponents, we performed ablation tests on the baseline model.
The results, presented in Table V (b), indicate that the AGI
module has a significant impact on the model’s performance
on both matching and verification tasks. The root cause of
the performance degradation is that the AGI module learns
cross-modal interaction features for all candidate matching
targets without regard to whether they can match each other,
leading to the learning of useless interaction semantic rela-
tions. To address this issue, we used identity similarity to
guide feature interactions between modalities explicitly, which
enabled effective feature interactions. Additionally, the IFC
facilitates the fusion of cross-modal interaction features with
original features, thereby fully exploiting feature distinguisha-
bility. The results in Table V (c) demonstrate that the IFC
can substantially improve the model’s cross-modal matching
performance. Moreover, we used the identity alignment loss
(LIA) to constrain identity similarity, and simulated annealing
weights to improve model generalization for hard-to-match
samples. As shown in Table V (c) compared with (d), these
measures further improved the model’s performance. Overall,
each of the proposed components contributes positively to the
AGI module, and the best performance can be achieved by
using all three components.

TABLE V
ABLATION EXPERIMENTS ON THE PROPOSED ATTRIBUTE-GUIDED

INTERACTION (AGI) MODULE PERFORM AUDIO-VISUAL MATCHING TASKS
IN THE VALIDATION AND BINARY (WHEN k = 2) CASES.

AGI Binary (k = 2) Verification
IMI IFC LIA V-F F-V V-F F-V

a 94.8 89.8 88.2 91.2
b ✓ 93.2 89.3 75.4 88.1
c ✓ ✓ 95.2 91.2 88.4 91.4
d ✓ ✓ ✓ 95.4 91.6 88.9 91.6

Evaluation on Interaction Feature Combination. We ana-
lyzed to evaluate the impact of Interaction Feature Combining
(IFC) operation on the network performance. To achieve this,
we performed three different IFC operations on the ACIENet
method. The three operations, marked as Residual IFC (a),
Bidirectional mask IFC (b), and Adaptive IFC (c), are designed
to combine original and interaction features using feature
combinations. Fig. 6 shows the schematic of these operations.
We observed that all three IFC operations have varying degrees
of importance in the audio-visual cross-modal matching task.
While Adaptive IFC (c) did not consistently achieve optimal
performance in some experiments, it generally demonstrated
competitive performance across different tasks and scenarios.
The results are presented in Table VI. Therefore, we used the
adaptive interaction feature combination as the feature fusion
manner on the ACIENet method.
Evaluation on Attribute-guided Enhancement Module.
To evaluate the efficacy of the proposed Attribute-guided
Enhancement (AGE) model, we compared it with a joint
supervised approach that comprises three attributes suggested
by Wen et al. [18]. The results of the comparison are presented

SENet
mask

SENet 
1-maskmask




SENet
mask1mask2

SENet

Residual IFC（a）

Adaptive IFC（c）

Bidirectional mask IFC（b）

Raw features Interaction features

Combined features

Fig. 6. Comparison of the three interaction feature combination operations.

TABLE VI
THE EXPERIMENTS ARE CONDUCTED TO COMPARE THE THREE

INTERACTION FEATURE COMBINATION OPERATIONS IN BINARY (WHEN
k = 2) AND 5-WAY (WHEN k = 5) FOR THE AUDIO-VISUAL MATCHING

TASK IN THE V-F AND F-V SCENARIOS.

Demo Methods Binary 5-way
V-F F-V V-F F-V

Baseline 94.8 89.8 73.4 59.8
Fig. 6 (a) R-IFC (a) 95.5 91.6 71.9 60.3
Fig. 6 (b) BM-IFC (b) 95.7 91.8 72.1 61.2
Fig. 6 (c) A-IFC (c) 95.4 91.6 74.2 60.5

in Table VII. Unlike the joint supervised approach, the AGE
model is decoupled from the attribute features and operates
in a parallel manner. This allows for superior performance
by avoiding the mutual influence between multiple attribute
losses. Notably, the ACIENet method, unlike Wen et al. [18]
method, does not require the excessive adjustment of loss
weights to achieve optimal results.

TABLE VII
COMPARING DIFFERENT WAYS OF UTILIZING ATTRIBUTE FEATURES.

Methods Binary (k = 2) Verification
V-F F-V V-F F-V

Attribute-Serial [18] 93.7 88.6 90.0 91.2
Attribute-Parallel (Ours) 96.0 92.3 90.1 91.9

Evaluation on the Impact of Different Attributes on
the AGE Module. In order to assess the impact of dif-
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ferent attribute-guided enhancement models on network per-
formance, we utilized various attribute combinations on
ACIENet. Our objective was to evaluate the performance
of the enhanced features. Specifically, we incorporated two
attributes: gender and nationality, and examined three attribute
combinations: gender only, nationality only, and joint gender
and nationality supervision. These attribute combinations cor-
responded to the three sets of experimental cases illustrated in
Table VIII (b), (c), and (d), respectively. As depicted in Table
VIII, the attribute-guided feature enhancements improved the
discriminative ability of the features compared to the baseline
network. The optimal performance is observed when the two
attributes are co-supervised. This result highlights the potential
benefits of the attribute-guided feature enhancement module in
audio-visual cross-modal matching tasks.

TABLE VIII
COMPARISON OF THE PERFORMANCE OF DIFFERENT ATTRIBUTE-GUIDED
FEATURE ENHANCEMENTS IN A BINARY AUDIO-VISUAL MATCHING TASK.

Different Attribute-guided V-F F-V
a Baseline 94.8 89.8
b + Gender 95.4 91.4
c + Nationality 95.3 91.1
d + Gender + Nationality 95.8 91.9

D. Evaluation on Different Interaction Stages

To evaluate the impact of the attribute-guided interaction
module at different feature extraction stages, we have con-
ducted experiments on early, middle, and late features. First,
the attribute-guided interaction (AGI) model exhibits superior
performance on late features compared to the baseline (Ta-
ble IX (a)) as well as the early and middle feature interactions
(Table IX (b) and (c)). Furthermore, the best performance can
be achieved when integrating both AGE and AGI modules on
late features, as shown in Table IX (h) compared to Tables IX
(e), (f), and (g), which evidences the effectiveness of reducing
interference between multiple attributes at the late stage. The
overall result is that the late-stage features present a more
comprehensive understanding of attribute semantics to the
extent of learning meaningful cross-modal feature interactions.

E. Hyper-parameters Analysis

Fig. 7 presents the weights of hyperparameters for multiple
losses in Eq. (23), which are determined by the control
variables α, β, γ, and λ. These variables represent the weights
of identity alignment loss, modality metric loss, matching clas-
sification loss, and attribute classification loss, respectively, in
the cross-modal matching task. In the V-F and F-V scenarios,
the first three hyperparameters result in slightly fluctuating
performance for the cross-modal matching task, but they all
outperform the existing state-of-the-art methods. However, for
the same task, as the value of the parameter λ increases
gradually, the performance of ACIENet initially increases
before slowly declining. This gradual increase in λ results in

TABLE IX
ANALYSIS OF AUDIO-VISUAL MATCHING EXPERIMENTS IN THE

VALIDATION AND BINARY (WHEN k = 2) CASES FOR ATTRIBUTE-GUIDED
INTERACTION (AGI) MODULES INSERTED INTO THE FEATURE

EXTRACTION NETWORK’S EARLY, MIDDLE, AND LATER STAGES,
RESPECTIVELY.

AGE AGI Binary (k = 2) Verification
Early Middle Late V-F F-V V-F F-V

a 94.8 89.8 88.2 91.2
b ✓ 90.5 72.0 81.9 84.0
c ✓ 92.6 85.2 88.2 77.5
d ✓ 95.4 91.6 88.9 91.6
e ✓ 95.8 91.9 89.9 91.7
f ✓ ✓ 93.6 75.2 85.5 87.0
g ✓ ✓ 94.5 86.6 89.6 88.9
h ✓ ✓ 96.0 92.3 90.1 91.9

a slowly decreasing accuracy of cross-modal matching, which
indicates that the optimization with parallel attribute-guided
interaction (AGI) and attribute-guided enhancement (AGE)
modules is working effectively. Based on the experimental
analysis for V-F and F-V scenarios, setting α = 3, β = 1,
γ = 2, and λ = 1, and α = 1, β = 1, γ = 1, and λ = 1
respectively, ACIENet achieves excellent performance.
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Fig. 7. The effects of hyperparameters of α, β, γ, and λ on binary matching
task.

V. CONCLUSION

In this paper, we present ACIENet, an attribute-guided
interaction and enhancement network that includes two mod-
ules: the attribute-guided interaction (AGI) module, which
explores the semantic relationships between cross-modal fea-
tures, and the attribute-guided enhancement (AGE) module,
which enhances local attribute-related feature representations.
The AGI module is further divided into three parts: inter-modal
interaction (IMI) structure, interaction feature combination
(IFC), and identity alignment loss (LIA). The combination of
these three parts produces an efficient local feature interaction
between modalities under global identity feature alignment.
To enhance attribute-related subtle features, we propose an
AGE module that focuses on local features corresponding to
gender and nationality attributes. This module obtains attention
weights by means of decoding structures and thus enhances
these attributes. In our experiments, we demonstrate that
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ACIENet outperforms several other state-of-the-art methods
for cross-modal matching and validation on both Voxceleb and
VGGFace datasets.

REFERENCES

[1] V. Bruce and A. Young, “Understanding face recognition,” British
journal of psychology, vol. 77, no. 3, pp. 305–327, 1986.

[2] P. Belin, P. E. Bestelmeyer, M. Latinus, and R. Watson, “Understanding
voice perception,” British Journal of Psychology, vol. 102, no. 4,
pp. 711–725, 2011.

[3] H. M. Smith, A. K. Dunn, T. Baguley, and P. C. Stacey, “Matching
novel face and voice identity using static and dynamic facial images,”
Attention, Perception, & Psychophysics, vol. 78, no. 3, pp. 868–879,
2016.

[4] M. Kamachi, H. Hill, K. Lander, and E. Vatikiotis-Bateson, “Putting the
face to the voice’: Matching identity across modality,” Current Biology,
vol. 13, no. 19, pp. 1709–1714, 2003.

[5] A. W. Young, S. Frühholz, and S. R. Schweinberger, “Face and voice
perception: Understanding commonalities and differences,” Trends in
Cognitive Sciences, vol. 24, no. 5, pp. 398–410, 2020.

[6] R. Gao and K. Grauman, “Visualvoice: Audio-visual speech separation
with cross-modal consistency,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 15495–15505, 2021.

[7] K. Yang, D. Marković, S. Krenn, V. Agrawal, and A. Richard, “Audio-
visual speech codecs: Rethinking audio-visual speech enhancement by
re-synthesis,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8227–8237, 2022.

[8] A. George, A. Mohammadi, and S. Marcel, “Prepended domain trans-
former: Heterogeneous face recognition without bells and whistles,”
IEEE Transactions on Information Forensics and Security, vol. 18,
pp. 133–146, 2022.

[9] Y. Fang, Z. Xiao, W. Zhang, Y. Huang, L. Wang, N. Boujemaa, and
D. Geman, “Attribute prototype learning for interactive face retrieval,”
IEEE Transactions on Information Forensics and Security, vol. 16,
pp. 2593–2607, 2021.

[10] A. Gomez-Alanis, J. A. Gonzalez-Lopez, S. P. Dubagunta, A. M.
Peinado, and M. M. Doss, “On joint optimization of automatic speaker
verification and anti-spoofing in the embedding space,” IEEE Transac-
tions on Information Forensics and Security, vol. 16, pp. 1579–1593,
2020.

[11] A. Chowdhury and A. Ross, “Fusing mfcc and lpc features using 1d
triplet cnn for speaker recognition in severely degraded audio signals,”
IEEE Transactions on Information Forensics and Security, vol. 15,
pp. 1616–1629, 2019.

[12] S. Wang, Z. Zhang, G. Zhu, X. Zhang, Y. Zhou, and J. Huang,
“Query-efficient adversarial attack with low perturbation against end-
to-end speech recognition systems,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 351–364, 2022.

[13] C. Xue, X. Zhong, M. Cai, H. Chen, and W. Wang, “Audio-visual
event localization by learning spatial and semantic co-attention,” IEEE
Transactions on Multimedia, 2021.

[14] A. Greco, N. Petkov, A. Saggese, and M. Vento, “Aren: a deep learning
approach for sound event recognition using a brain inspired representa-
tion,” IEEE Transactions on Information Forensics and Security, vol. 15,
pp. 3610–3624, 2020.

[15] A. Nagrani, S. Albanie, and A. Zisserman, “Seeing voices and hearing
faces: Cross-modal biometric matching,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8427–
8436, 2018.

[16] R. Wang, X. Liu, Y.-m. Cheung, K. Cheng, N. Wang, and W. Fan,
“Learning discriminative joint embeddings for efficient face and voice
association,” in Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 1881–1884,
2020.

[17] S. Nawaz, M. K. Janjua, I. Gallo, A. Mahmood, and A. Calefati, “Deep
latent space learning for cross-modal mapping of audio and visual
signals,” in Digital Image Computing: Techniques and Applications,
pp. 1–7, IEEE, 2019.

[18] Y. Wen, M. A. Ismail, W. Liu, B. Raj, and R. Singh, “Disjoint mapping
network for cross-modal matching of voices and faces,” Proceedings of
the International Conference on Learning Representations, 2019.

[19] K. Cheng, X. Liu, Y.-m. Cheung, R. Wang, X. Xu, and B. Zhong,
“Hearing like seeing: Improving voice-face interactions and associations
via adversarial deep semantic matching network,” in Proceedings of the
ACM International Conference on Multimedia, pp. 448–455, 2020.

[20] A. Zheng, M. Hu, B. Jiang, Y. Huang, Y. Yan, and B. Luo, “Adversarial-
metric learning for audio-visual cross-modal matching,” IEEE Transac-
tions on Multimedia, vol. 24, pp. 338–351, 2021.

[21] J. Wang, C. Li, A. Zheng, J. Tang, and B. Luo, “Looking and hearing
into details: Dual-enhanced siamese adversarial network for audio-visual
matching,” IEEE Transactions on Multimedia, pp. 1–12, 2022. doi:
10.1109/TMM.2022.3222936.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Proceedings of the Advances in Neural Information Processing Systems,
vol. 27, 2014.

[23] M. S. Saeed, M. H. Khan, S. Nawaz, M. H. Yousaf, and A. Del Bue,
“Fusion and orthogonal projection for improved face-voice association,”
in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 7057–7061, 2022.

[24] H. Ning, X. Zheng, X. Lu, and Y. Yuan, “Disentangled representation
learning for cross-modal biometric matching,” IEEE Transactions on
Multimedia, vol. 24, pp. 1763–1774, 2021.

[25] P. Wen, Q. Xu, Y. Jiang, Z. Yang, Y. He, and Q. Huang, “Seeking
the shape of sound: An adaptive framework for learning voice-face
association,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 16347–16356, 2021.

[26] X. Wei, T. Zhang, Y. Li, Y. Zhang, and F. Wu, “Multi-modality cross
attention network for image and sentence matching,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 10941–10950, 2020.

[27] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell, “Compact bilinear
pooling,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 317–326, 2016.

[28] A. Andonian, S. Chen, and R. Hamid, “Robust cross-modal repre-
sentation learning with progressive self-distillation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 16430–16441, 2022.

[29] M. Tao, H. Tang, F. Wu, X.-Y. Jing, B.-K. Bao, and C. Xu, “Df-
gan: A simple and effective baseline for text-to-image synthesis,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 16515–16525, 2022.

[30] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale
speaker identification dataset,” Proceedings of the International Speech
Communication Association, pp. 2616–2620, 2017.

[31] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in
Proceedings of the British Machine Vision Conference, pp. 41.1–41.12,
2015.

[32] A. Nagrani, S. Albanie, and A. Zisserman, “Learnable pins: Cross-
modal embeddings for person identity,” in Proceedings of the European
Conference on Computer Vision, pp. 71–88, 2018.

[33] H.-S. Choi, C. Park, and K. Lee, “From inference to generation: End-
to-end fully self-supervised generation of human face from speech,”
International Conference on Learning Representations, 2020.

[34] X. Tu, Y. Zou, J. Zhao, W. Ai, J. Dong, Y. Yao, Z. Wang, G. Guo, Z. Li,
W. Liu, et al., “Image-to-video generation via 3d facial dynamics,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 32,
no. 4, pp. 1805–1819, 2021.

[35] J. Sun, Q. Li, W. Wang, J. Zhao, and Z. Sun, “Multi-caption text-to-face
synthesis: Dataset and algorithm,” in Proceedings of the International
Conference on Multimedia, pp. 2290–2298, 2021.

[36] J. Li, S. Xiao, F. Zhao, J. Zhao, J. Li, J. Feng, S. Yan, and T. Sim,
“Integrated face analytics networks through cross-dataset hybrid train-
ing,” in Proceedings of the International Conference on Multimedia,
pp. 1531–1539, 2017.

[37] J. Zhao, J. Li, Y. Cheng, T. Sim, S. Yan, and J. Feng, “Understanding
humans in crowded scenes: Deep nested adversarial learning and a new
benchmark for multi-human parsing,” in Proceedings of the International
Conference on Multimedia, pp. 792–800, 2018.

[38] J. Li, R. Selvaraju, A. Gotmare, S. Joty, C. Xiong, and S. C. H.
Hoi, “Align before fuse: Vision and language representation learning
with momentum distillation,” Proceedings of the Advances in Neural
Information Processing Systems, vol. 34, pp. 9694–9705, 2021.

[39] A. Zheng, P. Pan, H. Li, C. Li, B. Luo, C. Tan, and R. Jia, “Progressive
attribute embedding for accurate cross-modality person re-id,” in Pro-
ceedings of the ACM International Conference on Multimedia, pp. 4309–
4317, 2022.

[40] K. Zhang, Z. Mao, Q. Wang, and Y. Zhang, “Negative-aware attention
framework for image-text matching,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 15661–15670,
2022.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3388949

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Anhui University. Downloaded on April 26,2024 at 08:56:53 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[41] H. Xuan, Z. Zhang, S. Chen, J. Yang, and Y. Yan, “Cross-modal attention
network for temporal inconsistent audio-visual event localization,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 279–286, 2020.

[42] S. Liu, W. Quan, C. Wang, Y. Liu, B. Liu, and D.-M. Yan,
“Dense modality interaction network for audio-visual event local-
ization,” IEEE Transactions on Multimedia, pp. 1–1, 2022. doi:
10.1109/TMM.2022.3150469.

[43] R. G. Praveen, W. C. de Melo, N. Ullah, H. Aslam, O. Zeeshan, T. De-
norme, M. Pedersoli, A. L. Koerich, S. Bacon, P. Cardinal, et al., “A joint
cross-attention model for audio-visual fusion in dimensional emotion
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2486–2495, 2022.

[44] H. Zhou, J. Du, Y. Zhang, Q. Wang, Q.-F. Liu, and C.-H. Lee,
“Information fusion in attention networks using adaptive and multi-
level factorized bilinear pooling for audio-visual emotion recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 29, pp. 2617–2629, 2021.

[45] Z. Ji, H. Wang, J. Han, and Y. Pang, “Sman: stacked multimodal atten-
tion network for cross-modal image-text retrieval,” IEEE Transactions
on Cybernetics, vol. 52, no. 2, pp. 1086–1097, 2020.

[46] Q. Zhang, Z. Lei, Z. Zhang, and S. Z. Li, “Context-aware attention
network for image-text retrieval,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3536–3545, 2020.

[47] Y. Cheng, R. Wang, Z. Pan, R. Feng, and Y. Zhang, “Look, listen, and
attend: Co-attention network for self-supervised audio-visual represen-
tation learning,” in Proceedings of the ACM International Conference
on Multimedia, pp. 3884–3892, 2020.

[48] O.-B. Mercea, L. Riesch, A. Koepke, and Z. Akata, “Audio-visual
generalised zero-shot learning with cross-modal attention and language,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 10553–10563, 2022.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

[50] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-vocabulary object detection
via vision and language knowledge distillation,” Proceedings of the
International Conference on Learning Representations, 2022.

[51] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009.

[52] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing learning
and generalization capacities via ibn-net,” in Proceedings of the Euro-
pean Conference on Computer Vision, pp. 464–479, 2018.

[53] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7132–7141, 2018.

[54] P. Dai, R. Ji, H. Wang, Q. Wu, and Y. Huang, “Cross-modality person
re-identification with generative adversarial training.,” in International
Joint Conference on Artificial Intelligence, vol. 1, p. 6, 2018.

[55] Y. Peng and J. Qi, “Cm-gans: Cross-modal generative adversarial
networks for common representation learning,” ACM Transactions on
Multimedia Computing, Communications, and Applications, vol. 15,
no. 1, pp. 1–24, 2019.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
ArXiv Preprint arXiv::1412.6980, 2014.

[57] Z. Yu, X. Liu, Y.-M. Cheung, M. Zhu, X. Xu, N. Wang, and T. Li, “De-
tach and enhance: Learning disentangled cross-modal latent representa-
tion for efficient face-voice association and matching,” in Proceedings
of the IEEE International Conference on Data Mining, pp. 648–655,
2022.

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proceedings of
the Advances in Neural Information Processing Systems, vol. 30, 2017.

[59] S. Mehta and M. Rastegari, “Mobilevit: light-weight, general-purpose,
and mobile-friendly vision transformer,” 2022.

[60] P. K. A. Vasu, J. Gabriel, J. Zhu, O. Tuzel, and A. Ranjan, “Fastvit:
A fast hybrid vision transformer using structural reparameterization,” in
Proceedings of the IEEE International Conference on Computer Vision,
2023.

[61] B. Li, Y. Hu, X. Nie, C. Han, X. Jiang, T. Guo, and L. Liu, “Dropkey
for vision transformer,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 22700–22709, 2023.

[62] S. Tang, R. Gong, Y. Wang, A. Liu, J. Wang, X. Chen, F. Yu,
X. Liu, D. Song, A. Yuille, et al., “Robustart: Benchmarking robust-

ness on architecture design and training techniques,” ArXiv Preprint
arXiv:2109.05211, 2021.

[63] B. Zhu, K. Xu, C. Wang, Z. Qin, T. Sun, H. Wang, and Y. Peng,
“Unsupervised voice-face representation learning by cross-modal pro-
totype contrast,” in Proceedings of the International Joint Conference
on Artificial Intelligence, pp. 3787–3794, 2022.

[64] M. S. Saeed, S. Nawaz, M. H. Khan, M. Z. Zaheer, K. Nandakumar,
M. H. Yousaf, and A. Mahmood, “Single-branch network for multimodal
training,” in IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 1–5, 2023.

[65] G. Chen, D. Zhang, T. Liu, and X. Du, “Eft: Expert fusion transformer
for voice-face association learning,” in IEEE International Conference
on Multimedia and Expo, pp. 2603–2608, 2023.

[66] Y. Wei, D. Hu, Y. Tian, and X. Li, “Learning in audio-visual context: A
review, analysis, and new perspective,” arXiv preprint arXiv:2208.09579,
2022.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3388949

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Anhui University. Downloaded on April 26,2024 at 08:56:53 UTC from IEEE Xplore.  Restrictions apply. 


