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Abstract

Multi-modal person re-identification (ReID) seeks to mit-
igate challenging lighting conditions by incorporating di-
verse modalities. Most existing multi-modal ReID methods
concentrate on leveraging complementary multi-modal infor-
mation via fusion or interaction. However, the relationships
among heterogeneous modalities and the domain traits of un-
labeled test data are rarely explored. In this paper, we propose
a Heterogeneous Test-time Training (HTT) framework for
multi-modal person ReID. We first propose a Cross-identity
Inter-modal Margin (CIM) loss to amplify the differentia-
tion among distinct identity samples. Moreover, we design
a Multi-modal Test-time Training (MTT) strategy to enhance
the generalization of the model by leveraging the relation-
ships in the heterogeneous modalities and the information ex-
isting in the test data. Specifically, in the training stage, we
utilize the CIM loss to further enlarge the distance between
anchor and negative by forcing the inter-modal distance to
maintain the margin, resulting in an enhancement of the dis-
criminative capacity of the ultimate descriptor. Subsequently,
since the test data contains characteristics of the target do-
main, we adapt the MTT strategy to optimize the network
before the inference by using self-supervised tasks designed
based on relationships among modalities. Experimental re-
sults on benchmark multi-modal ReID datasets RGBNT201,
Market1501-MM, RGBN300, and RGBNT100 validate the
effectiveness of the proposed method. The codes can be found
at https://github.com/ziwang1121/HTT.

Introduction
The task of multi-modal person re-identification (ReID) has
attracted increasing attention as a result of the advancement
of machine learning technology and the concentration of so-
cial security issues. Different from the primary objectives of
single-modal ReID methods and cross-modal ReID meth-
ods, multi-modal ReID aims to alleviate the issue of insuf-
ficient information in single-modal ReID and spectral dis-
parity in cross-modal ReID. Zheng et al. (Zheng et al. 2021)
propose the multi-modal person ReID, introducing comple-
mentary information among various modalities. The bench-
mark multi-modal dataset is comprised of data from vis-
ible (RGB), near-infrared (NI), and thermal infrared (TI).
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Figure 1: (a) Traditional multi-modal training exclusively
utilizes labeled training data. (b) The proposed heteroge-
neous test-time training additionally leverages unlabeled test
data for optimization.

The majority of multi-modal ReID methods (Zheng et al.
2021; Li et al. 2020; Wang et al. 2022d; Guo et al. 2022)
place more emphasis on the fusion or interaction of modal-
ities. The current multi-modal ReID methods can be cate-
gorized into traditional multi-modal training, using only la-
beled training data, and trained under the constraints of su-
pervised and unsupervised loss, as shown in Fig. 1 (a).

However, there are two common but rarely explored clues
in the multi-modal person ReID. (1) The relationships be-
tween heterogeneous modalities. The multi-modal ReID
methods employ various losses to supervise network learn-
ing. Cross-entropy (CE) loss can force the network to dis-
tinguish different identities, as shown in Fig. 2 (a). Fig. 2
(b) illustrates that after calculating the distance between
the anchor and the positive/negative, triplet loss (Schroff,
Kalenichenko, and Philbin 2015) ensures the difference be-
tween them is larger than the predetermined margin. As
shown in Fig. 2 (c), the multi-modal margin (3M) loss
(Wang et al. 2022d) is designed to increase the distance
among the intra-identity modalities. Nevertheless, the dis-
tinction between the final person descriptors is predomi-
nantly governed by inter-modal disparities. The discrimi-
native potency of the final descriptor can be enhanced by
constraining inter-modal relationships, which are pivotal yet
disregarded by these methodologies. (2) The unlabeled
multi-modal test data. Samples in the training and test sets
possess distinct identities and might originate from diverse
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Figure 2: Comparison of diverse losses. CE loss separates
features from two identities. Triplet loss controls the dis-
tance of features. 3M loss constrains the distance among
modalities in each sample. CIM loss constrains the distance
between inter-modal features from different identities.

and intricate environments. As a result, the classifier is un-
available, and the style shifts are unpredictable in the test
phase. However, the unlabeled multi-modal test data com-
prises abundant domain-specific information and available
modal relationships. Most multi-modal ReID methods ne-
glect to exploit the relationships within unlabeled multi-
modal test data and design appropriate self-supervised tasks
for test-time training.

To enhance model generalization through inter-modal re-
lationship mining and test data utilization, we propose the
Heterogeneous Test-time Training (HTT) framework for ro-
bust multi-modal person ReID. First, we design the cross-
identity inter-modal margin (CIM) loss to enhance distinc-
tiveness among samples. In particular, we calculate the inter-
modal distances between the anchor and the negative, then
restrict the distances to surpass a specified margin value, as
shown in Fig. 2 (d). The distinction across heterogeneous
modal features can be enlarged by employing our CIM
loss, which will ultimately increase the discriminative ability
of person descriptors. Additionally, we propose the multi-
modal test-time training (MTT) strategy, which capitalizes
on unlabeled test data before inference. During the test-time
training stage, two self-supervised tasks that rely on multi-
modal data are constructed and used to optimize the trained
model. On the one hand, we employ the 3M loss (Wang
et al. 2022d) to quantify the intra-sample discrepancy. On
the other hand, we utilize the proposed CIM loss to im-
pose constraints on the inter-modal distance among distinct
identities. Our model can be trained on the source data as
conventional ReID. Moreover, the pre-trained model will be
further optimized exclusively through self-supervised tasks
tailored for unlabeled test data, as shown in Fig. 1 (b). We

provide sufficient experimental results and in-depth analy-
ses to show the advantages of the proposed method. Here
are our main contributions:

• We propose a novel method for the multi-modal per-
son ReID task, termed heterogeneous test-time training
(HTT), to improve performance on unseen test data by
utilizing the relationship between heterogeneous modal-
ities and fine-tuning the network before inference.

• We introduce the cross-identity inter-modal margin
(CIM) loss to further enhance the discriminant of the fi-
nal descriptor by measuring the inter-modal distance be-
tween the anchor and the negative samples and constrain-
ing the distance to be larger than the preset margin.

• We design the multi-modal test-time training (MTT)
strategy to enhance the generalization of the model on
unseen test data that contains domain characteristics and
modal relationships through two self-supervised tasks.

• We employ extensive ablation studies and experimental
comparisons against state-of-the-art approaches on the
four standard benchmark multi-modal ReID datasets to
demonstrate the effectiveness of our method.

Related Work
Multi-modal Re-identification
In order to alleviate the problem that single-modal visible
light data cannot provide useful information at night(Zhu
et al. 2021; Rao et al. 2021; Wang et al. 2022a; Li et al.
2021; Li, Wu, and Zheng 2021; Zheng et al. 2015; Zhou
et al. 2023; Zhang et al. 2023; Li et al. 2022; Lei et al.
2008), and eliminate the huge domain heterogeneity be-
tween cross-modal data (Zhang et al. 2022; Tian et al. 2021;
Wu et al. 2021; Chen et al. 2021; Wu et al. 2017; Nguyen
et al. 2017; Huang et al. 2022; Farooq et al. 2022; Kim et al.
2023; Feng, Wu, and Zheng 2023; Zhang and Wang 2023;
Zheng et al. 2023; He et al. 2015), Zheng et al. (Zheng et al.
2021) construct the first multi-modal person ReID dataset,
RGBNT201. And Zheng et al. (Li et al. 2020) propose the
benchmark multi-modal vehicle ReID datasets, RGBN300
and RGBNT100. These multi-modal datasets proposed for
the ReID task all contain complementary data from multi-
ple modalities (visible, near-infrared, and thermal infrared).
These complementary multi-modal images provide new so-
lutions to the traditional ReID challenges but also bring ad-
ditional issues existing in heterogeneous data. To merge the
useful information from multi-modal data, many novel ap-
proaches have emerged. PFNet (Zheng et al. 2021) proposes
to extract the modal features by the multi-branch network
without sharing parameters, then divide the global features
into several parts, and finally fuse the features at both the
global and local levels. IEEE (Wang et al. 2022d) proposes
to learn more specific information for each modality by in-
troducing cross-modal interaction and multi-modal margin
loss and leveraging local details by designing the relation-
based enhancement module. HAMNet (Li et al. 2020) pro-
vides a powerful baseline framework for multi-modal vehi-
cle ReID by automatically fusing spectrum-specific features
in the network and introducing heterogeneity-collaboration
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loss. GAFNet (Guo et al. 2022) designs the input-level gen-
erated transitional modality model to involve different data
distributions and introduces a feature-level attentive module
to fuse different modalities. All the above-mentioned meth-
ods consider the fusion or interaction of information. How-
ever, the deeper modal relationships in training data and the
domain characteristics in test data are rarely explored.

Test-time Training Strategy
To improve the generalization of the model trained only in
the source domain on the target set with large domain shifts,
Sun et al. (Sun et al. 2020) first propose test-time training
for enhancing the generalization of the trained modal. In
(Sun et al. 2020), the model is optimized by both the self-
supervised loss and the main task loss during training, but
only the self-supervised loss is employed to fine-tune the
network in test-time training. This general approach pro-
posed in (Sun et al. 2020) is easy to combine with other tasks
and effective for them. Many researchers introduce the test-
time training to the downstream tasks to improve the gen-
eralization of the model on the out-of-distribution test data
(Han et al. 2022; Wang et al. 2020; Shin et al. 2022; Liu et al.
2022; Gandelsman et al. 2022). Shin et al. (Shin et al. 2022)
propose two complementary modules, intra-modal pseudo-
label generation, and inter-modal pseudo-label refinement,
to take full advantage of self-supervising signals provided
by multi-modality. Han et al. (Han et al. 2022) propose a
test-time training ReID framework to update BN parame-
ters adaptively by two designed self-supervised tasks. How-
ever, the self-supervised modules in (Shin et al. 2022) are
specially designed for point clouds and RGB data. The self-
supervised tasks proposed in (Han et al. 2022) do not con-
sider the advantages existing in multi-modal data and intro-
duce additional networks and modules to assist prediction.
Therefore, these test-time training strategies cannot be di-
rectly applied to multi-modal ReID tasks.

Method
In this section, we will introduce our proposed method in
detail. We start by describing the baseline framework. Then
we illustrate more details about the proposed Heterogeneous
Test-time Training (HTT), including two key components:
(1) Cross-identity Inter-modal Margin (CIM) Loss, which
constrains the modal feature distances among different sam-
ples during training. (2) Multi-modal Test-time Training
(MTT) strategy, which further fine-tunes the model by em-
ploying multi-modal margin loss and designed CIM loss.

The Baseline Framework
In the training phase of the multi-modal person ReID task,
each sample sent to the backbone is a triplet composed of
three aligned images from visible (R), near-infrared (N ),
and thermal infrared (T ). The input can be denoted as:

input = [IsouR , IsouN , IsouT ], (1)

where [IsouR , IsouN , IsouT ] represents the image triplet in the
source domain for training, and images in the triplet have the
same size with [256, 128, 3] in [height, width, channel]. Due

to the excellent performance of single-modal ReID meth-
ods based on vision transformers (Wang et al. 2022b,c,e; He
et al. 2021), we choose the basic vision transformer (Doso-
vitskiy et al. 2020) as the feature extractor in our method.
The corresponding three modal features of the source are
obtained after the ViT-based backbone. The process of fea-
ture extraction can be formulated as follows:

[fsou
R , fsou

N , fsou
T ] = ϕ ([IsouR , IsouN , IsouT ]) , (2)

where ϕ denotes the ViT-based backbone, and
[fsou

R , fsou
N , fsou

T ] denotes the modal features of the
corresponding modality and is used for multi-modal margin
loss (Wang et al. 2022d) and proposed CIM loss. The
dimension of each modal feature is 768-dim.

Three modal features are combined to form the global
feature by concatenating. Then the global feature passes
through the normalization layer to obtain the normalized
feature. Finally, we employ the classifier layer to predict the
identity of each sample:

fsou
g = C([fsou

R , fsou
N , fsou

T ], dim = 1),

fsou
BN = BN(fsou

g ),
(3)

p = cls(fsou
BN ), (4)

where C(·) denotes the concatenation operation employed
on the channel-wise of modal features. fsou

g represents the
global feature, which is used for computing triplet loss.
BN(·) denotes the batch normalization layer. cls denotes
the classifier layer. p represents the identity prediction re-
sult used for cross-entropy loss. fsou

BN denotes the normalized
feature, which is the final descriptor of the sample. Com-
pared with the training process, the process of the test phase
lacks the step of identity prediction, and the f tar

BN obtained
from [ItarR , ItarN , ItarT ] in the target domain (test set) will be
used for the final evaluation.

Cross-identity Inter-modal Margin Loss
To further enlarge the distinction between the anchor and the
negative samples, we design the cross-identity inter-modal
margin (CIM) loss for multi-modal person ReID. It is worth
noting that the CIM loss is essentially self-supervised and
can be utilized in the training and testing stages. For each
iteration of the training phase, the data loader selects several
samples for the batch. The specially designed data loader
can ensure that each sample in the current batch has negative
samples from different identities. We first extract the modal
features from both the anchor and the negative, as follows:

[fa
R, f

a
N , fa

T ] = ϕ(inputa),

[fn
R, f

n
N , fn

T ] = ϕ(inputn),
(5)

where a and n indicate the feature comes from the anchor
and the negative samples, respectively. After feature ex-
traction, we can compute all the distances between cross-
identity modalities. Note that to simplify the notation, all
symbols omit the superscript sou indicating the source do-
main. For each anchor/negative pair, we choose the inter-
modal distance Dim to represent the discrepancy between
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Figure 3: Overview of the proposed Heterogeneous Test-time Training (HTT) framework. (a) To constrain the learning of the
model during training, we employ the combination of two fully supervised losses (CE loss and Tri loss) and two self-supervised
losses (3M loss and CIM loss). (b) Only the self-supervised losses are employed to update the model during test-time training.
After fine-tuning, the normalized feature f tar

BN will be used for testing. (c) The 3M loss increases the distance among the intra-
identity modalities. The CIM loss further enlarges the distinction of modal features belonging to different identities.

them.

Dim(fa, fn) = max(|margin
CIM
− distm(fa

z1 , f
n
z2)|),

z1, z2 ∈ (R,N, T ),
(6)

where z1 and z2 denote the modality of the feature.
margin

CIM
denotes the predetermined margin between

cross-identity modalities. distm denotes the Manhattan dis-
tance, which can be computed as follows:

distm(f1, f2) =
K∑
i=1

|f i
1 − f i

2|, (7)

where K denotes the dimension of the feature f . For each
batch, we choose the average of all inter-sample distances
as the value of CIM loss.

ℓCIM =
1

B

B∑
i=1

Dim(ai, ni), (8)

where B denotes the batch size of each iteration. Based on
these two criteria, in each iteration, we use the distance of
the two modal features from different identity samples to
optimize the network. The proposed CIM loss compels the
network to prioritize inter-modal disparities among samples
from distinct identities, thereby enhancing the diversity of
ultimate features.

Multi-modal Test-time Training Strategy
To improve the generalization capabilities of the trained
model, we introduce the multi-modal test-time training

(MTT) strategy, which leverages unlabeled data from the tar-
get domain. MTT follows the setting of basic test-time train-
ing (Sun et al. 2020), only the labeled source data is used for
training, and the unlabeled target data is used for fine-tuning
the trained model. During the test-time training phase, we
utilize two self-supervised loss functions: the multi-modal
margin (3M) loss (Wang et al. 2022d) and the cross-identity
inter-modal margin (CIM) loss. The comprehensive proce-
dure of MTT is depicted in Algorithm. 1.

Initially, we build a subset D′ consisting of randomly se-
lected samples from the unlabeled test sets D for MTT. In
each batch, we first calculate the 3M loss for each sample us-
ing Eq.11, as the constraint is exclusively applied within in-
dividual sample triplets. Subsequently, we compute the CIM
loss between distinct samples. Nevertheless, during the test-
ing phase, the genuine labels of the inputs remain unavail-
able, rendering it impossible to ascertain the consistency of
the two sample identities. To address this issue and suc-
cessfully utilize CIM loss, we employ a straightforward yet
logical approach: employing the trained classifier to assign
pseudo-labels to the sampled data. If the pseudo-labels of
samples exhibit inconsistency, we posit that they pertain to
positive and negative sample pairs and calculate the CIM
loss according to Eq.8. Otherwise, the CIM loss is desig-
nated as zero. The ultimate loss LTTT during the test-time
training phase is the aggregate of the 3M loss and the CIM
loss. The pre-trained model will undergo additional opti-
mization through the application of LTTT . Importantly, the
batch size should be no less than 2 to enable the utilization
of CIM loss. This necessity arises from the fact that the CIM
loss requires the computation of inter-modal distances be-
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Algorithm 1: Multi-modal Test-time Training Strategy
Require: Parameter θ of the trained model, batch size B,
learning rate λ, test dataset D

1: while not done do
2: Select the subset D′ ⊆ D for test-time training
3: Randomly select B samples from D′

4: for i = 1 to B do
5: Compute the 3M loss ℓ3M via Eq. (11)
6: for j = i to B do
7: Predict the pseudo labels pi and pj via Eq. (4)
8: if pi ̸= pj then
9: Compute the CIM loss ℓCIM via Eq. (8)

10: else
11: ℓCIM = 0
12: end if
13: end for
14: Evaluate the loss LTTT via Eq. (13)
15: end for
16: Optimize the model parameter θ with SGD:

θ ← θ − λ · ∇θ
1
B

∑B
i=1 LTTT

17: end while
Return: Updated the whole model

tween the anchor and negative samples.

Loss Functions
There are four varieties of losses used in the proposed
method, including cross-entropy (CE) loss, triplet loss,
multi-modal margin (3M) loss, and the proposed cross-
identity inter-modal margin (CIM) loss. As shown in Fig. 3,
in the training phase, we calculate the 3M loss and CIM loss
on the modal features extracted by the ViT-based backbone,
compute the Tri loss on the global feature concatenated by
modal features, and employ the CE loss on the prediction re-
sult output by the classifier layer. During the test-time train-
ing, only the 3M loss and the CIM loss are used for self-
supervised learning. The widely used CE loss measure, ℓCE ,
can assist the network in distinguishing samples that belong
to different identities:

ℓCE = − 1

B

B∑
i=1

M∑
j=1

yij log (pij) , (9)

where B denotes the number of samples in each batch, yij
denotes the ground truth of each sample, M denotes the to-
tal identity of the person in the training set, and pij repre-
sents the probability that sample i belongs to identity j. The
triplet loss is always employed to ensure the distance be-
tween the anchor and the negative is larger than the prede-
termined margin. ℓTri can be computed as follows:

ℓTri =
P∑
i=1

K∑
a=1

[m+

hardest positive︷ ︸︸ ︷
max

p=1,...,K
Dis(f i

a, f
i
p)

−

hardest negative︷ ︸︸ ︷
min

n=1,...,K
Dis(f i

a, f
i
n),

(10)

where fa is the anchor feature, fp is the positive feature with
the same identity as fa, and fn is the negative feature with a
different identity in the batch. The multi-modal margin loss
is employed to ensure the intra-sample inter-modal distance
maintains the predetermined margin. The multi-modal mar-
gin loss ℓ3M for each sample can be formulated as follows:

ℓ3M = max(m
3M
− ∥fi − fj∥22)

i, j ∈ [R,N, T ], i ̸= j
(11)

where m
3M

indicates the predetermined distance among
intra-sample modalities. Moreover, we propose the CIM loss
to expand the distinction between the anchor and the nega-
tive samples.

The final losses Ltrain and LTTT used for training and
test-time training can be formulated as follows:

Ltrain = ℓCE + ℓTri + α1 ∗ ℓ3M + β1 ∗ ℓCIM , (12)

LTTT = α2 ∗ ℓ3M + β2 ∗ ℓCIM , (13)
where α1 and β1 denote the balancing hyperparameters for
ℓ3M and ℓCIM in training. α2 and β2 are hyperparameters
to balance the self-supervised losses.

Experiments
Datasets and Evaluation Protocols
We first introduce multi-modal person ReID datasets
RGBNT201 (Zheng et al. 2021) and Market1501-MM
(Wang et al. 2022d), two multi-modal vehicle ReID datasets
RGBNT100 and RGBN300 built by (Li et al. 2020). Then
we illustrate the evaluation protocols used in our test
phase. Datasets. (1) RGBNT201, the first multi-modal per-
son ReID dataset, which contains 4787 image triplets of
201 identities. Each image triplet consists of three aligned
images: visible, near-infrared, and thermal infrared. (2)
Market1501-MM, all near-infrared and thermal-infrared im-
ages are generated from visible images by pre-trained cycle-
GAN(Zhu et al. 2017). (3) RGBN300, the dual-modal ReID
dataset, which contains 50125 image pairs of 300 vehicle
identities captured by visible and near-infrared cameras. (4)
RGBNT100 is extended based on RGBN300. Additional
captured 17250 thermal images and corresponding visible
and near-infrared image pairs constitute the dataset with
17250 image triples.
Evaluation Protocols. Following conventions in the ReID
community, we employ the mean average precision (mAP)
and cumulative matching characteristic curve (CMC) to
evaluate the performance of the proposed method and other
methods on standard datasets. According to the Euclidean
distance, CMC scores reflect the retrieval precision, and the
rank-n indicates the first n samples with the same identity
from different cameras that are closest to the query.

Implementation Details
The implementation platform of our method is Pytorch
(Paszke et al. 2019) with one RTX 3090Ti GPU. We use
the basic vision transformer (Dosovitskiy et al. 2020) with
stride=16 as the backbone for feature extraction. All the
images are resized to 256 × 128. All training images are
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Methods RGBNT201 Market1501-MM
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Single-modal
MLFN (CVPR2018) 24.7 23.7 38.5 49.5 42.7 68.1 87.1 92.0
HACNN (CVPR2018) 19.3 14.7 25.5 32.8 42.9 69.1 86.6 92.2
OSNet (ICCV2019) 22.1 22.9 37.2 45.9 39.7 69.3 86.7 91.3

Multi-modal

HAMNet (AAAI2020) 27.7 26.3 41.5 51.7 60.0 82.8 92.5 95.0
PFNet (AAAI2021) 38.5 38.9 52.0 58.4 60.9 83.6 92.8 95.5
IEEE (AAAI2022) 46.4 47.1 58.5 64.2 64.3 83.9 93.0 95.7

HTT w/o MTT 69.0 70.0 80.5 85.6 65.9 80.3 95.4 97.6
HTT (Ours) 71.1 73.4 83.1 87.3 67.2 81.5 95.8 97.8

Table 1: Results of our method on RGBNT201 and Market1501-MM compared with state-of-the-art methods (in %).

augmented before being sent to the backbone, i.e., ran-
dom erasure, random flipping, and padding following (He
et al. 2021). The Stochastic Gradient Descent (SGD) (Bottou
2012) with a weight decay of 0.0001 is used in our experi-
ment to fine-tune the model for both training and test-time
training. Training phase. The learning rate in the training
phase is set to 0.008. The maximum epoch is 80. The batch
size is set to 32, consisting of 32 image triplets from four
different identities. The dimension of each modal feature is
768-dim, while the global feature and the normalized feature
have the dimension of 2304-dim. The weights of (α1, β1)
are (0.5, 0.5). Test time training phase. The learning rate
for test-time training is 0.001. And we fine-tune the network
once by only using self-supervised losses ℓ3M and ℓCIM .
The batch size is set to 16, consisting of randomly selected
image triplets from unlabeled test data. The balancing hy-
perparameters (α2, β2) are (1, 1) for RGBNT201 dataset.

Comparison with State-of-the-art Methods
We first evaluate the effectiveness of the proposed method
on the standard multi-modal person ReID datasets. Addi-
tionally, we also conduct experiments on multi-modal ve-
hicle ReID datasets, which also demonstrate the superiority
and adaptability of our method.
Experiments on person ReID datasets. (Zheng et al.
2021). We compare the proposed method with the state-of-
the-art single-modal and multi-modal person ReID meth-
ods on RGBNT201 and Market1501-MM, including MLFN
(Chang, Hospedales, and Xiang 2018), HACNN (Li, Zhu,
and Gong 2018), OSNet (Zhou et al. 2019), HAMNet (Li
et al. 2020), PFNet (Zheng et al. 2021) and IEEE (Wang
et al. 2022d). As shown in Table 1, when testing on the
RGBNT201 dataset, our method HTT without multi-modal
test-time training (MTT) achieves 69.0% mAP and 70.0%
on Rank-1 accuracy, all the results outperform the state-
of-the-art methods. Due to the powerful feature extraction
capability of the ViT-based backbone and the strong con-
straints of designing CIM loss, our method outperforms
other methods by 22.6% and 22.9% in mAP and Rank-1
at least. Moreover, we further evaluate the performance of
employing the MTT strategy. As shown in the last line, the
full HTT achieves the best results on all evaluation protocols
with 71.1% mAP and 73.4% on Rank-1 accuracy. Specif-

Methods RGBN300 RGBNT100
mAP R-1 mAP R-1

PCB (ECCV2018) 57.7 82.0 57.2 83.5
MGN (ACM MM2018) 60.5 83.7 58.1 83.1
ABD (ICCV2019) 58.9 83.1 60.4 85.1
HAMNet (AAAI2020) 61.9 84.0 64.1 84.7
GAFNet (ICSP2022) 72.7 91.9 74.4 93.4
HTT (Ours) 77.1 90.8 75.7 92.6

Table 2: Experimental results of our method on multi-modal
vehicle ReID datasets RGBN300 and RGBNT100 compared
with state-of-the-art methods (in %).

ically, the mAP and Rank-1 have increased by 2.1% and
3.4%. These improvements in the indicators prove that em-
ploying MTT on unlabeled test data is effective for multi-
modal ReID. Meanwhile, on the Market1501 dataset, our
HTT achieves the highest mAP 67.2%, which is 2.9% higher
than the second place. At the same time, our Rank-5 and
Rank-10 are also the highest among all methods, which are
95.8% and 97.8% respectively.
Experiments on vehicle ReID datasets. We evaluate our
method on RGBN300 and RGBNT100, compared with the
state-of-the-art single-modal and multi-modal vehicle ReID
methods, including PCB (Sun et al. 2018), MGN (Wang
et al. 2018), ABD (Chen et al. 2019), HAMNet (Li et al.
2020), GAFNet (Guo et al. 2022). As shown in Table 2,
when testing on the RGBN300, the full HTT achieves the
best results with 77.1% mAP and the second-best results
with 90.8% on Rank-1 accuracy. Our mAP results have ex-
ceeded GAFNet by 4.4% and are only 1.1% lower in Rank-
1. When testing on RGBNT100, we achieve the best results
with 75.7% mAP and the second-best results with 92.6%
on Rank-1 accuracy. It is worth noting that the generator
used in GAFNet relies on training data. On the contrary,
our method can achieve results close to or surpassing SOTA
without much adjustment, which verifies adaptability.

Ablation Study
We further conduct ablation studies on the RGBNT201
dataset to analyze the effectiveness of two key components
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B CIM MTT mAP R-1 R-5 R-10

(1) ✓ - - 67.5 69.4 81.2 85.0
(2) ✓ ✓ - 69.0 70.3 81.5 85.6
(3) ✓ ✓ ✓ 71.1 73.4 83.1 87.3

Table 3: Ablation study of proposed cross-identity inter-
modal margin (CIM) loss and multi-modal test-time training
(MMT) strategy on the baseline (B) on RGBNT201 (in %).

in our HTT: cross-identity inter-modal margin (CIM) loss
and multi-modal test-time training strategy (MTT).

The experimental results of the ablation study are shown
in Table 3. We first apply the proposed CIM loss to the base-
line for comparison, as shown in lines (1) and (2). The model
will be more discriminative for different identities because
our CIM loss can further widen the gap between various
samples. As a result, after using CIM, mAP and Rank-1
are increased by 1.5% and 0.9%, and Rank-5 and Rank-
10 are also increased by 0.3% and 0.6%, respectively. From
the comparison of the results in lines (1) and (3), the high-
est results can be obtained by using both the proposed CIM
and MTT, and the mAP and Rank-1 values are improved by
3.6% and 4.0%, respectively. The above results verify the
effectiveness of our proposed CIM loss in the training and
test-time training phases, as well as the effectiveness of the
MMT strategy under self-supervised loss constraints. With
the help of CIM and MTT, our model can achieve the best
experimental results on multi-modal test data with unknown
domain shifts.

Discussion on CIM Loss
Our proposed CIM loss is an unsupervised loss, independent
of network structure or data annotations, rendering it appli-
cable to diverse ReID methods. We selected representative
methods from single-modal and multi-modal approaches,
OSNet (Zhou et al. 2019) and IEEE(Wang et al. 2022d),
and incorporated the proposed CIM loss into their training
process. As shown in Table 4, when combined with OS-
Net, the mAP and Rank-1 accuracy increase by 1.4% and
0.2% respectively. Furthermore, when integrated with IEEE,
the method specifically designed for multi-modal ReID, the
mAP and Rank-1 improvements reach as high as 2.8% and
1.4% respectively. The outcomes resulting from the amalga-
mation of CIM loss with these two methods demonstrate its
remarkable transferability.

Methods mAP R-1 R-5 R-10

OSNet* (ICCV2019) 23.4 23.7 39.2 48.7
+ CIM loss 24.8 23.9 44.3 55.5
IEEE* (AAAI2022) 46.5 47.8 59.2 64.8
+ CIM loss 49.3 49.2 62.4 69.4

Table 4: The results of combining CIM loss with different
methods on RGBNT201 (in %). * indicates the results are
reproduced by us.

Figure 4: Visualization results without and with multi-modal
test-time training on unseen test data, drawn by Gradient-
weighted Class Activation Mapping (Grad-CAM).

Discussion on MTT Strategy

To demonstrate the significance of the MTT strategy on un-
seen data in a more intuitive manner, we further provide vi-
sualization results by using Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) (Selvaraju et al. 2017).

Illustrated in Fig. 4 (a), upon employing MTT, the model
exhibits an extended capability to concentrate on a wider
range of bodily regions, thereby enhancing the overall in-
formation density of features. For some samples, the model
devoid of MTT fails to allocate attention toward the indi-
vidual’s region or, in some cases, erroneously fixates on the
background. After the implementation of MTT, the model
discerns salient regions, underscoring the capability of MTT
to enhance the model’s generalization and adaptability to un-
charted test samples, as depicted in Fig. 4 (b) and (c).

Conclusion
This paper presents an extensive study of the test-time train-
ing strategy for multi-modal person ReID, with the fol-
lowing contributions: (1) We propose a heterogeneous test-
time training (HTT) framework to enhance the general-
ization of the trained model on unseen test data by fine-
tuning before inference. (2) We design a self-supervised
loss, cross-identity inter-modal margin (CIM) loss, to en-
hance the discriminant of the descriptor by constraining the
inter-modal distance between the anchor and the negative.
(3) We combine the CIM loss with other self-supervised
losses for multi-modal test-time training (MTT) to adapt the
model to the unlabeled test data. Extensive experimental re-
sults demonstrate the effectiveness of the proposed method
on several multi-modal ReID datasets. Our approach attains
state-of-the-art performance while necessitating merely un-
complicated fine-tuning employing unlabeled test data. In
our future work, we will persist in exploring methods to
ameliorate the quality of sampled data and dynamically up-
date the network architecture.
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