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Abstract—With the advancement of generative AI, distinguish-
ing real and AI-generated faces in videos has become increasingly
challenging. However, traditional methods struggle to capture
local details and temporal dynamics simultaneously, making it
difficult to achieve high detection accuracy while maintaining low
computational overhead. To address this problem, we propose a
Dual-branch SpatioTemporal-Planar Network (Dual-PST) based
on the selective state-space model. It is capable of extracting
image features and temporal relations simultaneously, while
maintaining linear computational consumption. Specifically, we
design a Multi-Selective State-Space module (MS3) that can
extract global features from image typography consisting of
consecutive video frames by scanning them in multiple sequences.
To further enhance temporal modeling capabilities, we propose
a Sequential Tri-frame Local module, which captures inter-
frame temporal relationships and local features by temporally
splicing single-frame features. These features are first extracted
using MS3 and then further enhanced through inter-frame
masking operations. Experimental results show that Dual-PST
significantly improves detection accuracy while maintaining low
computational complexity and strong model robustness.

Index Terms—Face Forgery Detection, Spatiotemporal Incon-
sistencies, Selective State-Space Model

I. INTRODUCTION

In recent years, research in face forgery has experienced
remarkable advancements [1], [2], [3]. Forgery images may
deceive facial recognition systems or allow malicious ex-
ploitation, leading to societal trust issues and security risks.
Consequently, there is a compelling need to explore reliable
methods for face forgery detection.

The core of deepfake detection lies in identifying subtle
clues that distinguish real images from synthetic ones. Since
deepfake algorithms often operate on a frame-by-frame basis,
the generated videos often exhibit both spatial and temporal
artifacts [4], [5], [6]. Modeling only one aspect (spatial or
temporal) may not be sufficient to cover all types of artifacts.

Although some studies have employed spatiotemporal neu-
ral networks to effectively detect temporal inconsistency in

videos [7], [8], these methods primarily focus on spatial fea-
ture extraction within individual frames and fail to effectively
incorporate temporal relationships into local feature extraction,
thus overlooking the temporal dimension. In addition, the
frame-by-frame processing approach further increases compu-
tational complexity, making it difficult for the model to achieve
an optimal balance between accuracy and efficiency.

To deal with the above challenges, we propose a Dual-
branch SpatioTemporal-Planar network (Dual-PST). As shown
in Fig. 1, before entering the global and local branches, we
divide the given video into segments and randomly selected
several consecutive frames (default is 4) arranged into a spe-
cific spatiotemporal layout. This layout method stitches con-
secutive single-frame images into a plane image, effectively
transforming the video’s temporal sequence information into
a static spatial structure, which can reduce the computational
complexity of frame-by-frame processing.

For the global branch, we utilize the Multi-Selective State-
Space (MS3) module to scan the spatiotemporal layout in
rows and columns, expanding it into multiple sequences ac-
cording to the four orders shown in Fig. 1 (a), allowing each
pixel to integrate information from different directions. This
method combines the linear computational complexity with the
global receptive field while maintaining high computational
efficiency.

To enhance the temporal relationship modeling of local
features, the spatiotemporal layout is also input into the local
branch. Unlike the global branch which processes the entire
layout, the local branch inputs each frame individually into
the MS3 module, as shown in Fig. 1 (b). We then design
a Sequential Tri-frame Local (STL) module to explicitly
incorporate temporal relations into the local feature extraction
process. Each frame first undergoes a masking operation while
excluding it from the 2 × 2 layout, then the remaining three
frames are spliced together in chronological order to generate
local features. By repeating this process for each frame, we



Fig. 1: Workflow of the Dual-PST architecture: a) The global branch uses MS3 to process the downsampled spatiotemporal
layout to extract multi-scale features; b) The local branch processes each frame independently, applying the STL to combine
adjacent frames, preserving temporal order and extracting local details and temporal dynamics. Finally, an adaptive weighted
mechanism fuses the features for the final detection result.

obtain four local features. These local features are stitched
together in strict chronological order, capturing not only the
details of each frame but also the dynamic relationships
between video frames. To effectively fuse the features from
the global and local branches, we design an Adaptive Fusion
module and develop an adaptive weighted multi-task loss
function, which dynamically adjusts the weights of each loss
component to balance their impact on the final decision.

We conducted extensive experiments and validated the
contribution of each key component through ablation studies.
Experiments demonstrate that these improvements boost Dual-
PST’s spatiotemporal feature modeling while maintaining ef-
ficiency, making it a strong solution for face video forgery
detection.

II. METHODOLOGY

A. Mutil-Selective State-Space (MS3)

The Mamba [9] introduces a Selective State-Space Model,
ensuring that its computational complexity scales linearly with
the length of the sequence, as opposed to the quadratic scaling
typical of transformers, thereby performing exceptionally well
with long sequence data. Building on Mamba’s Selective State-
Space Model, we propose the Multi-Selective State-Space
(MS3) module and apply it to the visual domain.

To better process image data, we expand it into a sequence
by scanning the image pixel tokens. Unlike traditional single-
directional traversal methods for processing images [10], the
MS3 module scans in four directions (from top-left to bottom-
right, bottom-right to top-left, top-right to bottom-left, and
bottom-left to top-right) as shown in Fig. 1 (a), converting
image information into four sequences. These sequences inte-
grate pixel information from different directions, ensuring that
each pixel captures its own spatiotemporal relationships while
sharing feature information with other frames. Finally, these

sequences are merged into a unified global feature representa-
tion that effectively reflects the spatiotemporal dynamics and
global image features within the image.

B. Sequential Tri-frame Local (STL)

In the local branch, we process each frame in the spa-
tiotemporal layout independently. Each frame is sequentially
input into the MS3 for four-directional scanning, moving from
each corner to its diagonal counterpart. This approach ensures
that each frame integrates global information from different
directions, capturing spatiotemporal inconsistencies between
frames while maintaining spatial continuity.

To explicitly incorporate temporal relationships into the
process of local feature extraction, we propose an innovative
Sequential Tri-frame Local (STL) module, as illustrated in
Fig. 1 (b). Specifically, after the MS3 module extracts features
from each frame, we traverse the features of the spatiotemporal
layout. For each frame, a masking operation is applied to
exclude it from the 2×2 layout, ensuring that feature ex-
traction relies only on the spatiotemporal information from
the remaining three frames. Next, the remaining three frame
features are arranged according to the time order of the original
spatiotemporal layout to form a local feature. By repeating
this operation for each frame in the Four-Frame Layout, we
eventually generate four local features. These local features are
strictly arranged in chronological order, allowing the model to
not only capture the static information of individual frames
but also model the dynamic relationships between frames,
significantly enhancing the model’s spatiotemporal feature
modeling capabilities.

C. Dual-branch Spatiotemporal-Planar Network (Dual-PST)

1) Dual-Branch Feature Extraction: For a video V ∈
RT×C×H×W , where T is the frame length, C is the number of
channels, and H×W is the resolution of the frames, we divide



the video into N equal clips, each with a length of T/N . From
each clip, we randomly sample t consecutive frames (default
is 4) to form a spatiotemporal layout. These four frames are
arranged according to a specific layout and used as input for
both the global and local branches to process independently.
The four frames are arranged in a specified layout and then
used as input for both the global and local branches to process
independently.

In the global branch, we first adjust the spatiotemporal
layout to match the original image size, then input it into the
MS3 for global feature extraction. Through this layout and
scanning method, we can extract not only spatial features but
also temporal features by capturing the relationships between
frames. This multi-directional scanning combines MS3 with
the spatiotemporal layout, enabling effective integration of
pixel information from different directions across the four-
frame images, ensuring that each pixel captures contextual in-
formation from multiple perspectives. This approach achieves
global receptive field coverage without increasing the compu-
tational complexity, making feature extraction both efficient
and comprehensive. The extracted global features Fglobal are
used to generate the global prediction py|Fglobal through a
linear layer. During the embedding process, the global fea-
tures are compressed to improve feature fusion efficiency
and reduce computational complexity, ultimately producing
the compressed global prediction py|z. We introduce Global
Information Loss LGIL to ensure that the compressed features
retain key information and distribution consistency, enabling
efficient global feature modeling while minimizing complexity.

In the local branch, MS3 is used to independently pro-
cess each frame in the spatiotemporal layout. To effectively
integrate temporal relationships, we use the STL module to
process each frame, ultimately generating four local features
Flocal,i. These local features are then mapped into the embed-
ding space through a linear layer, producing the correspond-
ing local predictions Py|fi . To ensure the independence and
integrity of these local features and to minimize the impact of
redundant information, we introduce Local Information Loss
LLIL.

The calculation is defined as follows:

LGIL = KL
(
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T

)
, Softmax

(py|z

T

))
, (1)
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i ̸=j
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(
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T

)
, Softmax

(
Py|fj

T

))
, (2)

where KL represents the Kullback-Leibler Divergence, and T
is a temperature parameter that controls the smoothness of the
softmax output.

2) Adaptive weighted fusion: To effectively fuse the fea-
tures extracted by the global and local branches in the Dual-
PST architecture, we designed an adaptive weighted multi-task
loss function. The total loss function Ltotal consists of three
main components:

LTotal = λ1 · LCE(py|z, y) + λ2 · LGIL + λ3 · LLIL. (3)

In Eq. (3), LCE(py|z, y) represents the cross-entropy loss
between the compressed global prediction and the ground truth
labels. λ1, λ2, and λ3 are the weighting coefficients of the loss
function. To balance the impact of different loss components
on the final decision, this loss function incorporates an adap-
tive weighting mechanism, dynamically adjusting the weight
of each loss term λi through learnable parameters σi:

λi =
0.5

σ2
i

+ log(1 + σ2
i ). (4)

This mechanism allows the model to automatically adjust the
importance of global and local features during training, thereby
improving classification performance.

III. EXPERIMENTS

We evaluated our model on three commonly used datasets:
FaceForensics++(FF++) [11], Celeb-DF [12] and DFDC [13].
FF++ contains 1,000 original videos and 4,000 manipulated
videos generated by four typical forgery methods, with two
quality levels (C23 and C40). Celeb-DF includes 590 real
videos and 5,639 high-quality fake videos which are crafted
by the improved DeepFake algorithm. DFDC is a large-scale
dataset that contains 128,154 facial videos of 960 subjects.
We used MTCNN [14] to detect faces in the video frames.
The backbone model employed is the Visual State Space
Model [15] pretrained on ImageNet-1K. We used the Adam
optimizer with a learning rate of 1.5e-4 and a batch size of 4,
along with a cosine annealing scheduler with 10 linear warm-
up epochs. The evaluation metrics are Accuracy (Acc) and
the Area Under the Receiver Operating Characteristic Curve
(AUC), with comparison results sourced from their respective
papers. The best performance is highlighted in bold.

A. Intra-dataset Performance

In this section, We use 720 training videos, 140 validation
videos, and 140 test videos out of every 1000 videos follow-
ing the methodology [11]. Because of the data distribution
problem in the FF++ dataset (1:4 ratio of true to false),
we usually consider the AUC to be more informative than
the Acc, and we achieve the highest value as shown in
Table. I. Specifically, our method achieves an AUC of 100%
on the FF++ (C23) dataset, outperforming the TALL-Swin
method. Under the FF++ (C40) quality setting, our approach
shows a performance improvement of 1.81% over TALL-Swin.
We also test our method on the Celeb-DF dataset, where
it demonstrates outstanding performance, achieving 100% in
both Acc and AUC metrics.

B. Cross-dataset Performance

In this section, we evaluated the generalization ability of
the model. We trained the model on FF++ (C40) and then
tested it on the Celeb-DF and DFDC datasets. As shown in
Table. II, our method demonstrates significant improvement on
unseen datasets. On the Celeb-DF dataset, the AUC increased
from 76.70% (Two-branch) to 82.05%; on the DFDC dataset,
the AUC improved from 69.06% (RECCE) to 74.70%. The



TABLE I: Intra-dataset evaluations. We report the Acc(%) and
AUC (%) on the FaceForensics++ dataset.

Method FF++ (C23) FF++ (C40)

Acc ↑ AUC ↑ Acc ↑ AUC ↑

MesoNet[16] 83.10 – 70.47
Xception[17] 95.73 96.30 86.86 89.30
Face X-Ray[18] – 87.40 – 61.60
Two-branch[19] 96.43 98.70 86.34 86.59
RFM[20] 95.69 98.79 87.06 89.83
Add-Net[21] 96.78 97.74 87.50 91.01
F3-Net[22] 97.52 98.10 90.43 93.30
Multi-Att[23] 97.60 99.29 88.69 90.40
FDFL[24] 96.69 99.30 89.00 92.40
DIANet[25] 96.37 98.80 89.77 88.20
UIA-ViT[26] 96.06 98.97 86.71 89.62
RECCE[27] 97.06 99.32 91.03 95.02
ITA-SIA[28] 97.64 99.35 90.23 93.45
DisGRL[29] 97.69 99.48 91.27 95.19
TALL-Swin[10] 98.65 99.87 92.82 94.57

Dual-PST (ours) 98.43 100.00 92.29 96.38

TABLE II: Cross-dataset comparison results. We report the AUC
(%) on two unseen datasets: Celeb-DF and DFDC.

Method Training
dataset Celeb-DF DFDC

Xception[17] 61.80 63.61
F3-Net[22] 61.51 64.60
Add-Net[21] 65.29 64.78
Multi-Att[23] FF++(c40) 67.02 68.01
RECCE[27] 68.71 69.06
Two-branch[19] 76.70 –
M2TR[30] 72.05 66.02

Dual-PST (ours) FF++(c40) 82.05 74.70

results demonstrate that our method performs exceptionally
well on unseen datasets, with better generalization ability than
previous methods.

C. Ablation Study

We designed a series of ablation study in FF++(C23) and
Celeb-DF to validate the effectiveness of the modules in
Dual-PST. We train the VSSM model on the FF++ (C23)
dataset and test it on the Celeb-DF dataset. To further validate
the effectiveness of VSSM, we compare it against the Swin
Transformer (Swin-T) [31].

We first scan the spatiotemporal layout using Swin-T, then
replace Swin-T with MS3, the model’s performance signif-
icantly improved both within and across datasets. Next, we
introduced the STL module while keeping Swin-T unchanged
and observed further performance improvements. Particularly
for the Celeb-DF dataset, the AUC increased by 2.42%, which
is a larger impact than that of MS3. This is due to the fact
that the distribution of image features varies between datasets,

TABLE III: Ablation study of Dual-PST. We show Acc (%)
and AUC (%) training on FF++ (C23) and testing on Celeb-
DF

Methods Variant FF++ (C23) Celeb-DF

Acc ↑ AUC ↑ Acc ↑ AUC ↑

1 Swin-T 93.53 96.43 76.96 81.60
2 MS3 98.43 99.67 79.04 82.70
3 Swin-T+STL 96.86 99.09 78.79 84.02
4 Dual-PST 98.43 100.00 79.84 84.28

but STL can better extract the inherent temporal relationships
within the video. As shown in Table. III, the experimental
results demonstrate that both the MS3 and STL modules make
significant contributions to spatiotemporal feature extraction in
video analysis.

In addition, we also explore the effect of the number of local
frames in the STL module. As shown in Fig. 2, compared to
single-frame extraction, two-frame extraction provides some
temporal information to the model, thus improving its capa-
bility when the number of frames rises to three, the model
capability gains a large boost. This is because three-frame
splicing not only adds information from an additional frame
but also includes information about the “masked” frame,
avoiding the information loss and incomplete features seen
with single-frame splicing.

Fig. 2: Ablation Study on Local Frame Numbers in the STL
Module.

CONCLUSION

In this paper, we propose the Dual-PST network architec-
ture, which extracts both image features and temporal relations
by stitching consecutive frames of video into pictures with low
computational consumption. Specifically, the MS3 module ef-
ficiently captures global spatiotemporal features through multi-
directional scanning while maintaining linear computational
complexity. The STL module incorporates inter-frame tempo-
ral information, enhancing the spatiotemporal consistency of
local features. Together, these components effectively capture
both global and local features in video data. Experimental
results demonstrate that Dual-PST performs exceptionally well
across various datasets, particularly showing strong generaliza-
tion on unseen datasets, indicating its potential for real-world
deepfake detection.

Acknowledgement. This work was supported in part by
the National Natural Science Foundation of China (Grant No.
62206277), the University Synergy Innovation Program of
Anhui Province (Grant GXXT-2022-036).



REFERENCES

[1] Y. Zang, Y. Zhang, M. Heydari, and Z. Duan, “Singfake: Singing voice
deepfake detection,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2024, pp. 12 156–12 160.

[2] C. Fu, Y. Hu, X. Wu, G. Wang, Q. Zhang, and R. He, “High-fidelity
face manipulation with extreme poses and expressions,” vol. 16, p.
2218–2231, 2021.

[3] J. Cao, Y. Hu, B. Yu, R. He, and Z. Sun, “3d aided duet gans for multi-
view face image synthesis,” IEEE/CVF Transactions on Information
Forensics and Security, pp. 2028–2042, 2019.

[4] Z. Ba, Q. Liu, Z. Liu, S. Wu, F. Lin, L. Lu, and K. Ren, “Exposing
the deception: Uncovering more forgery clues for deepfake detection,”
in AAAI Conference on Artificial Intelligence, 2024, pp. 719–728.

[5] Z. Lei, S. Liao, R. He, M. Pietikainen, and S. Li, “Gabor volume
based local binary pattern for face representation and recognition,” in
IEEE/CVF International Conference on Automatic Face and Gesture
Recognition, 2008, pp. 1–6.

[6] Z. Gu, Y. Chen, T. Yao, S. Ding, J. Li, and L. Ma, “Delving into the
local: Dynamic inconsistency learning for deepfake video detection,” in
AAAI Conference on Artificial Intelligence, 2022, pp. 744–752.

[7] Y. Lai, G. Yang, Y. He, Z. Luo, and S. Li, “Selective domain-invariant
feature for generalizable deepfake detection,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024,
pp. 2335–2339.

[8] Z. Gu, Y. Chen, T. Yao, S. Ding, J. Li, F. Huang, and L. Ma,
“Spatiotemporal inconsistency learning for deepfake video detection,”
in Proceedings of the ACM International Conference on Multimedia,
2021, pp. 3473–3481.

[9] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with
selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.

[10] Y. Xu, J. Liang, G. Jia, Z. Yang, Y. Zhang, and R. He, “Tall: Thumb-
nail layout for deepfake video detection,” in IEEE/CVF International
Conference on Computer Vision (ICCV), 2023, pp. 22 658–22 668.

[11] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niess-
ner, “Faceforensics++: Learning to detect manipulated facial images,” in
IEEE/CVF International Conference on Computer Vision (ICCV), 2019,
pp. 1–11.

[12] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-df: A large-
scale challenging dataset for deepfake forensics,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 3204–3213.

[13] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang,
and C. Cristian Ferrer, “The deepfake detection challenge dataset,”
ArXiv:2006.07397, 2020.

[14] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” pp. 1499–
1503, 2016.

[15] Y. Liu, Y. Tian, Y. Zhao, H. Yu, X. L.X., Y. Wang, Q. Ye, and Y. Liu,
“Vmamba: Visual state space model,” arXiv preprint arXiv:2401.10166,
2024.

[16] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a compact
facial video forgery detection network,” in Workshop on Information
Forensics and Security (WIFS), 2018, pp. 1–7.

[17] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 1800–1807.

[18] L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo, “Face
x-ray for more general face forgery detection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 5000–5009.

[19] I. Masi, A. Killekar, R. Mascarenhas, S. Gurudatt, and W. AbdAl-
mageed, “Two-branch recurrent network for isolating deepfakes in
videos,” in European Conference on Computer Vision (ECCV), 2020,
pp. 667–684.

[20] C. Wang and W. Deng, “Representative forgery mining for fake face
detection,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021, pp. 14 923–14 932.

[21] B. Zi, M. Chang, J. Chen, X. Ma, and Y. Jiang, “Wilddeepfake: A
challenging real-world dataset for deepfake detection,” in Proceedings
of the ACM International Conference on Multimedia, 2020, pp. 2382–
2390.

[22] Y. Qian, G. Yin, L. Sheng, Z. Chen, and J. Shao, “Thinking in frequency:
Face forgery detection by mining frequency-aware clues,” in European
Conference on Computer Vision (ECCV), 2020, pp. 86–103.

[23] H. Zhao, W. Zhou, D. Chen, T. Wei, W. Zhang, and N. Yu, “Multi-
attentional deepfake detection,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2021, pp.
2185–2194.

[24] J. Li, H. Xie, J. Li, Z. Wang, and Y. Zhang, “Frequency-aware discrim-
inative feature learning supervised by single-center loss for face forgery
detection,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021, pp. 6458–6467.

[25] Z. Hu, H. Xie, Y. Wang, J. Li, Z. Wang, and Y. Zhang, “Dynamic
inconsistency-aware deepfake video detection,” in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 2021,
pp. 736–742.

[26] W. Zhuang, Q. Chu, Z. Tan, Q. Liu, H. Yuan, C. Miao, Z. Luo, and
N. Yu, “Uia-vit: Unsupervised inconsistency-aware method based on
vision transformer for face forgery detection,” in European Conference
on Computer Vision (ECCV), 2022, pp. 391–407.

[27] J. Cao, C. Ma, T. Yao, S. Chen, S. Ding, and X. Yang, “End-to-
end reconstruction-classification learning for face forgery detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 4113–4122.

[28] K. Sun, H. Liu, T. Yao, X. Sun, S. Chen, S. Ding, and R. Ji,
“An information theoretic approach for attention-driven face forgery
detection,” in European Conference on Computer Vision (ECCV), 2022,
pp. 111–127.

[29] Z. Shi, H. Chen, L. Chen, and D. Zhang, “Discrepancy-guided recon-
struction learning for image forgery detection,” in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 2023.

[30] J. Wang, Z. Wu, J. Chen, and Y. Jiang, “M2tr: Multi-modal multi-scale
transformers for deepfake detection,” in Proceedings of the International
Conference on Multimedia Retrieval (ICMR), 2022, pp. 615–623.

[31] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in IEEE/CVF International Conference on Computer Vision
(ICCV), 2021, pp. 10 012–10 022.


