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Learning to Rank Pre-trained Vision-Language Models for

Downstream Tasks

Yuhe Ding, Bo Jiang, Aihua Zheng, Qin Xu and Jian Liang

Abstract—Vision language models (VLMs) like CLIP show
stellar zero-shot capability on classification benchmarks. How-
ever, selecting the VLM with the highest performance on the
unlabeled downstream task is non-trivial. Existing VLM selection
methods focus on the class-name-only setting, relying on a
supervised large-scale dataset and large language models, which
may not be accessible or feasible during deployment. This paper
introduces the problem of unsupervised vision-language model
selection, where only unsupervised downstream datasets are
available, with no additional information provided. To solve this
problem, we propose a method termed Visual-tExtual Graph
Alignment (VEGA), to select VLMs without any annotations
by measuring the alignment of the VLM between the two
modalities on the downstream task. VEGA is motivated by
the pretraining paradigm of VLMs, which aligns features with
the same semantics from the visual and textual modalities,
thereby mapping both modalities into a shared representation
space. Specifically, we first construct two graphs on the vision
and textual features, respectively. VEGA is then defined as
the overall similarity between the visual and textual graphs at
both node and edge levels. Extensive experiments across three
different benchmarks, covering a variety of application scenarios
and downstream datasets, demonstrate that VEGA consistently
provides reliable and accurate estimates of VLMs’ performance
on unlabeled downstream tasks.

Index Terms—Vision Language Model; Performance Evalua-
tion

I. INTRODUCTION

Vision language models (VLMs) like CLIP [1], ALIGN
[2] and SigLIP [3], are transforming the technological and
academic landscape with their unprecedented performance
and the broad range of viable applications [4]]-[7]]. The most
impressive capability of VLMs is their applications in zero-
shot classification tasks. With just the class names, VLMs can
be easily applied to any downstream task. However, identifying
which VLM has the highest downstream performance is non-
trivial, as labels are unavailable when deployed in real-world
scenarios.

Recently, language-only vision language model selection
(LOVM) [8], [9], which selects a VLM for the downstream
dataset with only class names, has garnered attention. LOVM
methods usually leverage the zero-shot classification accuracy
on a large-scale dataset with annotations such as ImageNet
[10] as a baseline, and additionally introduce large language

Yuhe Ding, Bo Jiang, and Qin Xu are with the School of Computer
Science and Technology, Anhui University. E-mail: madao3c@foxmail.com;
jiangbo@ahu.edu.cn; xuqin@ahu.edu.cn.

Aihua Zheng is with the School of Artificial Intelligence, Anhui University.
E-mail: ahzheng214 @foxmail.com.

Jian Liang is with the New Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences. E-mail: liangjian92 @ gmail.com.

Bo Jiang and Jian Liang are the corresponding authors.

=1

Ranking Order

A photo of a {class name}
A photo of a {class name}
A photo of a {class name}

A photo of a {class name}

©: 660 [©: @O

Fig. 1. Paradigm of unsupervised vision language model selection, where
only unsupervised downstream datasets are available, with no additional
information provided. The goal is to develop a method that computes a
score for each VLM, which is highly correlated with the unseen ground truth
accuracy.

models (LLMs) [[11] to generate captions and synonyms
for these class names. However, the prediction results are
sensitive to the quality of the content generated by LLM,
and calling the LLM API can also be quite time-consuming
and costly. Besides, a dataset with annotations is not always
available during deployment. A viable solution is to use
unsupervised downstream datasets along with the correspond-
ing class names, which are readily accessible to downstream
users in deployment scenarios. Some methods tailored for
traditional convolution neural network models [12]]-[14] also
consider this problem. They typically predict downstream
performance (also known as generalization performance or
out-of-distribution performance) by measuring the distribution
divergence between the training and downstream datasets.
While this straightforward idea has been demonstrated to be
applicable to VLMs [[15], [16], implementing these methods
directly on VLMs remains challenging. The reason is that
training data is often difficult for downstream users to access,
either due to its huge size or restrictions imposed by privacy
and commercial considerations. Different from the two set-
tings mentioned above, unsupervised vision language model
selection aims to select VLMs using only the unlabeled target
dataset. The paradigm is shown in Fig. |I} and this setting is
practical and can eliminate the dependency on training datasets
and LLMs presented in existing methods.

To solve this problem, we propose Visual-tExtual Graph
Alignment (VEGA), a new method to evaluate the downstream
performance of pre-trained VLMs with the corresponding
unsupervised downstream dataset. VEGA is motivated by the
pretraining paradigm of VLMs, which aligns features with the
same semantics from the visual and textual modalities, thereby
mapping both modalities into a shared representation space. In
a well-trained cross-modality features space, visual features
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should be tightly clustered around the corresponding textual
features [1]]. This phenomenon leads to a straightforward
intuition: the more similar the structures of the class feature
distributions for the two modalities, the easier it becomes to
match the images to their corresponding class names. We
model the structures of the class distributions in the two
modalities as a fully connected visual graph and textual graph,
respectively. Both graphs have the same number of nodes,
with each node representing a class and edges representing
the distances between connected classes. Specifically, the node
and edge of the textual graph are simply defined as the textual
feature of class names and the cosine distance, respectively.
In the visual graph, nodes correspond to clusters of visual
features of images, which are closest to the corresponding
class name features, and edges represent the Bhattacharyya
distances between the nodes. VEGA represents the similarity
between the two graphs by combining both node and edge
level similarity together. Specifically, node similarity is the
average distance between image features in a visual node
and the corresponding textual node. Edge similarity is the
Pearson correlation coefficient between the edge matrices,
which can eliminate the impact of scale. VLMs with a higher
VEGA score are more likely to achieve better downstream
performance.

We conduct extensive experiments on three practical appli-
cation scenarios of VLM performance prediction, i.e., VLMs
from the CLIP family, VLMs from various pre-training algo-
rithms, and the combination of VLM and prompt template.
The results validate that VEGA is a reliable downstream
performance indicator under various practical scenarios. The
contributions of this study can be summarized as follows,

« We introduce a new problem setting that is practical for
downstream users: unsupervised vision language model
selection, where class names and unlabeled downstream
datasets are available.

o We propose a novel method termed Visual-tExtual Graph
Alignment (VEGA), which measures the similarity be-
tween the well-designed class distribution graphs of the
visual and textual modalities, serving as an estimator of
VLM zero-shot classification performance.

e We provide three benchmarks for this new setting, in-
volving performance prediction on VLMs from the CLIP
family, VLMs from various pre-training algorithms, and
the combination of VLM and prompt template. Superior
results validate that VEGA is a reliable unsupervised
indicator of VLM downstream performance.

II. RELATED WORK
A. Model Selection

Model selection, a core challenge in transfer learning,
focuses on ranking available pre-trained models to identify
the one best suited for a given target task [17]-[19]. Model
selection can be divided into several popular topics based
on the different goals of the target task. Transferability es-
timation [18]], [20]], [21] aims to maximize the accuracy of
the target task after supervised fine-tuning. The difficulty lies
in how to select a model using a supervised target dataset

without the need for fine-tuning or a small amount of fine-
tuning. Out-of-distribution (OOD) error prediction [17], [22]]
focuses on evaluating a model’s ability to maintain robust
performance when presented with data that deviates from its
training distribution. These approaches involve using a test
set specifically designed to include OOD data, allowing for
an assessment of the model’s generalization capacity under
challenging, unseen conditions. Unlike traditional transfer
learning approaches that require fine-tuning on downstream
tasks, OOD error prediction remains within the same task
framework, aiming to measure how well the model adapts
to variations in data distributions without additional training.
This evaluation provides insights into the model’s resilience
and reliability in real-world scenarios where data distribution
shifts are inevitable. Model validation [23] is a crucial step in
the machine learning workflow, enabling the evaluation and
comparison of different training checkpoints to identify the
most effective model. In supervised validation [23[], a labeled
validation set is used to measure performance and select the
model with the best validation metrics, ensuring its ability to
generalize to unseen data. In contrast, unsupervised validation
[24]-[26]] addresses scenarios where labeled validation data
is unavailable. It leverages the unlabeled test set or proxy
metrics to assess model performance, providing an alternative
means for model selection in settings where labeling data is
challenging or infeasible.

B. Vision-language Model Selection

LOVM [§8] introduces a new setting termed language-only
vision language model selection task, where methods are
expected to perform both model selection and performance
prediction based solely on a text description of the desired
downstream application. LOVM generates a caption dataset
and a synonym dataset and then calculates several statistic
scores on these text datasets. This is an interesting setting
and is reasonable in cases where data is extremely limited.
However, LOVM relies on large language models (LLMs) [[11]]
to generate a substantial number of captions and synonyms
for these class names. The prediction results are sensitive
to the quality of the content generated by the LLM, and
calling the LLM API can also be quite time-consuming and
costly. Besides, some recent studies [[1]], [15], [16]] find that the
generalization performance has a high correlation with train-
test set similarity. They design various methods to measure
train-test set similarity. For downstream users, the training set
is difficult to obtain, while the downstream dataset is usually
available. Therefore, developing a downstream performance
evaluation method for vision language models with a down-
stream unsupervised dataset is practical.

C. Generalization Performance Prediction.

As the rapid proliferation of generalization algorithms such
as domain generalization [17]], distributionally robust optimiza-
tion [27], invariant learning [28] and stable learning [29], etc,
evaluating their ability under possible distribution shift scenar-
i0s becomes increasingly critical for a downstream application.
Existing generalization performance prediction methods are
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divided into several types. Confidence-based methods [12],
[30] are based on the intuition that the performance of models
is related to their prediction confidence. Discrepancy-based
methods measure the distribution discrepancy between the
training and test sets, with the aid of some classical metrics
such as Frechec Distance [[13]] or well-designed methods such
as projection norm [14]. Consistency-based methods measure
the consistency of models under diverse scenarios and tasks
[31], [[32]]. Actually, most generalization performance methods
rely on the training data (also known as in-distribution, known
distribution, source data, etc). However, for VLMs, the training
data is huge, and some of it may be inaccessible due to privacy
or commercial reasons, making it challenging to apply these
methods directly to the performance prediction task of VLMs.
We select four representative methods that do not strictly rely
on training data and compare them in our experiments.

III. PRELIMINARY

In this section, we formally introduce the setting of unsu-
pervised vision language model selection.

A. Zero-shot Classification of Vision Language Models

We denote the candidate VLMs as {v,, = (dm, Em) 1,
where ¢, and &, notate the visual encoder and textual
encoder of m-th VLM, respectively; X = {xl}fvzl denotes
the unlabeled downstream dataset, where N is the number
of images. C' = {ck}i,;l represents the class names, i.e.,
label space, where K is the number of classes. Zero-shot
classification with VLMs involves encoding both image and
text prompts (e.g., “a photo of a {class name}”) into feature
vectors. An image is classified by selecting the class whose
textual feature has the highest cosine similarity to the image’s
feature vector,

Ui = argzna:v(cos(fm (Ck)s Dm(24)))s (1
where cos(-) is the cosine similarity, ¢ is the text prompt of
the class name cy, y; is the real label of 2;; ¢, (z;) € R” and
&m(cr) € RP*E denote the visual feature and textual feature
respectively, D is the dimension of features. It is worth noting
that, text prompts also play a crucial role when employing
VLMs for zero-shot classification. Selecting an appropriate
prompt template is essential, as it significantly impacts the
effectiveness of zero-shot classification. Notate the templates
as {op}]_,, P is the number of candidate templates, the text
prompts ¢ are defined as ¢, = o;(cy). For different VLMs,
the optimal template is not necessarily the same, so it is
equally important to choose a suitable combination of VLM
and template.

B. Vision Language Model Selection

A large number of VLMs have emerged in recent years.
There are dozens of different model architectures in the CLIP
[1]], [4]] family alone, and diverse pre-training algorithms [J3]],
[33]] also flourished. Vision language model selection [8]], [9]
aims to select a model for downstream datasets with the
highest zero-shot classification accuracy. Formally, a VLM

selection algorithm h aims to calculate a score s,, for each
VLM vy, = (¢m7€m)s

Sm = h(vm) = h(¢'ma §m)7 2

Sm 1s highly-correlated with the zero-shot performance a,, =
LSV I(yi = wi), where § is the defined in Egq. , and y;
is the real label for each unlabeled image.

Language Only VLM Selection (LOVM). Existing methods
focus on language-only VLM selection (LOVM) [8|], where
only meta information, i.e., class names, are available,

Sm = hrovm (vm|Ca), 3)

where Cj is the class name of dataset d. As information is
scarce, LOVM introduces the large language model (LLM)
[L1]], which is important prior knowledge to this setting. LLM
generates many probable image captions, which could be
encoded using the different VLM text encoders, producing the
corresponding text embeddings, which are treated as image
proxies. Existing work [8|] introduces the accuracy of the
candidate model on ImageNet [10] (INB) as a baseline, and ad-
ditionally proposes the text classification score (LOVM-C) and
dataset granularity score (LOVM-G). INB is a strong baseline,
and its computation requires the full ImageNet dataset and its
labels, which is not available in most real-world situations.

Unsupervised VLM Selection (UVMS). We focus on the
Unsupervised VLM selection (UVMS) problem, where the un-
supervised downstream data and the class names are available,

Sm = hUVMS(¢m;€m|CaX)- €]

Due to the scarcity of supervision information, LOVM needs
to introduce large-scale supervised datasets, i.e., ImageNet,
and large language models. Our UVMS setting strictly requires
only unsupervised downstream data to be available. This
approach is more practical because we always have the test
data during deployment, while the availability of a supervised
dataset and LLMs is not guaranteed.

Evaluation of UVMS task. To evaluate the performance
of the UVMS method comprehensively, we introduce four
commonly used metrics in model evaluation methods [8],
[24]. Specifically, given the ground truth, i.e., the zero-shot
classification accuracy A = {a,, }}_; of the candidate models
on the target dataset, and the predicted scores S = {s,, }M_,
of the candidate models, the metrics are introduced as follows:

o Top-5 Recall (R5). Top-5 recall measures the overlap
between the five highest predicted models and the five
actual optimal models,

| F5 |
R5 - 5 )
where () is the index set, A% and S° are top-5 values
in A and S, || F5|| is the length of F.

o Top-1 Accuracy. Top-1 accuracy measures the reliability
of a UVMS method when selecting a single model, which
is defined as the ground truth accuracy of the model with
the highest predicted score.

o Kendall’s Rank Correlation (75 and 7). We use
Kendall’s rank correlation to evaluate the overall ranking

Fy = I(A°)NI(S%), (5)
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Fig. 2. The pipeline of VEGA involves encoding class names and unlabeled images into a shared cross-modality feature space. Subsequently, we construct a
textual graph and a visual graph for the two modalities, respectively. VEGA combines node-level and edge-level similarities to evaluate the alignment between

these graphs.

ability of the UVMS method on the best five models and
the entire model zoo,
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otherwise.

(6)
where F' = {1,2,... M}, F5 = I(A°) N I(S%), and
sign(+) is the sign function.

IV. METHOD
A. Motivation

Vision language models have flourished in recent years [1f],
[3[l, [33]]. The classical VLM pre-pretraining paradigm is based
on contrastive learning techniques. NT-Xent loss is extended
to the multimodal domain,

1
Lvim == 5 B y)m P {2 01122, ~ Pan
log exp(z"y/7) . exp(zy/7)
> exp(xiTy/T) Soexp(zTyi/T)]”
(7

Ly aligns the positive pair of text y and the correspond-
ing image x. Concurrently, N negative pairs are denoted
as {z},y/}. Both positive and negative pairs are sampled
from the original data distribution Pjy,,. With contrastive pre-
training, the features of both modalities are mapped into a
shared representation space, where images and texts with the
same semantics are clustered together. Zero-shot classification
is all about selecting the most recent class name for an
image. In the process of modal alignment, the performance
of zero-shot classification is gradually improved. Therefore,
the performance of the VLM can be estimated by measuring
the modality gap, i.e., the alignment level between modalities.

B. VEGA: Visual-Textual Graph Alignment for Unsupervised
VLM Selection

The key idea behind our method is that in the shared cross-
modality feature space, the more similar the structures of the
class feature distributions are between the two modalities, the
easier it becomes to match images with their corresponding
classes. Based on this intuition, we propose Visual-tExtual
Graph Alignment (VEGA) to measure the similarity between
these structures. The pipeline of VEGA is shown in Fig. [I]
The class names are transformed into text prompts, which,
along with unlabeled images, are encoded using the textual and
visual encoders, respectively. We then represent the structure
of the class feature distributions for the two modalities as
a textual graph and a vision graph. VEGA is defined as
the similarity between these two graphs. The key challenge
of VEGA is constructing modality-specific class distribution
graphs and measuring their similarity. We will elaborate on
these details in the following sections.

Textual Graph. Given the limited information available from
the textual modality, we represent the nodes directly as the
text features of each class and the edges as the cosine
similarity between each pair of nodes. Formally, the fully
connected textual graph is denoted by G = {Nt, E1}, where
Np = {n}}/_, represents the nodes, and Er = {e[}F_,
represents the edges. Specifically, n} = £(¢) denotes the
node features, and e]; = cos(£(¢;),£(¢;)) denotes the edge
weights, calculated as the cosine similarity between the textual
features.

Visual Graph. Modeling the visual graph Gy = {Ny, Ev },
is more complex than modeling the the textual graph. Nodes
cannot be represented by a single vector for two reasons.
First, a single vector lacks the capacity to fully represent a
class. Second, without labels, it is challenging to determine
which class an image belongs to. Therefore, in the cross-
modal feature space, we use K textual features as centers to
partition the visual features into K clusters. The concatenation
of features within each cluster represents a node:

ny = cat({o(z;) - 1(gi = cx) HLy), (8)
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where §; = argmax(cos(&m(¢r), dm(x;))), and cat(-) de-
k

notes concatenation. Since the number of visual features in
each class cluster varies, node sizes differ, making it unsuitable
to use a simple cosine distance for calculating edges. To ad-
dress this issue, we model each class as a Gaussian distribution
N with class means 72} and covariance Y;. ) is the mean
vector of n}j, and X, is the covariance matrix,

| N
ﬁkv = m ;¢(xl) H(gz = Ck),

1 & B .
X = N, ; (i) =g ) (o) — 71y ) - 1(5i = cx),

©)
N
where N = Y I(y; = cx) is the number of features in the

i=1
cluster of cy. Each edge e} in By = {e};}[_, is defined
by the Bhattacharyya coefficient between each pair of class

Gaussians,

= Bh<M’M)
L v T w1/v v 1 ||
=-(n, —n) ¥ (", — 1)+ - ln ————,
g0 —m) EE R m) g O >0
where ¥ =  (3; + %), |-| denotes determinant. Using distri-

butional distance as the edge measure, rather than the distance
between single vectors like class means, more accurately
represents the relationships between classes. This approach
accounts for within-class covariance, capturing the dispersion
of features within each class.

Cross-Modality Graph Similarity. Finally, the VEGA score s
is defined as the summation of the node similarity s,, and edge
similarity s.. Node similarity is determined by the weighted
average distance from all visual features within a cluster to
the corresponding textual feature,

E sim(ni,n) )

)+ Nk, an

where N, = Z I(y; = cx). Considering the different scales

=1
of various VLM features, we normalize each feature at the
class level to obtain relative distances,

szm(nf, nZ) =

1 Y exp(608(¢( i),§(cr))/t)
Ny,

=t Z exp (cos(d(xi),&(cr)) /1)

where exp(-) is the exponential function, and ¢ = 0.05 is a
temperature parameter in the normalization. For any VLM,
the range of node similarity s,, is constrained to the range of
0 to 1. Similarly, due to the scale differences between the
Bhattacharyya coefficient and cosine distances, we use the
Pearson correlation coefficient [34] to measure edge similarity,

251( VgVl — )
VEE

/T e )

13)

(12)

: H(gl = Ck)a

corr(Er, Ey) =

where e; is i-th element in E, €V and €7 denote the mean
value of Fy and Er, respectively. Since the Pearson correla-
tion coefficient ranges from -1 to 1, we re-scale s, to a range
of 0 to 1 to avoid the trade-off between s,, and s.,
1 1
Se = = -corr(Er,Ey) + —.
2 2
The formulation of VEGA is a simple summation of the two
similarities: s = s, + s.. VEGA is a user-friendly method, as
its implementation requires no backward propagation process
and does not rely on LLMs. It involves only a small amount
of inference and computation, making it easy to implement on
general mid-range to low-end GPUs and CPUs.

(14)

V. EXPERIMENTS

We construct three benchmarks across three practical appli-

cation scenarios for VLM performance evaluation, including
performance prediction for VLMs from the CLIP family and
various other pre-training algorithms respectively; and ranking
the combinations of VLM and prompt templates.
Downstream Datasets. We conduct performance prediction
on ten common-used downstream datasets, including basic
image recognition Cifar-100 [35]]; animal and plant dataset
Oxford Pets [36]] and Oxford Flowers [37]]; street scene dataset
SVHN [38]] and GTSRB [39]; describable textures dataset
DTD [40]; scene classification dataset Country211 [[1]], [41]]
and SUN397 [42]; digit dataset MNIST [43]; and facial
expression dataset Fer2013 [44].
Baselines. We compare our method with existing training data-
free methods in the fields of generalization error prediction
(301, [31]], [45]], unsupervised model validation [24], and vision
language model selection [§]]. These methods are highly related
to our setting, which could evaluate the performance without
training data and the annotations of downstream datasets.

* Entropy (ENT) is a commonly used baseline, representing
the entropy of the probability distribution of the logits from
VLMs,

N

SENT = —%ZP(L) log P(x;),
where P(z;) = exp (cos(¢(z:),§(ck)))
? K .
3 eap(cos(o(a). ()

¢ Confidence Score (Conf) [|30] is a classical confidence-
based method, defined as the average highest confidence score,

15)

N

1
SConf = ﬁEmax({P(gji)[k]}IIle)' (16)
* Rotation (Rot) [31]] is inspired by self-supervised methods
[46] and uses the accuracy of rotation angle prediction as a

metric,
AN

1 AT T
SRot = WZ;H(% =9i),

i = argznax(COS(f (Y3, o(

7)

where the label space Y is defined as {0, 90, 180, 270}, and
the template is “ An image rotated by y; degrees”. Each image
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is augmented to obtain four rotated images. Note that Rot can
be used to select different image encoders, but not prompt
templates, as image rotation does not involve text encoders.

* SND [24] is designed for unsupervised validation and is
defined as neighborhood density,

L NN
SSND = *WZZDQ‘ log D;j,
i—1j—1
exp(Nij/T)
> exp(Nijr [T)

where IV;; is the cosine distance between i-th image and j-
th image, i.e., soft neighbor distance. SND measures the soft
neighbor density of a representation space.

* Dispersion Score (DS) [45] performs unsupervised clus-
tering on the target dataset, and measures the separability
among class means,

(18)
Dij =

S 18— g3

K—-1 ’
where ny, is the number of k-th cluster, uy is the k-th cluster
center, and j is the center of cluster center.

* LOVM-G and LOVM-C [§]] are the dataset granularity

score and the text classification score respectively, which mea-
sure the dataset difficulty and class clarity. LOVM-C leverages
the generated captions dataset as image proxies and replace the
images with the generated image captions to calculate each
VLM’s text top-1 accuracy and fl-score. LOVM-G includes
three metrics: The Fisher criterion [47] evaluates the similarity
and separation between classes; the Silhouette score [48]
quantifies the compactness of same-class samples relative to
the separation of different-class samples; and Class Dispersion
score, which is their normalization constant, measures the
tightness within a single class or the radius of its data cone.
More details can be found in [8]].
Details. All the experiments are conducted on NVIDIA
Geforce 3090Ti GPU, and the temperature in Eq. set to
0.05 across all the experiments. There are no random opera-
tions involved in our experiments. The Python implementation
of VEGA and the specific predicted scores for all quantitative
results are provided in the supplementary material.

19)

sps = log

A. Performance Prediction for VLMs from CLIP Family

CLIP [1] is the most popular VLM in recent years, with
many CLIP models trained on various architectures and source
datasets available as open-source. We first examine the evalua-
tion of the CLIP family across different network architectures
and source datasets.

Candidate Models. We have collected 31 CLIP models with
diverse architectures and source datasets from OpenCLIP
These models are the same as those used in LOVM [8] and
include architectures from model families such as ResNet [49]],
ViT [50], and ConvNeXt [51]], with source datasets comprising
various versions of LAION [52]. Detailed information on the
candidate models is provided in the supplementary material.
For all candidate models, we use several commonly used

Ihttps://github.com/mlfoundations/open_clip

prompt templates [8] and compute the mean to obtain the
textual feature.

Quantitative Results. We provide the complete results in
Table [, where red indicates the best result in each row, and
green represents the second-best. The table showcases the
effectiveness of different methods in predicting downstream
performance across various datasets on the CLIP family.
Specifically, VEGA achieves the highest average scores for
both Top-5 recall (R5) and overall Kendall correlation (7),
with values of 0.64 and 0.62, respectively, showcasing its ro-
bustness in model selection. Notably, VEGA consistently ranks
first or second in most datasets, including Flowers, GTSRB,
and OxfordPets, where accurate predictions are critical for
selecting the best-performing models. Additionally, VEGA’s
Top-1 accuracy aligns closely with the Oracle results, further
validating its reliability in identifying models with superior
downstream performance. These results highlight VEGA as
a state-of-the-art, user-friendly approach for VLM selection
and performance prediction. SND shows a negative correlation
with downstream tasks, which might be because SND is
designed for unsupervised validation tasks. However, in VLM
model selection, where the differences between models are
often more pronounced, a higher SND might indicate that the
model has not learned a clear decision boundary.
Qualitative Results. We visualize the correlation between
the actual downstream accuracy and the predicted scores for
various methods in Fig. [3] The overall trend is basically consis-
tent with that of quantitative experiments. Our method shows
the strongest correlation, with data points closely following a
linear trend, indicating high predictive accuracy. In contrast,
methods like Entropy, Confidence Score, and Dispersion Score
exhibit moderate correlations with more scattered data points,
reflecting less consistent predictive power. Rotation and SND
display the weakest correlations, with widely dispersed points
and no clear linear pattern.

B. Performance Prediction for VLMs from Various Pre-
training Algorithms

Recent advancements in VLM algorithms have created a
range of options for users. When selecting an algorithm for
zero-shot classification, which typically involves a standard
network structure (visual and textual encoders), performance
prediction methods can be applied similarly to those used for
CLIP. LOVM-G and LOVM-C are not compared because they
did not provide the caption and synonym datasets generated
by LLMs. In our experiments, we found that the effects
of LOVM-G and LOVM-C are sensitive to the caption and
synonym datasets, so we cannot guarantee the reliability of
our reproducible results.

Candidate Models. We collect 17 models from Hugging Face
from 10 commonly used VLM pre-training algorithms on
zero-shot classification, including ALIGN [2]], AItCLIP [53],
CLIP [1]l, GroupViT [54], SigLIP [3]], StreetCLIP [55], Meta-
CIIP [56], BiomedCLIP [57], QuiltNet [S8]], BioCLIP [59].
For each algorithm, we select two models, except for those
methods that only have one official open-source model. In

Zhttps://huggingface.co
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TABLE I

DOWNSTREAM ZERO-SHOT CLASSIFICATION PERFORMANCE PREDICTION O

N CLIP MODELS WITH VARIOUS ARCHITECTURES AND SOURCE DATASETS.

RED INDICATES THE BEST RESULT IN EACH ROW, AND GREEN REPRESENTS THE SECOND-BEST. ORACLE IS THE BEST ACCURACY IN THE CANDIDATE

MODEL, WHICH IS THE UPPER

BOUND OF TOP-1 ACCURACY.

ENT Conf Rot SND DS LOVM-G LOVM-C VEGA ‘ ENT Conf Rot SND DS LOVM-G LOVM-C VEGA
Dataset
Rs ‘ Ts
Cifar100 0.60 0.60 0.00 0.00 0.40 0.40 0.20 0.80 |-1.00 -0.33 0.00 0.00 1.00 1.00 0.00 1.00
Country211 040 0.60 0.40 0.00 0.00 0.20 0.20 0.60 |-1.00 -0.33 1.00 0.00 0.00 0.00 0.00 0.33
DTD 0.60 0.80 0.20 0.00 0.00 0.20 0.60 0.80 |-1.00 -0.33 0.00 0.00 0.00 0.00 1.00 0.67
Flowers 0.60 0.60 040 0.00 0.00 0.00 0.00 0.80 |-033 033 -1.00 0.00 0.00 0.00 0.00 0.67
GTSRB 0.60 0.60 0.20 0.00 0.20 0.60 0.60 0.60 |-033 0.33 0.00 0.00 0.00 -0.33 0.33 -0.33
MNIST 0.00 0.20 040 0.00 0.20 0.00 0.20 0.40 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 1.00
Pets 0.60 0.60 0.20 0.00 0.00 0.00 0.00 0.80 0.33  -0.33 0.00 0.00 0.00 0.00 0.00 0.67
SVHN 0.20 040 0.20 0.00 0.20 0.20 0.00 0.80 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00
SUN397 040 0.60 0.00 0.00 0.00 0.00 0.40 0.40 1.00  1.00 0.00 0.00 0.00 0.00 1.00 -1.00
Fer2013 0.60 0.60 0.20 0.00 0.60 0.60 0.20 040 |-0.33 -0.33 0.00 0.00 -1.00 -1.00 0.00 -1.00
Avg. 046 056 022 0.00 0.16 0.22 0.24 0.64 ‘ -0.27 -0.10 -0.10 0.00 0.00 -0.03 0.23 0.20
ENT Conf Rot SND DS LOVM-G LOVM-C VEGA ‘ ENT Conf Rot SND DS LOVM-G LOVM-C VEGA
Dataset T | Top-1 Acc. Oracle
Cifar100 0.51 0.63 -0.09 -0.54 0.54 0.09 0.34 0.81 0.78 0.85 0.72 040 0.80 0.78 0.78 0.85 0.85
Country211 048 0.59 0.17 -0.32 0.16 0.19 0.51 0.57 029 030 021 0.15 022 0.22 0.30 0.30 0.33
DTD 0.57 0.69 0.11 -043 045 0.15 0.53 0.77 0.66 066 053 035 059 0.58 0.68 0.68 0.68
Flowers 0.50 0.62 0.15 -0.26 0.32 0.06 0.07 0.66 0.80 080 073 055 0.72 0.73 0.58 0.81 0.81
GTSRB 0.36 048 0.09 -0.17 0.34 0.44 0.47 0.46 047 050 047 029 049 0.44 0.47 0.50 0.55
MNIST 026 034 0.07 -0.11 0.20 0.22 0.46 0.50 0.56 056 029 0.66 0.69 0.69 0.73 0.58 0.76
Pets 0.56 0.64 025 -044 0.37 0.04 0.05 0.74 092 092 091 075 0.88 0.88 0.91 0.93 0.93
SVHN 047 044 -0.19 -033 0.38 0.38 -0.05 0.56 046 046 034 0.16 046 0.50 0.45 0.46 0.56
SUN397 0.62 0.72 -0.34 -0.49 0.30 0.10 0.41 0.78 0.76  0.76  0.64 0.50 0.69 0.72 0.72 0.76 0.76
Fer2013 0.32 037 0.10 -035 0.28 0.04 0.44 0.33 028 033 032 023 028 0.33 0.32 0.34 0.34
Avg. 046 055 0.03 -035 0.33 0.17 0.32 0.62 ‘ 0.60 062 052 040 0.8 0.59 0.59 0.62 0.66
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Fig. 3. Visualization of the correlation between the actual zero-shot classification accuracy and predicted scores for various VLMs in the CLIP family.

total, there are 17 models, with specific information provided
in the supplementary material.

Quantitative Results. We compare the performance of various
methods in predicting downstream performance based on the
pre-training algorithms of VLMs in Table [l VEGA achieves
the highest average performance across four metrics. The
baseline method Confidence Score also performs well on
several simple datasets, likely because the dataset has smaller
inter-class differences, leading to higher model uncertainty.
In contrast, other methods exhibit weaker and less consistent
performance. A high R5 score (0.52) for Rotation, combined

with average performance on other metrics, indicates that rota-
tion is relatively reliable when selecting a few high-performing
models. SND still shows a negative average correlation (7
of -0.30), indicating poor alignment with actual downstream
results. DS and ENT perform better than SND, but they are not
as effective as Rot and VEGA. Overall, VEGA’s strong and
consistent performance across various datasets underscores its
effectiveness in predicting the downstream impact of VLM
pre-training algorithms, making it a more reliable and accurate
method compared to its counterparts.

Qualitative Results. The visualization results are shown in
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TABLE II
DOWNSTREAM ZERO-SHOT CLASSIFICATION PERFORMANCE PREDICTION FOR VLMS FROM VARIOUS PRE-TRAINING ALGORITHMS.
ENT Conf Rot SND DS VEGA | ENT Conf Rot SND DS VEGA |ENT Conf Rot SND DS VEGA | ENT Conf Rot SND DS VEGA
Dataset Rs | 75 | T | Top-1 Acc. Oracle
Cifar100 040 040 040 020 040 060 |-1.00 -1.00 -1.00 000 -1.00 1.00 |0.19 040 003 -021 035 071 | 080 080 072 0.09 080 0.82 0.82
Country211 0.60 0.80 0.60 020 0.00 080 |-1.00 -0.33 0.33 0.00 0.00 -0.67 | 041 044 025 -022 024 051 |029 029 032 0.03 001 029 0.33
DTD 020 020 0.60 040 020 040 1.00 0.67 0.00 0.00 067 067 |059 068 -0.06 -024 056 0.72 |0.68 0.68 051 0.10 0.68 0.68 0.68
Flowers 020 020 0.60 040 020 040 | 1.00 1.00 -1.00 -1.00 0.00 1.00 | 047 050 0.10 -025 026 0.68 |0.69 0.69 073 007 055 088 0.88
GTSRB 020 020 0.60 040 040 0.60 |-033 -033 1.00 000 033 060 |[043 049 0.18 006 046 0.65 | 048 048 040 007 048 0.64 0.64
MNIST 0.80 0.80 040 0.00 0.80 0.80 | 0.00 1.00 1.00 0.00 0.33 1.00 | 0.59 068 0.16 -0.53 059 059 | 077 0.88 065 008 081 0.88 0.88
Pets 040 0.60 040 020 040 0.80 |-033 033 1.00 000 -033 0.67 |051 061 010 -049 052 0.82 | 091 091 090 003 091 095 0.95
SVHN 0.60 0.60 0.60 0.00 020 0.80 | 0.00 -033 -1.00 000 1.00 067 |[059 053 0.18 -034 043 0.66 | 047 047 042 007 047 047 0.48
SUN397 040 0.60 040 020 040 060 | 067 0.60 0.00 000 033 0.67 |038 065 -0.03 -031 043 082 | 004 075 061 019 053 0.75 0.75
Fer2013 020 020 0.60 020 040 060 | 1.00 1.00 -1.00 000 100 -1.00 | 024 021 0.07 -047 044 028 | 028 036 030 026 028 031 0.36
Avg. 040 046 052 022 034 064 | 010 026 -007 -0.10 023 046 |044 052 010 -030 043 064 | 054 063 056 0.0 055 067 0.67
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Fig. 4. Visualization of correlations between the actual zero-shot classification accuracy and the predicted scores for VLMs from various popular pre-training

algorithms.
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Fig. 5. Visualization of correlations between the actual downstream accuracy and the predicted scores across combinations of model and prompt template.

Fig. El VEGA exhibits a clear linear trend, and the DS
points are also distributed along the diagonal. In contrast, the
linear trends for other methods are less pronounced, especially
Entropy and Confidence Score perform poorly in this setting.

C. Performance Prediction for Combinations of VLM and
Prompt Template

In practical VLM usage, selecting both a suitable model
and an appropriate prompt template is essential. Thus we
conduct experiments to evaluate the performance of different
combinations of templates and models. Note that Rotation [31]]
is not included in this comparison, as its calculation pertains
only to the image encoder and does not account for variations
in prompt templates. LOVM-G and LOVM-C are also as we
explained in Sec. [V-B|
Candidate Combinations. We select 10 CLIP models from
open clip, including diverse network architectures and source
datasets. The prompt templates are generated by GPT [60],
with 10 different templates from simple to complex, short
to long. There are a total of 10x10=100 combinations of
model and template. Detailed information is provided in the
supplementary material.

Quantitative Results. We compare the performance of differ-
ent methods in predicting downstream results across various
CLIP model and prompt template combinations, as shown in
Table . VEGA achieves the highest average R of 0.36,
7 of 0.56 and Top-1 accuracy of 0.58, demonstrating superior
predictive accuracy across all downstream datasets. There are a
lot of O results in 75, which is because the task is difficult, and
the Top-5 recall (R5) is low overall, so 75 is also low. Entropy
performs well on this metric. Confidence Score also performs
well overall, being the best on R; and second-best on the
remaining three metrics. VEGA’s consistent top performance
across diverse datasets underscores its effectiveness in accu-
rately predicting downstream performance for CLIP models
and prompt template combinations.

Qualitative Results. Visualization of the correlations between
actual downstream accuracy and predicted scores for compar-
ison methods is shown in Fig. [5] The scatter plot for VEGA
demonstrates a strong, positive linear correlation, with data
points closely aligning along a diagonal line, indicating high
predictive accuracy. In contrast, the plots for Entropy and SND
show scattered patterns with no clear linear trend, reflecting
weak correlations and lower predictive reliability. Confidence
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TABLE III
DOWNSTREAM ZERO-SHOT CLASSIFICATION PERFORMANCE PREDICTION FOR COMBINATIONS OF CLIP MODELS AND PROMPT TEMPLATES.
ENT Conf SND DS VEGA ‘ ENT Conf SND DS VEGA ‘ ENT Conf SND DS VEGA ‘ ENT Conf SND DS VEGA

Dataset Rs | T | T | Top-1 Acc. Oracle

Cifar100 040 0.60 0.00 0.80 0.20 .00 1.00 0.00 0.00 0.00 046 061 -0.56 0.61 0.77 0.74 0.85 045 085 0.84 0.85

Country211 0.40 0.80 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.60 033 046 -035 030 047 022 028 0.17 0.18 0.28 0.28

DTD 040 0.60 0.00 0.00 0.60 1.00  1.00 0.00 000 -0.33 | 0.52 0.60 -034 055 0.73 0.65 0.65 044 057 0.64 0.65

Flowers 040 060 0.00 0.20 0.60 1.00 -0.82 0.00 -1.00 -033 | 049 0.56 -045 0.60 0.61 080 0.78 0.54 0.69 0.79 0.80

GTSRB 0.00 0.20 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 041 055 -030 045 0.56 043 048 029 038 048 0.51

MNIST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 023 033 -020 042 0.37 046 037 041 0.61 0.46 0.71

Pets 0.80 0.80 0.00 0.00 0.80 0.00 -0.40 0.00 0.00 -0.60 0.60 0.64 -049 0.61 0.73 091 091 0.83 0.86 0.91 0.91

SVHN 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 042 048 -039 040 0.5 0.36 038 021 0.35 0.38 0.49

SUN397 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 046 060 -037 044 0.69 0.68 0.68 052 0.70 0.72 0.74

Fer2013 0.00 0.00 040 0.00 0.00 0.00 0.00 1.00  0.00 0.00 |-0.05 0.02 -0.07 0.05 0.11 0.18 0.18 0.31 0.21 0.32 0.35

Avg. 024 036 004 0.10 036 ‘ 040 0.08 -0.10 -0.10 -0.07 ‘ 039 048 -035 044 056 ‘ 054 055 042 054 058 0.63
TABLE IV

ABLATION STUDY OF VEGA ON THREE BENCHMARKS MENTIONED ABOVE: PERFORMANCE PREDICTION FOR (A) VLMS FROM CLIP FAMILY (SEC.
[V=A); (B) VLMS FROM VARIOUS PRE-TRAINING ALGORITHMS (SEC.[V-BJ); AND (C) COMBINATIONS OF VLM AND PROMPT TEMPLATE (SEC.[V-C).
EACH ROW REPRESENTS THE AVERAGE RESULTS ON THESE BENCHMARKS.

sn (Node) | se (Edge) | Sn + se (VEGA)
Rs T5 T Top-1 Ace. | R 5 T Top-1 Acc. | Rs 5 T Top-1 Acc.
(a) 0.62 0.49 0.60 0.62 0.44 -0.13 0.44 0.61 0.64 0.20 0.62 0.62
(b) 0.68 0.39 0.56 0.67 0.68 0.01 0.01 0.63 0.64 0.46 0.64 0.67
(c) 0.42 0.03 0.55 0.63 0.16 0.00 0.55 0.63 0.36 -0.07 0.56 0.63

Score and Dispersion Score exhibit moderate correlations
with some linearity, but their data points are more dispersed
compared to VEGA.

D. Ablation Study

models and downstream datasets. In this section, we provide
a sensitivity analysis of ¢ on the prediction for VLMs from
CLIP family. For each dataset, the figure presents the values
of four metrics for five different temperature settings around
the default ¢=0.05, ranging from ¢ = 0.005 to t = 0.5. We

report the average results on ten downstream datasets in Fig. [6]
The results indicate that VEGA maintains stable performance

across varying temperatures.
t=0 t=0.3 t=0.5

temperature t

Table presents the ablation study of VEGA on three
benchmarks mentioned in the above sections: (a) prediction
on VLMs from the CLIP family (Sec. [V-A), (b) prediction on
VLMs from various pre-training algorithms (Sec. [V-B)), and
(c) prediction on combinations of VLMs and prompt templates
(Sec. [V-C). The study investigates the contributions of node
similarity s,, and edge similarity s, individually, as well as
their combination s,, + s, which constitutes the full VEGA
method. In all cases, the full VEGA method, which combines
both node and edge similarity, achieves the highest predictive
accuracy with R? and p values surpassing those of using
Sp Or S individually. For the CLIP family benchmark (a),
VEGA achieves the best in three of the four metrics, indicating
its strong predictive capability. Similar trends are observed
in the other two benchmarks, with VEGA outperforming
its individual components, highlighting the robustness and
effectiveness of integrating both node and edge similarities
for downstream performance prediction. The role of node
similarity is greater than that of edge, and the combination
of edge and node can improve 7, indicating that the sum of
node and edge similarity can more comprehensively evaluate
the performance of the model.

- R T T e ToplAcc

0.8

0 I

t=0.005

o

)
S

)
o

o

t=0.03

Fig. 6. Sensitivity analysis on temperature ¢ in Eq. @) The Y-axis is the
average results of the prediction for VLMs from CLIP family (Sec [V-A).

VI. CONCLUSION

This paper introduces a novel method called Visual-tExtual
Graph Alignment (VEGA) for unsupervised vision language
model selection, without access to downstream dataset an-
notations or the training data of VLMs. The core intuition
behind VEGA is that models with similar structures in textual
and visual features are more effective at matching images
with their corresponding labels. Specifically, we construct two
fully connected graphs representing the class distributions for

E. Sensitive Analysis visual and textual modalities, and define the VEGA score

In the calculation of node similarity in Eq. (12), we
introduce a temperature parameter ¢ to sharpen the node
score s,. The value of ¢ is empirically set to 0.05 and
is kept consistent across all experiments, including different

as the similarity between these two graphs. We establish
three benchmarks across practical application scenarios for
VLM performance prediction. VEGA outperforms existing
baselines, demonstrating its effectiveness and reliability in
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estimating VLM performance for unlabeled downstream tasks,
and the generalizability in various scenarios. We hope this
work provides valuable insights for further research in this
field.
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