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MsKAT: Multi-Scale Knowledge-Aware
Transformer for Vehicle Re-Identification

Hongchao Li , Chenglong Li , Aihua Zheng , Jin Tang , and Bin Luo

Abstract— Existing vehicle re-identification (Re-ID) methods
usually suffer from intra-instance discrepancy and inter-instance
similarity. The key to solving this problem lies in filtering out
identity-irrelevant interference and collecting identity-relevant
vehicle details. In this paper, we aim to design a robust vehicle
Re-ID framework that trains a model guided by knowledge
vectors yet is able to disentangle the identity-relevant features and
identity-irrelevant features. Toward this end, we propose a novel
Multi-scale Knowledge-Aware Transformer (MsKAT) to build
a knowledge-guided multi-scale feature alignment framework.
First, we construct a Knowledge-Aware Transformer (KAT)
to interact with semantic knowledge and visual feature. KAT
mainly includes State elimination Transformer (SeT) to eliminate
state (camera, viewpoint) interference and Attribute aggregation
Transformer (AaT) to gather attribute (color, type) informa-
tion. Second, to learn the knowledge-guided sample differences,
we propose to encourage the separation of identity-relevant
features and identity-irrelevant features by a Knowledge-Guided
Alignment loss (LK G A). Specifically, LK G A suppresses the
difference between knowledge-guided positive pairs and the
similarity between knowledge-guided negative pairs. Third, with
the multi-scale settings of KAT and LK G A, our model can
capture knowledge-guided visual consistency features at different
scales. Extensive evidence demonstrates our approach achieves
new state-of-the-art on three widely-used vehicle re-identification
benchmarks.

Index Terms— Vehicle re-identification, knowledge-aware,
transformer, multi-scale.

I. INTRODUCTION

VEHICLE re-identification (Re-ID), which aims to iden-
tify vehicle images from the gallery that shares the
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same vehicle as the given probe, is an active task driven
by the applications of smart city and intelligent transporta-
tion. Despite years of extensive efforts, it still faces two
severe challenges. 1) The intra-instance discrepancy among
the same vehicle images under different states, e.g., different
camera views, vehicle viewpoints, and capture times. 2) The
inter-instance similarity among different vehicles, especially
when sharing the same attributes, e.g., the same color, type,
and manufacturer.

Recent efforts have provided various solutions while han-
dling the above challenges. Representative approaches fall into
three categories: 1) Generation-based methods [1]–[5], which
aim to handle viewpoint changes and generate cross-view
features to supplement the original features. Methods of this
category show one major benefit, which is learning cross-view
features to reduce intra-instance differences. However, the
unrealistic samples affect the explicit regularization of the
feature representations in cross-view generalization. 2) Part-
based methods [6]–[11] learn local features to enhance the
discriminative clues of global features. Methods of this cat-
egory show two major benefits: strengthening discriminative
regions for distinguishing subtle differences, and aligning parts
of cross-view samples for the same identity. However, part
extraction model usually requires a large amount of annotated
data which is time and labor-consuming. Furthermore, the
performance of forthcoming vehicle Re-ID is very sensitive
to the inaccurate results of part extraction. 3) Knowledge-
based methods [12]–[17] use additional color, type, camera,
viewpoint and other prior knowledge to assist the vehicle
Re-ID task. Methods of this category show two major benefits:
introducing identity-relevant attribute knowledge (e.g., color
and type) for global features, and reducing identity-irrelevant
state (e.g., camera and viewpoint) changes of hard posi-
tive samples for the same identity. In summary, generation-
based methods focus on learning identity invariant features
in different states, while part-based methods focus on sub-
tle identity-related discriminative clues. However, the perfor-
mance of existing knowledge-based methods is eclipsed by
generation-based methods and part-based methods. The reason
is that existing knowledge-based methods still face the fol-
lowing two shortcomings. 1) How to effectively interact with
knowledge vectors and feature maps. Existing methods tend to
directly cascade semantic information and visual information,
ignoring the response relationship between knowledge vector
and feature map. 2) How to distinguish different samples under
similar knowledge vectors. The common way is to directly
pass the cascaded knowledge features into the final loss
function, ignoring the knowledge-guided sample differences.
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To explore the response relationship between knowledge
vector and visual feature map, we propose to introduce
the transformer [18] architecture into vehicle Re-ID. Trans-
former has shown its strong ability in modeling the depen-
dence of patches via a self-attention manner [19]. Then,
the transformer-based computer vision models [20]–[22] also
occupy the top-k ranks on many benchmarks and tasks. How-
ever, existing works rarely consider the dependency between
visual patches and semantic patches. Therefore, transformer-
based visual-semantic interaction is still an interesting problem
to be further studied. Different from above transformer-based
models, we propose a Knowledge-Aware Transformer (KAT)
to interact with semantic knowledge and visual feature. KAT
mainly includes State elimination Transformer (SeT) and
Attribute aggregation Transformer (AaT) as shown in Fig. 1
(Middle). In vehicle Re-ID, camera and viewpoint variations
are two key factors causing the intra-instance discrepancy.
We hope vehicle Re-ID system with capability of recogniz-
ing the same vehicle captured in different states. Specially,
we propose the SeT to integrate the state knowledge into the
feature tensor and suppress patches with large similarities,
to reduce the interference of camera/viewpoint changes on
vehicle features during the feature learning. Meanwhile, color
and type similarity are the two key factors causing the
inter-instance similarity in vehicle Re-ID. In the same manner,
we propose the AaT to collect patches with large similarities
of the attribute knowledge and the feature tensor, to learn
the color/type nuances of vehicles. However, SeT and AaT
result in the loss of some discriminative information, because
this process only conveys knowledge clues in a single feature
map, ignoring the learning of identity-relevant information and
identity-irrelevant information between sample pairs.

Furthermore, to learn the knowledge-guided sample dif-
ferences, we propose a Knowledge-Guided Alignment loss
(LK G A) to learn the identity-relevant features and the
identity-irrelevant features respectively. LK G A mainly con-
strains knowledge-guided positive pairs and knowledge-guided
negative pairs as shown in Fig. 1 (Bottom). Vehicle images
from the same category have consistent attribute informa-
tion and changeable state information. We propose positive
knowledge-guided alignment loss (LK G Ap ) to encourage the
visual features of attribute-aggregation to be aligned and
the visual features of state-elimination to be inconsistent.
It means that our LK G A p reduces the intra-instance differ-
ences by discarding identity-irrelevant features in the posi-
tive space. Vehicle images from hard negative pairs tend to
share consistent attribute information. We propose negative
knowledge-guided alignment loss (LK G An ) to force the visual
features of attribute-aggregation to be misaligned, which digs
out vehicle details in the same attribute space. LK G Ap and
LK G An can separate identity-related information and identity-
irrelevant information in the feature map and are not limited
by the size of the scale, it inspires us to do feature alignment
learning on different scales.

Naturally, we introduce the multi-scale learning frame-
work into vehicle Re-ID. It has been demonstrated that
multi-scale feature learning [23]–[25] improves the capacity
of deep networks in image classification, object detection

Fig. 1. Illustration of knowledge-aware transformer (KAT) and
knowledge-guided alignment loss (LK G A). Vehicle images captured from
different states present appearance variations which result in intra-instance
discrepancy. Different vehicles that share the same attributes present a similar
appearance which results in inter-instance similarity. KAT is designed with
a state elimination transformer (SeT) to alleviate state interference and an
attribute aggregation transformer (AaT) to aggregate attribute details. To learn
the knowledge-guided sample differences, we further use LK G Ap to learn the
consistent features between knowledge-guided positive pairs and use LK G An
to learn the discriminative features between knowledge-guided negative pairs.

Fig. 2. Visualization of class activation maps at different scales. (a) Baseline:
The traditional convolutional network can only constrain the similarity of the
feature vectors in the last layer of the network. (b) Ours: We propose a Multi-
scale knowledge-aware transformer (MsKAT) to focus on the feature learning
of same region at different scales.

and semantic segmentation. However, these multi-scale feature
learning methods tend to interact with a single input image at
different scales. We propose to learn the knowledge-guided
sample differences at different scales and build a knowledge-
guided multi-scale feature alignment framework as shown
in Fig. 2 (b). Our goal is to spread the information of
different samples at the same scale under the guidance of the
knowledge.

The contributions of this paper can be summarized as
follows.
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• We propose to introduce the transformer structure as an
interactive bridge between visual features and semantic
knowledge. Particularly, we propose a Knowledge-Aware
Transformer (KAT), which eliminates the interference of
state information by State elimination Transformer (SeT)
and collects attribute information by Attribute aggregation
Transformer (AaT).

• We propose a Knowledge-Guided Alignment loss
(LK G A) to learn the knowledge-guided sample
differences. LK G A mainly includes LK G A p to suppress
the difference between knowledge-guided positive
pairs and LK G An to reduce the similarity between
knowledge-guided negative pairs.

• We propose to build a knowledge-guided multi-scale
feature alignment framework, which is guided by KAT
and LK G A at different scales. Existing multi-scale feature
learning methods tend to interact with a single input
image at different scales. Our method aims to do feature
alignment learning on different scales under the guidance
of the knowledge.

• Comprehensive experiments on three large-scale vehicle
Re-ID benchmark datasets confirm the effectiveness of
the proposed model. In addition, sufficient experiments
verify the complementarity and effectiveness of each
component we proposed.

II. RELATED WORK

We briefly review the related works in the following two
folds, i.e., vehicle Re-ID and transformer.

A. Vehicle Re-Identification

Due to wide applications in video surveillance and social
security, the vehicle Re-ID task has gained more and more
attention in recent years. These previous methods can be
summarized into three categories:

1) Generation-Based Methods: Methods of this category
are mainly to generate cross-view or multi-view features
to handle the viewpoint variation issue in vehicle Re-ID,
Sochor et al. [26] learn a 3D orientation vector embedded
into the feature map for vehicle recognition. They show that
orientation information can decrease classification error and
boost verification average precision. Zhou et al. [27] generate
the opposite side features to handle the viewpoint prob-
lem. Zhou et al. [4] propose a viewpoint aware network that
integrates features from viewpoint-based feature extractors
with a GAN to create cross-view features for vehicle Re-
ID. Zhou et al. [1] exploit the great advantages of DCNN and
Long Short-Term Memory (LSTM) [28] to learn transforma-
tions across different viewpoints of vehicles. Lou et al. [5]
propose an embedding adversarial learning network (EALN)
to generate hard negative cross-view and same-view images for
more robust training in vehicle Re-ID. Jin et al. [2] propose an
Uncertainty-aware Multi-shot Teacher-Student (UMTS) Net-
work to exploit the comprehensive information of multi-view
of the same vehicle for effective vehicle Re-ID. However,
generating cross-view features is unstable and insufficient, and
methods of this category always ignore the challenge of inter-
instance similarities.

2) Part-Based Methods: Part-based methods utilize dis-
criminative regional features as a complement to the global
backbone features. He et al. [7] investigate vehicle local
regions to learn part-regularized features for vehicle Re-ID.
Khorramshahi et al. [8] present a dual-path adaptive attention
model, to capture key-points related to parts for vehicle Re-ID.
Meng et al. [29] detected multiple part regions for each vehi-
cle through a U-Net part parser to generate discriminative
features. Meng et al. [9] propose a part perspective transfor-
mation on feature space to transform the deformed region to
a unified perspective. Liu et al. [11] adopt the graph convolu-
tional networks (GCNs) [30] to model the correlation among
parts for vehicle Re-ID. However, the part-based approaches
need additional part annotations, which takes extra costs.
A part prediction network is also needed, which involves more
training procedures and complicates the feature extraction
model. In addition, identity-relevant part information is easily
disturbed by the challenge of intra-instance differences.

3) Knowledge-Based Methods: The knowledge information,
such as spatial-temporal information, vehicle attribute, are
aggregated into global vehicle embedding. Liu et al. [31] fuse
color, texture, and deep features for vehicle Re-ID. They show
that deep features outperform the others and feature fusion
improves the Re-ID performance. Yan et al. [32] model the
relationship of vehicle images as a multi-grain list to discrim-
inate appearance-similar vehicles. By introducing multi-grain
relationships, they force the deep model to learn the more dis-
criminative feature between different grains over many images.
Shen et al. [13] investigate spatial-temporal association for
effectively regularizing vehicle Re-ID results. The spatial-
temporal information along the candidate path is effectively
incorporated to estimate the validness confidence of the path.
Li et al. [15] propose a deep network architecture guided
by meaningful attributes, including vehicle viewpoints, types,
and colors, for vehicle Re-ID. Zhao et al. [16] collect a new
vehicle dataset with 21 classes of structural attributes and
proposed a region of interest (ROIs-based) vehicle Re-ID
method. In this work, we focus on knowledge-based vehicle
Re-ID. On the one hand, state knowledge can be used to
deal with the view change problem like generation-based
methods. On the other hand, attribute knowledge can be
used to dig out the local features like part-based methods.
We argue that knowledge-based methods can consider both the
intra-instance differences and the inter-instance similarities.
However, the existing methods ignore the relationship between
the knowledge vector and the feature map, and tend to treat the
attribute knowledge as a priori information cascading global
feature, or subtract the state similarity in the testing stage.

B. Transformer

As convolutional filter weights are usually fixed after
training, they cannot be dynamically adapted to different
inputs. Many methods have been proposed to alleviate this
problem using non-local filters or self-attention operations
[33]–[37]. The basic block in a transformer is the self-attention
operation, which aggregates information from the entire input
sequence [18]. Many studies also show its effectiveness for
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Fig. 3. The architecture of the proposed approach. The whole network consists of a backbone network, vehicle knowledge encoder (VKE), and Knowledge-
Aware Transformer(KAT). Specifically, the backbone network uses ResNet-50 pre-trained on ImageNet with the supervision of Re-ID loss to obtain enhanced
CNN representation. V 1 − V 4 are the feature maps of different scales from the anchor image. VKE employs convolutional blocks with the supervision of
knowledge loss to obtain vehicle knowledge vectors. KAT consists of a state elimination transformer (SeT) and an attribute aggregation transformer (AaT). The
output of KAT will be divided into identity-relevant features and identity-irrelevant features by knowledge-guided alignment loss (LK G A). The knowledge-
aware identity-relevant features at different scales will be used as part of the final features to help vehicle Re-ID. It is worth noting that the knowledge label
is not necessary, and the pre-trained knowledge encoder can also be used directly. This is what we did on the vehicleID dataset.

computer-vision tasks. DETR [20] utilizes the transformer
decoder to model object detection as an end-to-end dictionary
lookup problem with learnable queries, successfully removing
the need for handcrafted processes such as NMS. Based on
DETR, deformable DETR [38] further adopts a deformable
attention layer to focus on a sparse set of contextual elements,
obtaining faster convergence and better performance. Recently,
vision transformer (ViT) [19] employs a pure transformer
model for image classification by treating an image as a
sequence of patches. ViT-BoT [21] combines the ViT frame-
work with side information to construct a strong baseline for
object re-identification. Later, several studies, such as the T2T-
ViT [39], Swin [22], and PVT [40], improved the computation
of visual transformers and further boosted their performance.
However, existing studies mostly use transformers for feature
representation learning, e.g. image classification and dense
predictions. There lacks a comprehensive study on whether
transformers are effective for the interaction between semantic
features and visual features. Unlike these approaches, we pro-
pose a Knowledge-Aware Transformer architecture to learn
identity-relevant features and identity-irrelevant features.

III. APPROACH

A. Overall Architecture

Our goal is to interact with feature maps and identity-
relevant/ -irrelevant knowledge vectors to generate multi-scale

knowledge-aware features for robust vehicle Re-ID based
on the transformer [18] structure. An overview of our
approach is depicted in Fig. 3. It consists of four mod-
ules: Backbone network (e.g., ResNet-50), Vehicle Knowl-
edge Encoder (VKE), Knowledge-Aware Transformer (KAT)
and the Knowledge-Guided Alignment loss (LK G A). Par-
ticularly, KAT is designed as a key module to consider
the two major challenges of Re-ID, intra-instance differ-
ences and inter-instance similarities. In the KAT module,
we first eliminate state discrepancy among intra-instance
samples by State elimination Transformer (SeT). Then,
an Attribute aggregation Transformer (AaT) is proposed to
distill identity-relevant (discriminative) features from those
previously reserved by SeT. Moreover, for the KAT module,
we design a Knowledge-Guided Alignment loss (LK G A) con-
straint to optimize two goals: 1) In positive space, we encour-
age that the features eliminated by the state knowledge to be
less discriminative and the features aggregated by attribute
knowledge be consistent. 2) In the negative space (especially
negative samples with the same attributes), we encourage
that the identity-relevant features aggregated by attribute
knowledge be inconsistent. Finally, we apply the State elim-
ination Transformer, Attribute aggregation Transformer, and
Knowledge-Guided Alignment loss in multiple scales of the
deep network, and boost the network to align the identity-
relevant information.
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B. Backbone Network

State-of-the-art Re-ID methods [9], [11], [29] follow a
similar backbone network. They generally train a deep neural
network F(·; θ) on the training set, where θ represents the
learnable parameters of the network, and the network is
then transferred to extract features from the images in the
testing set. Following [9], [11], [29], we adopt ResNet-
50 [23] pre-trained on ImageNet [41] as the backbone model
in our experiments. We denote a vehicle input as I =
{(x, yid , yat

i |M
i=1, yst

j |N
j=1)}, where x and yid denote the input

training vehicle image and its associated vehicle identity label.
yat

i and yst
j denote the i -th attribute label and the j -th state

label of image x respectively. M and N are the numbers of
attribute and state respectively. The corresponding multi-scale
feature tensor encoded by the network are denoted as V s ∈
RHs×W s×Cs

, s ∈ {1, 2, 3, 4}. We use GAP to obtain the vehicle
feature vector f = G AP(V 4) ∈ RC4

, where GAP denotes a
global average pooling operation. The network parameters θ

is then optimized with respect to a Re-ID loss LReI D in the
form of,

LReI D = −yidlog(Sof tmax(FC( f )))

+ max(0, � f − f p)� + m − � f − f n)�), (1)

where FC denotes a Full Connected layer that predicts the
result of classification, Sof tmax denotes the Softmax function
that gets the normalized probability, �·� denotes the L2−norm
distance, subscripts p and n indicate the hardest positive
and hardest negative feature index in each mini-batch for the
sample x1, and m = 0.3 denotes the triplet distance margin.
LReI D denotes the widely-used cross-entropy loss [42], and
triplet loss [43] with batch hard mining on the Re-ID feature
vectors. All samples in the training set will be constrained
by the above two loss functions until the training converges.
In this paper, we regard ResNet-50 + LReI D as our base-
line. Although this baseline has achieved superior perfor-
mance in the field of person re-identification [44], it ignores
the intra-instance discrepancy and inter-instance similarity
between vehicle images. The reason for the intra-instance
discrepancy and inter-instance similarity is that vehicles with
the same identity are captured in different states (camera,
viewpoint), and different vehicles have the same attributes
(color, type). We introduce attribute knowledge and state
knowledge to disentangle the identity-relevant features and the
identity-irrelevant features.

C. Vehicle Knowledge Encoder

Given the vehicle image x, we can obtain the feature tensor
V 4 via the backbone. We design two different convolution
blocks to extract two different knowledge vectors respectively:

f at = G AP(ReLU(B N(convat
1×1(V 4)))),

f st = G AP(ReLU(B N(convst
1×1(V 4)))), (2)

where convat
1×1 and convst

1×1 denote the attribute-related and
state-related 1 × 1 convolutional operation respectivy, B N
denotes Bath Normalize operation, ReLU denotes Rectified
Linear Unit.

Fig. 4. Self-transformer, cross-transformer and knowledge-aware transformer.

The knowledge vector is constrained by the cross-entropy
loss and the ground-truth knowledge label which in the form
of,

Lknowledge = −
M∑

i=1

yat
i log(Sof tmax(FCat

i ( f at))))

−
N∑

j=1

yst
j log(Sof tmax(FCst

j ( f st )))), (3)

where FCat
i and FCst

j denote the i -th attribute fully connected
layer and the j -th state fully connected layer respectively. M
and N are the numbers of attribute and state respectively.

Recent knowledge-based vehicle Re-ID methods [15], [17]
have proved that cascading semantic features and visual fea-
tures are effective for the Re-ID results. However, this interac-
tion strategy of semantic information and visual information
is relatively crude, which ignores the response relationship
between knowledge vector and feature map. Back to the vehi-
cle Re-ID problem, camera and viewpoint variations are two
key factors causing the intra-instance discrepancy. Meanwhile,
color and type similarity are the two key factors causing the
inter-instance similarity. As analyzed above, the Knowledge
vector is not just auxiliary information. How to efficiently use
state knowledge to eliminate identity-irrelevant information
while using attribute knowledge to collect identity-relevant
information has became a key issue for knowledge-based
vehicle Re-ID methods. It motivates us to find more efficient
ways to disentangle identity-relevant features and identity-
irrelevant features.

D. Knowledge-Aware Transformer

We propose to introduce the transformer [18] architecture
into vehicle Re-ID and convey the rich knowledge cues across
feature maps. Transformer has shown its strong ability in
modeling the dependence of patches and occupied the top-k
ranks on many benchmarks and tasks [20]–[22]. Transformer-
based methods have the same core component, i.e., atten-
tion mechanism, they can be divided into Self-Transformer
and Cross-Transformer. Self-Transformer aims to capture the
co-occurring object features on one feature map as shown in
Fig. 4 (a). Self-Transformer has been introduced to computer
vision such as image classification [19], object detection [20]
and object re-identification [21], but it can only capture infor-
mation on a feature map. Cross-Transformer can exchange
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information on different feature maps as shown in Fig. 4 (b).
Cross-Transformer is mainly used to complement the texture
information of low-resolution images [45] and to fuse infor-
mation of different modalities [46]. Inspired by the Cross-
Transformer, we design a Knowledge-Aware Transformer to
explore the potential relevance between knowledge vectors and
feature maps.

1) State Elimination Transformer: In the Knowledge-Aware
Transformer, we first eliminate state discrepancy among
intra-instance samples by State elimination Transformer (SeT).
Given an intermediate feature tensor V s ∈ RHs ×W s×Cs

of
height H s , width W s , and Cs channels from s-th CNN stage,
and a state knowledge vector f st ∈ Rc of c channels from state
encoder, we design a State elimination Transformer, namely
SaT, for learning a state-aware attention map of size H s ×W s .
As illustrated in Fig. 3 (a), we scan the spatial positions
and assign their patch number as 1, . . . , H sW s . We take the
C-dimensional feature vector at each spatial position as a fea-
ture node. We represent the H sW s feature nodes as V s

i , where
i = 1, . . . , H sW s . Generally, state information (camera or
viewpoint) is often contained in identity features. Eliminating
the state information in different stages can make the learned
vehicle features more discriminative.

To facilitate the interaction between the feature tensor
and the state knowledge vector at different spatial positions,
we introduce transformer structure and first map the feature
tensor to the same feature dimension as the state knowledge
vector. The query, key, and value of the transformer are
expressed as: q = f st , ki = fk(V s

i ), and vi = ki , where
fk is embedding function implemented by a linear layer and
followed by layer normalization and ReLU activation. Then
for each patch ki in K , we calculate the similarity si by
normalized inner product:

si = � q
�q� ,

ki

�ki��. (4)

We use the similarity si to describe the bi-directional
relations between f st and V s

i . Then, we represent the pair-
wise relations among all the nodes by an affinity matrix
S ∈ RHs×W s

.
The global feature tensor contains affluent identity-irrelevant

information (e.g., camera, viewpoint), we propose to mine
state knowledge from them for inferring attention through
affinity matrix. We obtain the state-aware attention value f set

i
for the i−th feature/node through a modeling function as:

f set
i = si ∗ vi . (5)

The updated feature map can be obtained by aggregating
pixel context information of all positions:

Fset = [ f set
1 ; f set

2 ; . . . ; f set
Hs×W s ]. (6)

SeT reduces state discrepancy and improves anti-
interference ability. We propose to restitute the
identity-relevant feature to the network by distilling it
from the residual feature Rs . Rs is defined as

Rs = F F N(L N(K − Fset )). (7)

It is also worthy to note that we also utilize the Layer
Normalization (LN) and Feed-Forward Networks (FFN) in this
procedure.

2) Attribute Aggregation Transformer: Attribute aggrega-
tion Transformer (AaT) is proposed to distill identity-relevant
(discriminative) features from those previously reserved by
SeT. AaT can be categorized as a top-down non-local interac-
tion, which transforms the concept in the higher-level feature
maps Rs to the pixels in the lower-level attribute vector f at .
The output f AaT is a feature vector as f at . Same as Eq. (13),
we use Fdot as the similarity function, which is expressed as:

Fdot (q, k j ) = qk j , (8)

where q = f at is the attribute vector; k j = Rs
j is the j−th

key; v j = Rs
j is the j−th value. (k j ) is the j−th feature

position in Rs , then we get the formulation of the proposed
AaT as follows:

Input : q, k j , v j

Similari ty : s j = Fdot (qn, k j )

Weight : w j = ex p(s j )∑
j ex p(s j )

Output : f AaT = Fmul (w j , v j ), (9)

where Fmul is the weight aggregation function (default as
matri x multi plication). Based on Eq. (9), each pair of q
and k j with a closer distance will be given a larger weight.
This normalizing function is the standard Softmax.

E. Knowledge-Guided Alignment Loss

To facilitate the disentanglement of identity-relevant
features and identity-irrelevant features, we design a
Knowledge-Guided Alignment loss (LK G A) constraint by
comparing the discrimination capability of features after the
SeT and AaT. The core idea is: the identity-relevant features
after the attribute aggregation transformer are discriminative,
and the identity-irrelevant features after the state elimina-
tion transformer are less discriminative. Within a mini-batch,
we sample three images, i.e., an anchor sample x , a positive
sample x p, and a negative sample xn that has a different iden-
tity from the anchor sample. For simplicity, we differentiate
the two samples by subscript. For example, the feature after
attribute aggregation of sample x is denoted by f AaT , the
feature after state elimination of sample x is denoted by f set =
G AP(Fset ). For positive sample pairs, the Knowledge-Guided
Alignment loss is thus defined as:
LK G Ap = log(1 + ex p(d( f AaT , f AaT

p ) − d( f SeT , f SeT
p ))),

(10)

where d( f , f p) denotes the distance between f and f p which

is defined as d( f , f p) = 1 − f T f p
� f �� f p� . log(1 + ex p(·)) is

a monotonically increasing function that aims to reduce the
optimization difficulty by avoiding negative loss values. For
negative sample pairs, the Knowledge-Guided Alignment loss
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is defined as:
LK G An = log(1 + ex p(−d( f AaT , f AaT

n ))) ∗ ŵ, (11)

ŵ = h(d( f at , f at
n ); w) =

{
1, i f d( f at , f at

n ) ≤ w,

0, otherwi se,

(12)

where ŵ is a modulation parameter with a value of 0 or 1,
which is mainly used to restrict our network to pay more
attention to negative samples with high attribute similarity

1 − f at T f at
n

� f at�� f at
n � ≤ w. w is empirically set to 0.2.

On the one hand, the positive Knowledge-Guided Alignment
loss LK G Ap encourages positive samples to be consistent with
the information perceived by the knowledge in different feature
maps, and forces the positive samples cannot discriminate the
features obtained by state elimination. On the other hand, the
negative Knowledge-Guided Alignment loss LK G An encour-
ages hard negative samples (which have similar attributes)
to be inconsistent with the information perceived by the
knowledge in different feature maps. The Knowledge-Guided
Alignment loss is LK G A = LK G Ap + LK G An , rethinking the
relationship between positive and negative sample pairs on dif-
ferent scale feature maps from the perspective of knowledge.

1) Overall Loss: We use the commonly used ResNet-50
as backbone network and insert the proposed State elimina-
tion Transformer and Attribute aggregation Transformer after
each convolution block (in total four convolution blocks)(see
Fig. 3). We train the entire network in an end-to-end manner.
The overall loss is

L = LReI D + Lknowledge + λ

nscale∑
s=1

(Ls
K G A), (13)

where nscale = 4 is the number of the stage blocks.
λ is a weight that controls the relative importance of the
Knowledge-Guided Alignment loss at different hierarchical
levels. λ is empirically set to 0.1.

IV. EXPERIENCE

To validate the superiority of the proposed Multi-scale
Knowledge-Aware Transformer (MsKAT) network, it is com-
pared with state-of-the-art vehicle Re-ID approaches on three
large-scale databases.

A. Datasets

1) VeRi-776 Dataset: [12] consists of 49357 images of
776 distinct vehicles captured in 20 non-overlapping cam-
eras with various orientations and lighting conditions, where
576 identities with 37778 images and 200 identities with
11579 images are assigned as training and testing respec-
tively. Furthermore, 1678 images from 200 identities have
been selected as the queries from the testing set. The orig-
inal VeRi-776 [12] contains the labels of the vehicle IDs,
camera IDs, color IDs and type IDs, while Li et al. [15]
have annotated the viewpoint information, including f ront ,
f ront_side, side, rear_side, and rear . We use two kinds
of state information (camera, viewpoint) and two kinds of
attribute information (color, type) in VeRi-776 dataset [12].

2) VERI-Wild Dataset: [47] is a newly released dataset.
Different from VeRi-776 [12] captured at day, VERI-Wild [47]
are captured at both day and night. The training subset
consists of 277797 images of 30671 vehicles. Besides, there
are three different scale testing subsets, i.e., Test3000 (Small),
Test5000 (Middle), and Test10000 (Large). Except for vehicle
ID information, VERI-Wild [47] contains various labels of
camera, color, type, and manufacturer annotations. Further-
more, we have annotated the time labels according to the
acquisition hour of each image. For example, the image
captured at 20:19:34 is annotated as 20, and there are 24 time
IDs in total. We use two kinds of state information (camera,
time) and three kinds of attribute information (color, type,
manufacturer) in VERI-Wild dataset [47].

3) VehicleID Dataset: [48] is composed of 221567 images
from 26328 unique vehicles. Half of the identities, i.e., 13164,
serves for training while the other half for testing evaluation.
There are 6 testing splits with various gallery sizes as 800,
1600, 2400, 3200, 6000, and 13164. Following the protocol
in [5], [7], [8], we use the first three splits Test800 (Small),
Test1600 (Middle) and Test2400 (Large) for testing. During
the evaluation, one single image of each identity is randomly
selected to form the gallery set while the rest of the images
as the query. Which in turn means there is only one ground
truth in the gallery for each query image. All the evaluation
metrics are based on the average of ten random trials. The
vehicle images present in either f ront or rear viewpoint but
without annotation in this dataset. Furthermore, the camera
IDs are also not available. Therefore, we use the state and
attribute knowledge encoder parameters pre-trained on VERI-
Wild [47] to obtain state knowledge and attribute knowledge
for VehicleID [48].

B. Evaluation Metrics

Following the general evaluation protocols in the Re-ID
field [44], [49], [50], the Rank-1 identification rate (R-1),
Rank-5 identification rate (R-5), and mean average preci-
sion (mAP) are used as performance metrics. Rank-score is an
estimation of finding the correct match in the Rank-K returned
results. The mAP is a comprehensive index that considers both
the precision and recall of the results. The red, green and blue
respectively represent the first, second and third results.

C. Implementation Details

1) Network Architecture: We adopt ResNet-50 [23] pre-
trained on ImageNet [41] as the backbone model in our exper-
iments. The classifier weights are randomly initialized. In our
implementation, we pad 10 pixels on the image border, and
then randomly crop it to 256 × 256. We normalize RGB chan-
nels by subtracting 0.485, 0.456, 0.406 and dividing by 0.229,
0.224, 0.225, respectively. For data augmentation, random
erasing is taken to augment the data. Follow [49], we remove
the last spatial down-sampling operation in ResNet-50 [23].
The Adam optimizer [56] is used with a batch size of 64
(16 IDs, 4 instances). We run our experiments on two NVIDIA
GeForce RTX 2080Ti with 11GB RAM. Follow [44], we use
warmup [57] to bootstrap the network, which spent 10 epochs
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TABLE I

COMPARISON RESULTS OF OUR METHOD AGAINST THE
STATE-OF-THE-ART METHODS ON VeRi-776 DATASET

linearly increasing the learning rate from 3.5 × 10−5 to
3.5 × 10−4. The learning rate decays to 3.5 × 10−5 and
3.5 × 10−6 at the 40-th epoch and the 70-th epoch respec-
tively. Our model is trained in a total of 120 epochs.

2) Compared Methods: We compare our method with var-
ious state-of-the-art methods which mainly fail into three
categories.

a) Knowledge-based methods: E.g., Fusion of Attributes
and Color feaTures (FACT) [31], Orientation Invariant
Feature Embedding (OIFE) [51], Siamese-CNN + Path +
LSTM (SCPL) [13], Null space base Fusion of Attribute and
Color feaTures (NuFACT) [14], Jointly learns Deep Feature
representations, Camera Views, vehicle Types and Colors
(DF-CVTC) [15], Two-branch Stripe-based and
Attribute-aware Network (SAN) [17], Region of
Interests-based Vehicle Re-identification (ROIVR) [16].

b) Generation-based methods: E.g., Viewpoint-aware
Attentive Multi-view Inference (VAMI) [4], Group-sensitive
Triplet Embedding (GSTE) [52], Embedding Adversarial
Learning (EALN) [5], Quadruple Directional Deep Learn-
ing Features (QD-DLF) [53], Uncertainty-aware Multi-shot
Teacher-Student Network (UMTS) [2], Feature Distance
Adversarial Network (FDA-Net) [47], Unlabled-GAN [58].

c) Part-based methods: E.g., Region-aware deep
Model (RAM) [6], Adaptive Attention Model for Vehicle
Re-identification (AAVER) [8], Part-regularized Near-
duplicate (PRN) [7], Part Perspective Transformation
(PPT) [9], Hybrid Pyramidal Graph Network (HPGN) [55],
Parsing-based View-aware Embedding Network (PVEN) [29],
Three-Branch Embedding Network (TBE-Net) [54],
t Self-supervised Attention for Vehicle Re-identification
(SAVER) [10].

D. Comparison With State-of-the-Art Methods

1) Evaluation Results on VeRi-776: Table I reports the
comparison results on VeRi-776 dataset. Part-based methods

TABLE II

COMPARISON RESULTS OF OUR METHOD AGAINST THE
STATE-OF-THE-ART METHODS ON VEHICLEID DATASET

generally achieve higher performance on VeRi-776 [12] com-
pared with the generation-based methods and the knowledge-
based methods. The reason is mainly from the progress of
strengthening discriminative regions for distinguishing subtle
differences and aligning parts of cross-view samples for the
same identity. However, limited by the quality and the number
of annotations, the performance of the part-based methods
is hard to be further improved and reach a new bottleneck.
As shown in Table I, our approach significantly beats the
part-based methods as 82.0%, 97.1%, and 99.0% on mAP, the
Rank-1, and Rank-5 respectively. Compared with the baseline,
our proposed MsKAT significantly improves mAP, Rank-1,
and Rank-5 by 5.4%, 1.4%, and 1.0% respectively. This
shows the promising achievement by using knowledge to align
knowledge-aware information at different scales. Compared
with the second-best method PPT [9] with a similar baseline
as ours, our approach improves mAP, Rank-1, and Rank-5
by 1.4%, 0.6% and 0.7% respectively. PPT [9] proposes a
part perspective transform module to map key points related
to part regions to a unified viewpoint on feature space,
which only takes into account the alignment of a small
number of key points of identity-related information. However,
we propose a multi-scale knowledge-aware transformer to
eliminate identity-irrelevant information and align identity-
relevant information, our MsKAT learns a more robust feature
representation on VeRi-776 dataset [12].

2) Evaluation Results on VehicleID: Table II shows the
comparison results on VehicleID [48] on three different testing
sets. From Table I and Table II, part-based methods does not
show the same dominance on the VehicleID [48] dataset as it
does on the VeRi776 dataset [12]. For example, the Rank-5
accuracies of SAN [17] achieve 91.3% and 88.3% second only
to PVEN [29] as reported in Table II. It means that considering
the alignment of the part information is not sufficient for
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TABLE III

COMPARISON RESULTS OF OUR METHOD AGAINST THE STATE-OF-THE-ART METHODS ON VERI-WILD DATASET

TABLE IV

ABLATION STUDY FOR THE PROPOSED MsKAT

the VehicleID [48], which suffers from drastic viewpoint
changes. As shown in Table II, our approach significantly
beats the second-best method PVEN [29] by 86.3%, 81.8%
and 79.4% on the three different testing sets respectively.
Through the effective interaction of knowledge vectors and
the consistent learning of knowledge-guided features, our pro-
posed MsKAT approach improves the Rank-1 of three different
testing sets by 1.6%, 1.2%, and 1.6% respectively. Note that
our method, MsKAT, uses the knowledge encoder previewed
on VERI-Wild [47] without any knowledge annotation on
VehicleID [48], it further verifies the generality of our method
on more general scenarios.

3) Evaluation Results on VERI-Wild: Table III shows the
comparison results on VERI-Wild [47] on three different
testing sets. As shown in Table III, our MsKAT achieves com-
petitive results on all of the testing subsets on the VERI-Wild
dataset [47]. Specifically, the mAP of our method achieves
84.0%, 78.7% and 72.2% on Test3000 (Small), Test5000
(Middle) and Test10000 (Large) respectively, which improves
1.5%, 1.7% and 2.5% than the second-best method PVEN [9].
PVEN [9] proposes a parsing-based view-aware embedding
network to achieve the view-aware feature alignment and
enhancement for vehicle Re-ID. The PVEN [9] consists of
three modules: vehicle part parser, view-aware feature align-
ment, and common-visible feature enhancement. However,
PVEN [9] needs to introduce U-Net as a vehicle part parser
and ignores that vehicle parts may be invisible under different
states. In comparison, our method only needs one layer of
simple convolution to encode the knowledge vector, it implies
promising performance in potential large-scale applications.

Fig. 5. Activation maps of different features within MsKAT (Conv Block3).
They show that SeT focuses on eliminating features that are not related to
identity, while AaT focuses on collecting identity-relevant features.

E. Ablation Study

1) Quantitative Analysis of MsKAT: Our baseline is ResNet-
50 with LReI D . The Vehicle Knowledge Encoder (VKE) is
to facilitates the extraction of knowledge vectors, and the
vehicle knowledge encoder with frozen parameters is used
in VehicleID [48]. As reported in Table IV (a, b), adding a
knowledge encoder to the back of ResNet-50 improves the per-
formance. Especially on the VERI-Wild [47], which implies
that the manufacturer knowledge promotes re-identification
results. To verify the contribution of State elimination Trans-
former (SeT) and Attribute aggregation Transformer (AaT) on
the three datasets. We progressively introduce the SeT and AaT
into the baseline. Both mAP, and Rank-1 scores significantly
increase on all the three datasets as shown in Table IV (c, d).
However, the current performance is still limited, because
the SeT may lose identity-relevant information, and the
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Fig. 6. T-SNE visualization of feature distributions, from Baseline,
Baseline +LK G Ap and Baseline +LK G Ap +LK G An . Ten identities with
gray color and sedan type are selected from the VeRi-776 and their IDs are
listed on the right side of graphs. Circles 504 and 509 contain the features
from IDs 504 and 509, respectively.

Fig. 7. Parameter analysis at mAP and Rank-1 on VeRi-776.

AaT may collect identity-irrelevant information. We further
introduce Knowledge-Guided Alignment loss to disentangle
identity-relevant features and identity-irrelevant features and
use knowledge to guide visual consistency learning. By adding
positive Knowledge-Guided Alignment loss (LK G Ap ) and
negative Knowledge-Guided Alignment loss (LK G An ) into
the Knowledge-Aware Transformer, both Rank-1 and mAP
significantly increase as shown in Table IV (e, f).

2) Qualitative Analysis of MsKAT: To better visualize
the contribution of the State elimination Transformer (SeT)
and Attribute aggregation Transformer (AaT), We show the
visual activation maps as shown in Fig. 5. We can see that
SeT mainly eliminates the information of identity-irrelevant
areas, and AaT mainly interacts with the information of
identity-relevant areas. It means that our proposed SeT and
AaT can separate the identity-irrelevant features and the
identity-relevant features. To better visualize the contribution
of the positive Knowledge-Guided Alignment loss (LK G Ap )
and negative Knowledge-Guided Alignment loss (LK G An ),
we demonstrate the T-SNE [59] visualization of feature dis-
tribution on VeRi-776 [12] as shown in Fig. 6. The LK G Ap

decreases the intra-class distance of positive samples, while the
LK G An increases the inter-class distance of negative samples

TABLE V

STAGE STUDY OF ADDING KNOWLEDGE-AWARE TRANSFORMER
ON VeRi-776 AND VERI-WILD

TABLE VI

LOSS FUNCTION STUDY OF CHANGING RE-ID LOSS ON VeRi-776

with the same attribute. It verifies the effectiveness of the
Knowledge-Guided Alignment loss, which can reduce the
intra-instance discrepancy and increase the inter-instance sim-
ilarity between vehicle images.

F. Other Analysis

1) Design Choices of Knowledge-Aware Transformer:
We progressively introduce the Knowledge-Aware Trans-
former (KAT) to the multiple scales. Both mAP, and
Rank-1 scores significantly increase on VeRi-776 [12] and
VERI-Wild [47] as shown in Table V. When KAT is added
to all four scales, we achieve the best performance. It verifies
the effectiveness of our knowledge-guided multi-scale feature
alignment framework, which aligns identity-relevant informa-
tion on multiple scales to boost vehicle Re-ID.

2) Parameter Analysis: There are two important parameters
in our model. λ balances the contribution of global fea-
ture and cross knowledge-aware feature while w control the
threshold between negative samples constrained by negative
Knowledge-Guided Alignment loss. We empirically set λ =
0.1, w = 0.2. The parameter analysis results with different
λ and w on VeRi-776 [12] are shown in Fig. 7, which
demonstrates that our model is not sensitive to the parameters.

3) Analysis of Different Re-ID Loss Functions: As shown
in Eq. (1), we mainly use the widely used cross-entropy
loss [42] and triplet loss [43] for network training in this
paper. Recently, other loss functions such as circle loss [60]
and instance loss [61] have also been applied in Re-ID tasks.
To analyze the influence of different Re-ID loss functions on
our MsKAT model, we analyze the performance of different
loss functions in Table VI. The combination of cross-entropy
loss [42] and triplet loss [43] makes our MsKAT model achieve
the best performance, which shows that it is effective to
disentangle identity-relevant and identity-irrelevant features in
hard positive/negative sample pairs.

V. CONCLUSION

In this paper, we propose a Multi-scale Knowledge-
Aware Transformer (MsKAT) to build a knowledge-guided
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multi-scale feature alignment framework for vehicle Re-ID.
First, we introduce Knowledge-Aware Transformer to interact
with semantic knowledge and visual features, which eliminates
the interference of state (camera, viewpoint) information by
State elimination Transformer and collects attribute (color,
type) information by Attribute aggregation Transformer.
Second, we design a Knowledge-Guided Alignment loss
to efficiently disentangle the identity-relevant and identity-
irrelevant features, which reduces the difference between pos-
itive pairs and the similarity between negative pairs. With
the multi-scale settings of Knowledge-Aware Transformer and
Knowledge-Guided Alignment loss, our model is able to
grasp the stronger aligned details of intra-instance vehicle
images. In the future, we will consider building a knowledge
graph for vehicles and design the knowledge-guided external
transformer for vehicle Re-ID.
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